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ABSTRACT

The expected improvement (EI) is a popular technique to handle the tradeoff
between exploration and exploitation under uncertainty. However, compared to
other techniques as Upper Confidence Bound (UCB) and Thompson Sampling
(TS), the theoretical properties of EI have not been well studied even for non-
contextual settings such as standard bandit and Bayesian optimization. In this
paper, we introduce and study the EI technique as a new tool for the contextual
bandits problem which is a generalization of the standard bandit. We propose
two novel EI based algorithms for this problem, one when the reward function is
assumed to be linear and the other when no assumption is made about the reward
function other than it being bounded. With linear reward function, we demonstrate
that our algorithm achieves a near-optimal regret. Further, when no assumptions are
made about the form of reward, we use deep neural networks to model the reward
function. We prove that this algorithm also achieves a near-optimal regret. Finally,
we provide an empirical evaluation of the algorithms on both synthetic functions
and various benchmark datasets. Our experiments show that our algorithms work
well and consistently outperform existing approaches.

1 INTRODUCTION

The stochastic multi-armed bandit (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020)
has been extensively studied as an important model to optimize the trade-off between exploration and
exploitation in sequential decision making. Among its many variants, the contextual bandit is widely
used in real-world applications such as recommendation Li et al. (2010), advertising Graepel et al.
(2010), robotic control Mahler et al. (2016), and healthcare Greenewald et al. (2017).

In each round of a contextual bandit, the agent observes a feature vector (the “context”) for each
of the K arms, pulls one of them, and in return receives a scalar reward. The goal is to maximize
the cumulative reward, or minimize regret (see our definition in Section 2), in a total of T rounds.
To do so, the agent must find a trade-off between exploration and exploitation. Currently, there are
two popular techniques to solve this trade-off. The first technique is called the optimism in face of
uncertainty which chooses the optimal action by maximizing upper-confidence bounds (UCB), and
the second one using Thompson Sampling (TS) whose basic idea is to estimate a posterior distribution
on the reward, and sample an arm that maximises a random reward drawn from this distribution. A
series of work has applied both UCB and TS or their variants to explore in contextual bandits with
many forms of reward functions - linear and nonlinear. In the line of UCB, there are works of (Li
et al., 2010; Chu et al., 2011; Abbasi-yadkori et al., 2011) for the linear bandits, works of (Filippi
et al., 2010; Valko et al., 2013) for nonlinear contextual bandits, and very recently Zhou et al. (2020),
which uses neural networks to learn the reward function. In the line of TS, Agrawal and Goyal
(2013); Russo and Roy (2014) are for linear bandits, Russo and Roy (2014); Kveton et al. (2020) for
generalized linear functions, and Riquelme et al. (2018); Zhang et al. (2021) for nonlinear bandits
using deep neural networks.

Besides UCB and TS, the expected improvement (EI) (Močkus, 1975) is one of the oldest and popular
techniques to handle the tradeoff between exploration and exploitation under uncertainty. Different
from UCB and TS, the EI is a greedy improvement-based heuristic that samples an action offering
the greatest expected improvement over the incumbent. EI enjoys wide use due to its simplicity and
ability to handle uncertainty in Bayesian optimization (Osborne, 2010; Zhan and Xing, 2020) - a
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Table 1: The summary of the regret Bounds of the two popular algorithms in linear bandits.

Algorithm Regret Bound
Dani et al. (2008) Ω(d

√
T ) (lower bound)

OFUL (Abbasi-yadkori et al., 2011) O(dln(T )
√
T +

√
dT ln(T/δ))

LinTS (Agrawal and Goyal, 2013) O(d3/2
√
T (ln(T ) +

√
ln(T )ln(1/δ)))

Our LinEI O(d
√
T ln2(T )lnTδ )

problem that is closely related to infinite-arm multi-arm bandits. There are also several papers Ryzhov
(2016); Qin et al. (2017) using EI to study the best-arm identification problem (also known as “pure
exploration”) which is a finite variant of Bayesian optimization. However, for a contextual bandit
which is a generalization of the standard bandit due to its reward depending on both the actions and
contexts, it is yet to be seen whether EI can handle the trade-off between exploration and exploitation
well. In fact, to our best knowledge, there are no EI-based algorithms even for the standard bandits in
the setting of exploration and exploitation.

