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A APPENDIX

This supplementary material provides in-depth information on the following topics:

* More experiments and ablation studies.

* Impact of mini-batch variability on network modularization.
* Architecture of Swin-Nano and Swin-Pico.

* Optimization.

* Related works - Architectures.

* Principal Component Analysis (PCA).

* Principal Component Analysis for Mean Variance Computation.

Each section offers detailed insights into the respective topic for a comprehensive understanding.

B MORE EXPERIMENTS AND ABLATION STUDIES

B.1 KNOWLEDGE TRANSFER IN CONSISTENT ARCHITECTURES.

We employ the widely recognized pairing of a ResNet34 teacher and a ResNet18 student on the
ImageNet-1K dataset to further showcase the efficacy of our method within consistent architectures.
As depicted in Table 4, the PKD technique yields results comparable to the top-performing distillation
baseline.

\ | T S. | KD OFD Review CRD DKD DIST OFA  PKD (ours) |
| Accuracy | 73.62  69.90 | 70.66 7081 7161 7117 7170 7207 7210 73.51 +0.18 |

Table 4: KD methods with homogeneous architectures on ImageNet-1K. 7: ResNet34, S: ResNet18.

| Teacher | T. S.(ResNet50) | RKD ~ Review CRD DKD  DIST  OFA PKD (ours) |
ResNet152 | 82.83 79.86 79.53  80.06 7933 8049  80.55 80.64  82.75+ 0.30
ViT-B 86.53 79.86 79.38 7932 7948  80.76 8090 8133  84.67 £ 0.22

Table 5: Comparison of homogeneous and heterogeneous teacher on ImageNet-1K.

B.2 CONSISTENT vs. DIVERSE TEACHER MODELS

To evaluate the influence of employing a larger diverse teacher model, we train a ResNet50 student
with both a ResNet152 teacher (consistent architecture) and a ViT-B teacher (diverse architecture).
As illustrated in Table 5, our PKD approach achieves a significant improvement in performance
when utilizing the ViT-B teacher compared to the ResNet152 teacher. This finding underscores the
importance of architecture-agnostic knowledge distillation (KD) in striving for enhanced performance
gains.

B.3 KD WITH LAST LAYER MODULE-SPECIFIC FEATURES

In this experiment, we utilize the OFA method to examine the impact of using only module-specific
features from the last layer, specifically extracting the most important features from this layer. For
modularization, we divided the student and teacher networks into four modules, as outlined in the
OFA method by (Hao et al., 2024). Initially, we trained the first two modules by leveraging the most
important features while keeping the last two modules (the deeper layers) frozen. The rationale is
that the shallow layers of the network learn the most critical features and semantics (class-specific
features).

After training the first two modules, we proceeded to train the deeper modules using data where
the indices corresponding to the most important features were masked by zero. The experimental
results, presented in Table 6 labeled as OFA+MS, demonstrate an improvement over the OFA method,
highlighting the significance of utilizing the appropriate features to train different layers or modules
of the network.
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B.4 ENHANCED DKD PERFORMANCE WITH PKD

We conduct further experiments to assess the effectiveness of our PKD method, particularly the
progressive modular alignment, on other knowledge distillation techniques. Specifically, we integrate
our method with DKD. In this setup, we adhere to the primary DKD methodology and incorporate
modularization along with progressive modular training. The experimental outcomes are presented
as (DKD+PKD) in Table 6, highlighted as gray. As shown in the table, our approach enhances the
performance of DKD.

| Teacher Student | From Scratch | Logits-based |
| | T S. | Kb DKD DKD+PKD DIST OFA OFA+MS PKD |
CNN-based students
DeiT-T ResNet18 72.17 69.75 | 70.22  69.39 73.56 70.64 7134 72.11 71.97 4+ 0.23
Swin-T ResNet18 81.38 69.75| 71.14 71.10 78.46 7091 71.85 74.09 78.31 £ 0.31
DeiT-T MobileNetV2 | 72.17 68.87 | 70.87 70.14 71.28 71.08 71.39 71.63 72.00 +0.17
ViT-based students
ResNet50 DeiT-T 80.38 72.17 | 75.10 75.60 78.02 75.13  76.55 77.23 78.08 £ 0.19
ConvNeXt-T DeiT-T 82.05 72.17 | 74.00 73.95 75.94 74.07 7441 74.83 77.62 4+ 0.10