A key challenge of analyzing EI-based algorithms comes from its improvement function involving
nonlinear, nonconvex term unlike UCB and TS. This causes the difficulty of the analysis of EI.
Another challenge comes from the fact that this improvement function is mainly designed to reduce
uncertainty, and thus, solely focusing on exploration. These reasons together explains why theoretical
analyses of EI based methods is limited, compared to that of UCB and TS. Furthermore, these few
notable exceptions typically focus on bounding the simple regret in EI based Bayesian optimisation
(Bull, 2011) and best-arm identification (Ryzhov, 2016; Qin et al., 2017). To our best knowledge,
none of the existing work has investigated the cumulative regret of EI in the proper bandit setting yet.

Against this background, our work proposes the first theoretical analysis of EI based methods in the
classical bandit setting. In particular, we consider contextual bandits and are interested in deriving
bounds on cumulative regret for our algorithms which is more suitable for contextual bandits. We
note that cumulative regret bounds are stronger than the simple regret bounds and are usually more
challenging to establish. In summary, our main contributions in this paper are:

• We introduce and formalize Expected Improvement as a new strategy for contextual bandits
creating a parallel to UCB and TS.

• We propose two EI-based algorithms. The first algorithm (LinEI) assumes the reward
function to be linear whilst the second algorithm (NeuralEI) is designed for the case when
no assumption can be made about the reward function other than boundedness and we model
it by a deep neural network.

• For the linear reward function, our LinEI algorithm is able to achieve O(d
√
T ln2(T )lnTδ )

regret which matches the information theoretic lower bound Ω(d
√
T ) for this problem (up

to ln(T )). For the general reward function, we prove that, under standard assumptions
(see section 4.1), our NeuralEI algorithm is able to achieve Õ(d̃

√
T ) regret, where d̃ is the

“effective” dimension of a neural tangent kernel matrix and T is the number of rounds.

• Finally, we provide an empirical evaluation of the algorithms on both synthetic functions and
various benchmark datasets. Our experiments show that LinEI outperforms other baselines
for linear bandits, and when the reward function is non-linear, NeuralEI outperforms all
baselines.

2 PROBLEM SETTING

We consider the problem of K-arm contextual bandits. At time t = 1, 2, ..., the agent observes K
contextual vectors xi,t ∈ Rd, then selects an arm a(t) and receives a reward ra(t),t which has a
general form as follows:

ra(t),t = h(xa(t),t) + ξa(t),t,

2



Under review as a conference paper at ICLR 2022

where h is an unknown reward function satisfying 0 ≤ h(x) ≤ 1 for any x ∈ Rd, and ξa(t),t is
conditionally R-subGaussian for a constant R ≥ 0, i.e., ∀λ ∈ R,E[eλξa(t),t |{xi,t}Ki=1] ≤ exp(λ

2R2

2 ).
In our setting, we assume that these context vectors may be chosen by an adversary in an adaptive
manner after observing the arms played and their rewards up to time t− 1. For the unknown function
h, we consider two cases as follows:

• the reward function h is linear, i.e., h(xt,i) = xTt,iθ
∗, where θ∗ ∈ Rd are fixed but unknown

parameters. Without loss of generality, we here assume that ||xi,t|| ≤ 1, ||θ∗|| ≤ 1.
• the reward function h is modelled by a fully connected neural network with depth L ≥ 2

defined recursively by

f(x; θ) =
√
mWLσ(WL−1σ(...σ(W1x))),

where σ(x) := max{x, 0} is the ReLU activation, θ = (vec(W1); ...; vec(WL)) ∈ Rp is
the collection of parameters of the neural network, p = dm + m2(L − 2) + m. Without
loss of generality, we assume that the width of each hidden layer is the same (i.e., m)
for convenience in analysis. We denote the gradient of the neural network function by
g(x; θ) = 5θf(x; θ) ∈ Rp.