MLP-based students
| ResNet50 ResMLP-S12 | 80.38 76.65 | 7741 7823 79.61 77.71 7853 79.17 79.83 4+ 0.32 |

ConvNeXt-T  ResMLP-S12 | 82.05 76.65 | 76.84 77.23 80.38 7724 77.53 76.68 80.29 + 0.20

Table 6: Applying our PKD method on top of the DKD method improves performance on ImageNet-1K. Applying MS procedures on OFA
last layer , OFA+MS, improves its performance.

B.5 IMPACT OF THE THRESHOLD IN EQUATION 5

To better understand the impact of the threshold parameter €, in Equation 5 on performance, we
conducted an ablation study. This experiment systematically evaluated different values of €, and
their effect on the accuracy of our method. The results of this ablation are presented in Table 7, where
we report the performance of the PKD model with varying threshold values.

As shown in Table 7, our method consistently outperforms the OFA baseline across all tested
thresholds. Notably, €;, values of 1e — 4 and 5e — 4 yield the best performance, suggesting that
fine-tuning the threshold in this range is critical for maximizing model accuracy. These results
validate the robustness of our approach and demonstrate the importance of selecting an appropriate
threshold value for optimal knowledge distillation performance.

C IMPACT OF MINI-BATCH VARIABILITY ON NETWORK MODULARIZATION

In our PKD framework, network modularization is not based on individual mini-batches, but rather
on a subset of the data to manage computational costs efficiently. Specifically, we randomly select a
limited number of samples per class (e.g., 25) for CKA (Centered Kernel Alignment) computations.
Through extensive experimentation, we found that this approach produces modularization results
comparable to using the entire dataset.

To account for variability when considering all training data, we compute the average CKA score
across mini-batches. This ensures consistency in the modularization process while maintaining
computational efficiency, as the use of a subset of data for CKA calculation reduces the overall
computational burden without sacrificing accuracy in the modularization results.

PKD considering different €,

‘Tmher Student ‘26—5 Se—5 le—4 5e—4 2 -3 be—3 16—3‘OFA‘

DeiT-T  ResNetl8 | 71.91  72.04 7197 7192 71.86 71.80 7181 | 71.34
Swin-T  ResNetl8 | 78.00 78.03 7831 78.26 78.17 78.14  78.09 | 71.85
ResNet50  DeiT-T 71.86 7799 78.08 78.03 7791 77.83 77.80 | 76.55

Table 7: Performance comparison of PKD using different threshold values €, in Equation 5, with varying teacher-student model pairs on
the ImageNet dataset. Our method consistently outperforms the OFA baseline across all tested values.
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D ARCHITECTURE OF SWIN-NANO AND SWIN-PICO

To ensure that the teacher models surpass the performance of the student model, (Hao et al., 2024)
presented two modified versions of Swin-Tiny (Liu et al., 2021), named Swin-Nano and Swin-Pico.
Swin-Nano features an embedding dimension of 64, while Swin-Pico has an embedding dimension of
48, in contrast to the original Swin-Tiny’s embedding dimension of 96. Additionally, Swin-Tiny has
layer depths of (2, 2, 6, 2) and numbers of heads of (3, 6, 12, 24), whereas the two modified models
share the same configurations for depths and numbers of heads, which are (2, 2, 2, 2) and (2, 4, 8§,
16), respectively.

E OPTIMIZATION

For training models with diverse architectures on the ImageNet-1K and CIFAR-100 datasets, we
employ distinct optimization settings. The comprehensive settings are provided in Table 8.