Performance Measure. Let a∗(t) denote the optimal arm at time t. The objective is to minimize
the cumulative regret R(T ) =

∑T
t=1(xTa∗(t),tθ

∗ − xTa(t),tθ
∗).

3 THE LINEI ALGORITHM FOR LINEAR BANDITS

Prior and Posterior Distributions. We follow the design for priors of the reward function like TS
algorithm (Agrawal and Goyal, 2013). We assume that the likelihood of reward ri,t of each arm
i follows a Gaussian distribution N (x>i,tθ

∗, v2), where the variance v2 will be specified later. Let
X(t) = λI +

∑t−1
j=1 xa(j),jx

>
a(j),j , θ̂t = X(t)−1(

∑t−1
j=1 xa(j),jra(j),j). Then if we assume that the

prior for θ∗ at time t is given byN (θ̂t, v
2X2(t)), then the posterior distribution of θ∗ at time t+ 1 is

N (θ̂t+1, v
2X2(t+ 1)) ( see the proof in Appendix A.1 in (Agrawal and Goyal, 2013)).

Expected Improvement for Linear Contextual Bandits. We now use this posterior distribution
update to define the form of the expected improvement of each arm in contextual bandits. We denote
r+t = maxi∈K{xTi,tθ̂t} which is the largest mean estimate of reward among all arms at time t. We
define the expected improvement of an arm i at time t as

αEIi,t = Eµ∼N (θ̂t,v2tX(t)−1)[max{0, x>i,tµ− r+t }], (1)

The αEIi,t measures the potential of arm i to improve upon the largest posterior reward mean at time t.
We note that in Eq(1), r+t plays a role as an incumbent. In Bayesian optimization, the incumbent is
usually selected as the best reward value so far, or the largest reward mean so far. In our setting with
contextual bandits, we choose the latter for convenient in analysis.

Further, we define si,t =
√
xTi,tX(t)−1xi,t. We see that if µ ∼ N (θ̂t, v

2X(t)−1) then the marginal

distribution of xTi,tµ is Gaussian with mean xTi,tθ̂t and standard deviation vsi,t. Thus, we can express
the expected improvement in closed form as follows

αEIi,t = (xTi,tθ̂t − r+t )Φ(
x>i,tθ̂t − r

+
t

vsi,t
) + vsi,tφ(

x>i,tθ̂t − r
+
t

vsi,t
), (2)

where Φ(.) and φ(.) are the standard normal cdf and pdf function of the normal distribution respec-
tively.

LinEI Algorithm. We use this expected improvement to design our algorithm. We consider
two particular arms among all arms: the arm selected by the EI mechanism, denoted by a(t).
Formally, a(t) = argmaxi∈[K]α

EI
i,t ; and the best-so-far arm, denoted by ã(t). Formally, ã(t) =

argmaxi∈[K]{x>i,tθ̂t}.
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Algorithm 1 The Linear Expected Improvement Algorithm (LinEI)
Input: parameters C0, β

1: for t = 1 to T do
2: Observe contexts {xi,t}Ki=1

3: Set a(t) := argmaxi∈Kα
EI
i,t , ã(t) = argmaxi∈K{x>i,tθ̂t}

4: if αEIa(t),t ≥
C0

tβ
then

5: a(t) = a(t)
6: else
7: a(t) = ã(t)
8: end if
9: Play arm a(t), and observe reward ra(t),t

10: Update X(t+ 1) = λId +
∑t
j=1 xa(j),jx

>
a(j),j , θ̂t+1 = X(t+ 1)−1(

∑t
j=1 xa(j),jra(j),j)

11: end for

Selecting arm a(t) by the EI strategy yields potentially the highest expected improvement over
maxi∈[K]{x>i,tθ̂t}. However, when the expected improvement (measured by αEIi,t of all arms) is small,
an empirical observation is that the exploitation using ã(t) is often better than the solution a(t). To
make use of this intuition, we propose a modification in the EI algorithm by introducing a threshold
function g(t). If maxi∈[K]α

EI
i,t ≥ g(t) then the algorithm selects a(t), otherwise selects ã(t) for

the pure exploitation. We consider g(t) = C0

tβ
which is controlled by two parameters C0, β. Our

algorithm is summarized in Algorithm 1. The threshold function is a crucial factor in achieving
our optimal convergence rate for our algorithm and a relevant choice of parameters of the threshold
function is discussed in the next section.

Comparison with several related works. Our LinEI is related to the ε-Greedy strategy. The
ε-Greedy strategy in the standard bandit plays the best arm based on current estimates with proba-
bility 1 − ε and otherwise explores uniformly at random. The ε-Greedy EI algorithm in Bayesian
optimization (Bull, 2011)) plays the arm with the highest EI with probability 1− ε and otherwise
explores uniformly at random. Unlike these algorithms, our algorithm removes the exploration at
random, and uses a time-varying threshold function for arm-selection instead of a coin flip. Our
algorithm is also different from the TTEI algorithm (Qin et al., 2017) for the best arm identification
in a non-contextual setting. TTEI algorithm is designed to allocate a sufficient number of samples
to the suboptimal arms to eliminate these arms with high confidence. While this is appropriate to
solve BAI but it can not be used for contextual bandit problems. This is because it is not possible to
eliminate an arm completely as in contextual bandits, this arm could be the best arm in some context.
See Section C in our Supplementary Material for more discussion.

3.1 THEORETICAL ANALYSIS

In this section, we provide the regret bound for the proposed LinEI algorithm. There are the two main
challenges in our theoretical analysis. The first one is to extend several original techniques of (Bull,
2011) in Bayesian optimization which is non-contextual and noise-free setting to our setting with
contexts and noisy. Different from the work of (Bull, 2011) where the reward is assumed to be in a
RKHS space with a Matérn kernel, our setting assumes that the reward is a linear function of contexts
and an unknown parameter θ∗. The second challenge is that the EI strategy is suitable for BAI
problem whose goal is to seek the arm with the best reward rather for contextual bandits which the
concept “best arm” does not make sense. Solving these challenges is non-trivial. See our discussion
in section C in the Supplementary Material. We achieve an upper bound for the instantaneous regret
rt = x>a∗(t),tθ

∗ − x>a(t),tθ
∗ as in Lemma 9 in our Supplementary Material:

rt ≤ [
τ(βtvt )

τ(−βtvt )
(2βt + vt) + (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vt]sa(t),t +

τ(βtvt )

τ(−βtvt )

C0

tβ
,
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Algorithm 2 Neural Expected Improvement Algorithm (NeuralEI)
Input: Number of rounds T , exploration variance ν, network width m, regularization parameter λ
and parameters C0, β

1: Set U0 = λI
2: for t = 1 to T do
3: Set a(t) := argmaxi∈[K]α

EI
i,t , ã(t) = argmaxi∈[K]{f(xi,t; θt−1)}

4: if αEIa(t),t ≥
C0

tβ
then

5: a(t) = a(t)
6: else
7: a(t) = ã(t)
8: end if
9: Play arm a(t), and observe reward ra(t),t

10: Set θt to be the output of gradient descent for solving Eq(3)
11: Ut = Ut−1 + g(xa(t),t; θt)g

>(xa(t),t; θt)/m
12: end for

with probability at least 1 − δ, where vt = R
√

9dln t+1
δ , βt = R

√
dln( t

3

δ ) + 1, si,t =√
x>i,tX(t)−1xi,t and the function τ is defined as τ(z) = zΦ(z) + φ(z). Here, we note that

parameter vt plays the role of parameter v at time t we discussed above. In our analysis, vt is used to
eliminate the influence of βt so that βtvt is bounded as t grows.

Finally, we achieve the following regret bound for our proposed algorithm with a completed proof as
well as the relevant choice of parameters in Supplementary Material.

Theorem 1. Given any δ ∈ (0, 1). If vt = R
√

9dln t+1
δ ,
√
d ≤ C0 ≤ d and 0.5 ≤ β ≤ 3 then with

probability 1− δ, the cumulative regret of the LinEI algorithm is bounded as

R(T ) = O(d

√
T ln2(T )ln

T

δ
).