ImageNet-1k CIFAR-100
CNN ViT/MLP | CNN  ViT/MLP
Epochs 100 300 300 300
Batch size 512 1024 300 300
Initial LR 0.1 Se-4 Se-2 Se-4
Minimum LR le-6 le-6 le-3 le-5
Optimizer SGD AdamW SGD AdamW
Weight decay le-4 Se-2 2e-3 Se-2
LR schedule x0.1 at [30,60,90] Cosine Cosine Cosine
Warmup 3 20 3 20
EMA - 0.99996 - -
RandAugment - 9/0.5 - 9/0.5
Mixup - 0.8 - 0.8
Cutmix - 1.0 - 1.0
RE prob - 0.25 - 0.25

Table 8: Optimization settings details.

F RELATED WORKS- ARCHITECTURES

In recent years, significant advancements have been made in the evolution of model architectures
for computer vision tasks. This section offers a succinct overview of two notable architectures:
Transformer and MLP.

Vision Transformer Vaswani and colleagues (Vaswani et al., 2017) initially introduced the trans-
former architecture for tasks in natural language processing (NLP). Due to the utilization of the
attention mechanism, this framework adeptly captures prolonged dependencies and attains remark-
able performance. Motivated by its considerable success, endeavors have been made to devise
transformer-based models for computer vision (CV) tasks. (Dosovitskiy et al., 2021) partition an
image into non-overlapping patches and map these patches into embedding tokens. Subsequently,
these tokens undergo processing by the transformer model akin to NLP tasks. Their design achieves
state-of-the-art performance and stimulates the creation of a sequence of subsequent architectures.

MLP For an extended period, MLP has exhibited inferior performance compared to CNN in the
domain of computer vision. To explore the potential of MLP, (Tolstikhin et al., 2021) proposed
MLP-Mixer, exclusively based on the MLP structure. MLP-Mixer takes embedding tokens of an
image patch as input and interleaves channel and spatial information mixing at each layer. This
architecture performs comparably to the leading CNN and ViT models. Touvron and colleagues
(Touvron et al., 2021) proposed another MLP architecture termed ResMLP.

The most advanced CNN, Transformer, and MLP models achieve analogous performance. Nonethe-
less, these architectures possess distinct inductive biases, leading to disparate preferences in rep-
resentation learning. Generally, noticeable distinctions exist between features acquired by diverse
architectures.
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G PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is a statistical method aimed at reducing the dimensionality
of high-dimensional data while preserving as much variance as possible. This is accomplished
by identifying principal components, which are orthogonal vectors that indicate the directions of
maximum variance (Shlens, 2014; Jolliffe, 2002).
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G.1 PROCEDURE Figure 4. Singular Value Decomposition

This section details the steps involved in PCA to extract the most informative features.
Data Standardization: Standardize the dataset features to have a mean of zero and a unit variance.

Covariance Matrix: Calculate the covariance matrix of the standardized data, which captures the
relationships between different features.

SVD of Covariance Matrix: Perform Singular Value Decomposition (SVD) on the covariance
matrix. The SVD of the covariance matrix yields the principal components.

Selecting Principal Components: Sort the singular values in descending order. The corresponding
singular vectors are the principal components. Select the top k principal components to form a
reduced-dimensional space.

Projection: Project the original data onto the selected principal components to obtain the lower-
dimensional representation.

Benefits: - Dimensionality reduction simplifies data visualization and interpretation. - Reduced
dimensionality often enhances computational efficiency. - Principal components encapsulate the most
significant patterns in the data.

G.2 MORE EXPLANATION REGARDING SVD COMPUTATION

Consider an m x n matrix R, where m denotes the number of rows and n represents the number of
columns. The primary objective of Singular Value Decomposition (SVD) is to decompose matrix
R into three distinct matrices: U, Y3, and V7 (the transpose of matrix V). This decomposition is
expressed as R = UXVT € R™*" as illustrated in Figure 4.

- U: An m x m orthogonal matrix, whose columns are the left singular vectors of R. - ¥: Anm x n
diagonal matrix containing the singular values of 12 (non-negative and arranged in descending order).
-VT: Ann x n orthogonal matrix, with columns representing the right singular vectors of R.