4 THE NEURALEI ALGORITHM FOR NEURAL CONTEXTUAL BANDITS

In this section, we extend our Algorithm 1 when the reward function is modelled by a fully connected
neural network. Similar to the Neural Thompson Sampling approach (Zhang et al., 2021), our
algorithm maintains a Gaussian distribution for each arm’s reward. At time t, the posterior distribution
of the reward of arm i is updated as follows. The mean is set to the output of the neural network,
denoted by f(xi,t; θt−1), and the variance is defined as σ2

i,t = λg>(xi,t; θt−1)U−1t−1g(xi,t; θt−1)/m,
where the matrix U−1t is updated as Ut = Ut−1 + g(xa(t),t; θt)g

>(xa(t),t; θt)/m and parameter θt
is the solution to the following minimization problem:

minθL(θ) =

t∑
i=1

[f(xa(i),i;θ)− ra(i),i]2/2 +mλ||θ − θ0||22/2, (3)

where θ0 is randomly initialized network parameter. We can adapt gradient descent algorithms to
solve this problem with step size η and total number of iterations J like the gradient descent algorithm
of (Zhou et al., 2020).

Expected Improvement for Neural Contextual Bandits. We now define the form of the expected
improvement in this setting. At each time step t, we denote f+t = maxi∈[K]{f(xi,t; θt−1)} which
is the highest mean estimate of f(x, θt−1) among all arms at time t. We define the expected
improvement value of an arm i at time t as

αEIi,t = Ef̃i,k∼N (f(xi,t;θt−1),ν2σ2
i,t)

[max{0, f̃i,k − f+t }].

Further, the above expectation can be computed analytically as follows

αEIi,t = (f(xi,t; θt−1)− f+t )Φ(
f(xi,t; θt−1)− f+t

νσi,t
) + νσi,tφ(

f(xi,t; θt−1)− f+t
νσi,t

) (4)
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Our NeuralEI algorithm is given in Algorithm 2. It starts by initializing θ0 = (vec(W1); ...; vec(WL)),
where for each 1 ≤ l ≤ L − 1,Wl = (W, 0; 0,W ), each entry of W is generated independently
from N(0, 4/m); WL = (w>,−w>), each entry of w is generated independently from N(0, 2/m).
NeuralEI extends our LinEI algorithm to the setting where the reward function h is modelled by a
fully connected neural network.

4.1 REGRET ANALYSIS

In this section, we provide a regret analysis of the NeuralEI algorithm. We first provide neces-
sary background on the neural tangent kernel (NTK) theory, which plays an important role in
our analysis. Following a recent line of research (Zhou et al., 2020; Zhang et al., 2021), we de-
fine the covariance between two data point x, y ∈ Rd as follows: H̃(1)(x, y) = σ(1)(x, y) =

x>y, A(l)(x, y) =

(
σ(l)(x, x) σ(l)(x, y)
σ(l)(x, y) σ(l)(y, y)

)
, σl+1(x, y) = 2E(u,v)∼N(0,A(l)(x,y))[σ(u)σ(v)],

H̃(l+1)(x, y) = 2H̃(l)(x, y)E(u,v)∼N(0,A(l)(x,y))[σ
′(u)σ′(v)] + σ(l+1)(x, y). Similar to (Zhou et al.,

2020; Zhang et al., 2021), we assume that the number of rounds T is known and denote the neu-
ral tangent kernel (NTK) matrix H ∈ RTK×TK based on all contextual vectors {xt,k}t∈[T ],k∈[K].
Renumbering {xt,k}t∈[T ],k∈[K] as {xi}i=1,...,TK , then each entry Hij is defined as

Hij = (H̃(L)(xi, xj) + σ(L)(xi, xj))/2, (5)

for all i, j ∈ [TK]. Based on the above definition, we impose the following assumption on the
contexts generated by the adversary and the corresponding NTK matrix H .

Assumption 1. Let H be defined in Eq(5). There exists λ0 > 0 such that H ≥ λ0I . In addition, for
any t ∈ [T ], k ∈ [K], ||xt,k||2 = 1 and [xt,k]j = [xt,k]j+d/2.

Remark 1. Compared to Algorithm 1 for linear bandits, our Algorithm 2 needs an additional
Assumption 1 to guarantee the convergence. The assumption that the NTK matrix is positive definite
has been considered in prior work on NTK which is a mild condition and also imposed in other related
works (Arora et al., 2019; Du et al., 2019; Zhou et al., 2020; Zhang et al., 2021). The assumption on
contexts ensures that f(xi,t; θ0) = 0 for any i ∈ [K], t ∈ [T ].

The NTK technique builds a connection between deep neural networks and kernel methods. It enables
us to adapt some complexity measures for kernel methods to describe the complexity of the neural
network through the notation of the effective dimensions as defined in (Zhou et al., 2020; Zhang
et al., 2021). The effective dimension d̃ of matrix H with regularization parameter λ is defined as
d̃ = log det(I+H/λ)

log(1+TK/λ) .

Using these notations, we are now ready to present the second main result of the paper. Let
a∗(t) = argmaxi∈[K]E[ri,t] be the optimal action at round t that maximizes the expected reward, we

define the expected cumulative regret after T iterations as R(T ) = E[
∑T
t=1(ra∗(t),t− ra(t),t)]. Then,

we achieve the following upper regret bound for our Algorithm 2 by combining our EI techniques for
LinEI with NTK techniques. A completed proof is provided in Supplementary Material.

Theorem 2. Under Assumption 1, set the parameters in Algorithm 2 as λ = 1 + 1/T ,

ν = B + R
√
d̃log(1 + TK/λ) + 2 + 2log(1/δ), where B = max{1,

√
2h>H−1h} with h =

(h(x1), ..., h(xTK))>. If
√
d̃ ≤ C0 ≤ d̃, β ≥ 2, and the network width m satisfies m ≥

poly(γ, T,K,L, log(1/δ)), then with probability at least 1− δ, the regret of Algorithm 2 is bounded
as

R(T ) ≤ O(d̃
√
βlog(1 + TK)log(T )T ).

Remark 2. The regret bound depends on the parameter β. The best choice is β = 2 that tightens
the regret. Theorem 2 implies the regret of NeuralEI is on the order of Õ(d̃

√
T ). Similar to previous

results (Zhou et al., 2020; Zhang et al., 2021), our results require a large value of m. This is rooted in
the current deep learning theory based on the neural tangent kernel.
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5 RELATED WORKS AND DISCUSSION

Given the vast literature on bandit algorithms, we restrict our review to linear bandits and neural
contextual bandits.

Linear Contextual Bandit. A lower bound of Ω(d
√
T ) for linear bandits was given by Dani et al.

(2008), when the number of arms is allowed to be infinite. (Abbasi-yadkori et al., 2011) analyze a
UCB-style algorithm and provide a regret upper bound O(dlog(T )

√
T +

√
dT log(T/δ)). When the

number of arms K is finite, (Chu et al., 2011) achieve a regret bound of O(
√
Tdln3(KT lnT )/δ)

with probability at least 1 − δ. (Bubeck et al., 2012) provides an algorithm based on exponential
weights, with regret of orderO(d

√
T logK). These algorithms may not be effective when the number

of arms K is large. For example, when K is exponential in d, the regret bound of (Chu et al., 2011)
would become O(d2

√
T ) showing a quadratic growth in d. We note that although our algorithm is

a Bayesian approach, our regret bounds will hold irrespective of whether or not the actual reward
distribution matches the Gaussian likelihood function. Thus, our bounds for EI algorithm are directly
comparable to the UCB family of algorithms. This is also mentioned in Agrawal and Goyal (2013).

The Thompson Sampling algorithm (Agrawal and Goyal, 2013) and an alternative given by Abeille
and Lazaric (2017) often bear an additional

√
d in the regret bound compared to UCB based bounds.

See our Table 1. Very recently, Kim et al. (2021) improved this regret bound of TS by integrating a
doubly robust estimator with TS. However, this work requires additional significant computations and
their setting is restrictive in the sense that contexts need to be independent. Our EI-based algorithm
achieves the same regret bound order as in Kim et al. (2021), however, it caters to a more general
setting where the contexts may be controlled by an adaptive adversary and therefore may not be
independent.