G.3 EIGENVALUES AND EIGENVECTORS
Eigenvalues and eigenvectors are also fundamental to understanding matrix properties. An eigenvalue
A and its corresponding eigenvector v of a square matrix R satisfy the equation Rv = Av. Eigenvec-

tors denote directions in the vector space that are scaled by the matrix R, while eigenvalues represent
the scaling factors for these eigenvectors.

G.4 SVD AND ITS RELATIONSHIP TO EIGENVALUES AND EIGENVECTORS

SVD establishes a crucial relationship between eigenvalues and eigenvectors and the singular values
and singular vectors of a matrix. The singular values of R are the square roots of the eigenvalues of
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either RR” or RT R, and the left and right singular vectors are the eigenvectors of RR” and RT R,
respectively.

G.5 RANK AND MATRIX APPROXIMATION

The rank of a matrix R is determined by the number of non-zero singular values in X. By retaining
only the largest singular values and their corresponding singular vectors, it is possible to approximate
the original matrix R with a lower-rank approximation. This technique is valuable for tasks such as
dimensionality reduction and noise reduction, and it is utilized in our approach.

G.6 PROPERTIES OF SVD

- The singular values in ¥ are non-negative and arranged in descending order. - The columns of U
and V are orthonormal, forming an orthogonal basis for their respective vector spaces. - The SVD
decomposition is unique, except for the sign of the singular values and the order of the singular
vectors.

SVD is a powerful matrix factorization technique, offering a concise representation of a matrix while
preserving essential structural properties. Its applications span various fields, including data analysis,
image processing, recommendation systems, and more (Deisenroth et al., 2020).

H PRINCIPAL COMPONENT ANALYSIS FOR MEAN VARIANCE COMPUTATION

In this section, we outline the procedure for computing the mean variance of high-dimensional data
features using Principal Component Analysis (PCA). Consider a dataset X € R"*%, where n is the
number of data samples and d is the number of features.

H.1 STANDARDIZATION OF FEATURES

PCA is sensitive to the scale of the input data, so we begin by standardizing the features. This ensures
that each feature has zero mean and unit variance.

Let the dataset X = {X;, X»,..., X, }, where each X; € R, represent the set of n data samples,
each having d features. The standardized data matrix Xundardized 18 computed as:

1< .
=1
Xeentered = X — 1y (4)
Xcen ered 1 -
Xtandardized = Tl» g5 = E Z(Xl] - ﬂj)Q- (%)

i=1
Here, 11; represents the mean of the j-th feature, and o; is the standard deviation of the j-th feature.

H.2 COVARIANCE MATRIX COMPUTATION

Once the data is standardized, the covariance matrix ¥ € R?*< can be computed to measure the
pairwise dependencies between features. The covariance matrix is defined as:

1
T
X= n — 1Xstanda:dizedXSlandardized7 (6)

where ¥, represents the covariance between the j-th and k-th features.
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H.3 EIGENVALUE DECOMPOSITION OF THE COVARIANCE MATRIX

We perform eigenvalue decomposition on the covariance matrix 3, which gives us the principal
components and the amount of variance explained by each. The decomposition is expressed as:

Y =VAVT, 7

where V' € RI? is the matrix of eigenvectors (principal components) and A =
diag(A1, Az, ..., Ag) € R4*?is the diagonal matrix of eigenvalues );, where \; corresponds to the
variance explained by the j-th principal component.

H.4 EXPLAINED VARIANCE

The eigenvalues A; provide the variance explained by each corresponding principal component. The
proportion of variance explained by the j-th principal component is computed as:

s
Explained Variance Ratio = ——~—. (8)

k=1 Ak

H.5 MEAN VARIANCE EXPLAINED

The mean variance explained by the principal components can be computed by averaging the explained
variance ratio across all components:

d

1 A
Mean Variance = — I —
d ]; 22:1 Ak

This metric represents the average amount of variance explained by each principal component in the
transformed space.
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