Another approach for linear bandits is the Information Directed Sampling (IDS) which was introduced
by Russo and Van Roy (2014). It provides an action-selection mechanism by minimizing the
information ratio between the squared expected regret and the mutual information between optimal
action and the next observation over all action sampling distributions. IDS obtains a performance
improvement over TS and UCB algorithms in some cases, but has heavy sampling requirements.
It has been shown in their experiments that IDS requires significantly more compute time than
Thompson sampling and UCB algorithms. Recently, (Baek and Farias, 2021) provided a modification
of the arm scoring rule of IDS to reduce computations. However, both Russo and Van Roy (2014) and
(Baek and Farias, 2021) only provide the bounds on expected regret. In contrast, our work provides
regret bounds in terms of cumulative regret which is tighter than expected regret.

Neural Contextual Bandit. Neural contextual bandits are becoming attractive due to the current
advancement in optimization and generalization of deep neural networks (Arora et al., 2019; Du
et al., 2019). While Neural contextual bandits have been considered in both popular techniques
UCB (Zhou et al., 2020) and TS (Zhang et al., 2021), we consider this problem in a new setting
using the EI technique. A recent work of Xu et al. (2020) combines the deep learning and the
representation learning to improve the computational efficiency of the previous works, however, it
considers a weaker version of the general reward function that is a linear function of deep network
based extracted features.

Due to the space limitation, we added more discussion on related works in Section B in the Supple-
mentary Material.

6 EXPERIMENTS

6.1 LINEAR BANDITS

In this subsection, we assess the performance of our LinEI algorithm on several benchmark dataset
including covertype, magic, avila, dry bean, statlog, letter, pendigits, all from
UCI (Dua and Graff, 2017). We compare the LinEI with methods designed for linear bandits
including: LinTS (Agrawal and Goyal, 2013), LinUCB (Abbasi-yadkori et al., 2011), Linear Epsilon
Greedy for the linear reward, LinIDS Russo and Van Roy (2014) for linear bandits. To transform
these classification problems into multi-armed bandits, we adapt the disjoint models to build a context
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Table 2: Characteristics of benchmark datasets used in Section 5.2.

Dataset letter pendigits covertype avila magic dry bean statlog
Classes (K) 26 10 7 12 2 7 7
Feature Dimension 17 16 54 10 10 16 8
Dataset size 20000 10992 581012 20867 19020 13611 58000

feature vector for each arm: given an input feature x ∈ Rd of a k-class classification problem, we
build the context feature vector with dimension kd as x1 = (x; 0; ...; 0), x2 = (0;x; ...; 0), ..., xk =
(0; 0...;x). The algorithm generates a set of predicted reward and pulls the greedy arm. For these
classification problems, if the algorithm selects a correct class by pulling the corresponding arm, it
will receive a reward as 1, otherwise 0. The cumulative regret over time horizon T is measured by
the total mistakes made by the algorithm.

We set the time horizon of our algorithm to 10000 for all data sets. In the experiments, we shuffle all
datasets randomly. For (λ, ν) used in LinUCB and LinTS and our algorithm, we set λ = 1 following
previous works and do a grid search of ν ∈ {1, 0.1, 0.01} to select the parameter with the best
performance. All experiments are repeated 10 times, and the average with standard error are reported.
For LinIDS, we use the number of samples M = 100. For Linear Epsilon Greedy, we use ε = 0.1.
For our LinEI algorithm, we can choose any value C0 ∈ [

√
d, d] and β ∈ [0.5, 3]. For LinEI, we set

C0 =
√
d and β = 2.

Figure 1 shows the total regret of all algorithms for datasets bean, covertype and statlog.
The Linear Epsilon Greedy performs the worst. This implies that the random exploration is not as
effective as other methods. While LinUCB, LinTS and LinIDS are competitive, all these methods
are significantly outperformed by the proposed algorithm. The arm-selection of our LinEI bases on
two strategies: expected improvement and greedy strategy. Compared to Linear Epsilon Greedy, our
greedy strategy is similar. It confirms that the exploration of the expected improvement is effective.
This suggests that using the expected improvement strategy is efficient in linear bandits. Due to space
limit, the additional results on magic, pendigits, letter, and avila are shown in Section A
of Supplementary Material.

Figure 1: Comparison of our proposed LinEI and baseline algorithms in linear bandits.

6.2 NEURAL BANDITS

We compare the proposed NeuralEI with baselines including: LinUCB (Abbasi-yadkori et al., 2011),
our LinEI for linear bandits problem, Neural Epsilon Greedy, NeuralUCB (Zhou et al., 2020),
NeuralTS (Zhang et al., 2021). We do the same classification problems as the experiments in
subsection Linear Bandits. For methods using the neural network, we use one-hidden layer neural
networks with 100 neurons to model the reward function. During posterior updating, gradient descent
is run for 100 iterations with learning rate 0.001. For Neural UCB/Thompson Sampling and Neural
EI, we use a grid search on λ ∈ {1, 101, 10−2, 10−3} and ν ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. We
consider our algorithm on both synthetic datasets and real-world datasets.

Synthetic Datasets. In these experiments, we use contextual bandits, we use contextual bandits
with dimension d = 10 and K = 5 actions. The context vectors {x1,1, ..., xT,K} are chosen

8
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(a) x>θ (b) (x>θ)2 (c) cos(x>θ)

Figure 2: Comparison of NeuralEI and baseline algorithms on synthetic reward functions.

Figure 3: Comparison of NeuralEI and baseline algorithms on real-world datasets.

uniformly at random from the unit ball. The reward function r is one of the following synthetic
functions r1(x) = (x>θ)2, r2(x) = (x>θ)2, and r3(x) = cos(3x>θ).

Real-world Datasets. Similar to the subsection Linear Bandit, we build the context feature vector
with dimension kd as x1 = (x; 0; ...; 0), x2 = (0;x; ...; 0), ..., xk = (0; 0...;x). We also estimate our
algorithm on datasets bean, covertype and statlog.

Figures 2 and 3 show our results in the case of the neural bandits problem. In Figure 2, if the reward
function is linear, the LinEI outperforms all other neural-based methods because it is designed for the
linear bandits. Otherwise, if reward functions are non-linear, LinEI and LinUCB fail to learn them
for nearly all tasks due to the nonlinearity of reward functions h. Neural-based methods perform
better because they can capture the nonlinearity of the underlying reward function. In real-datasets,
while neural-based methods outperform LinEI and LinUCB for datasets covertype and statlog,
these methods are not sample-efficient for learning the reward function of dataset bean. Perhaps, the
reward function for dataset bean is linear. However, in all cases, our NeuralEI algorithm performs
better than other neural-based methods. This suggests that using the expected improvement strategy
is effective in both linear bandits and neural contextual bandits.

7 CONCLUSION

We introduced and formalized Expected Improvement as a new strategy for contextual bandits. We
proposed two EI-based algorithms and analyzed them theoretically. The first algorithm assumes the
reward function to be linear whilst the second algorithm is designed for the case when the reward
function is general and can be modelled by a deep neural network. In particular, our LinEI algorithm
for linear bandits achieves a near-optimal regret bound and improves the bounds of OFUL and LinTS
algorithms. Our promising empirical results on both synthetic and real-world datasets suggested that
our algorithms work well in practice compared to other approaches. We believe our work would
be useful for further improvements and extensions. There are several interesting open questions.
For example, we can extend our work to non-Gaussian distributions to model the unknown reward
model parameters and derive regret bounds as long as concentration inequalities can be established.
In another direction, we have used NTK in our work, but the NTK theory assumes overparameterised
networks and an extension to narrow networks while maintaining the generalization of the reward
function is an interesting open problem.
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Supplementary Material
A ADDITIONAL EXPERIMENTS

A.1 LINEAR BANDITS

Figure 4: Comparison of LinEI and baseline algorithms on datasets.

A.2 LINEAR BANDITS FOR THE LARGE T

Figure 5: Comparison of LinEI and baseline algorithms on datasets.

B ADDITIONAL RELATED WORKS

EI for Bayesian Optimization There are several works that use EI to solve Bayesian optimization
which is a non-contextual bandit such as (Nguyen et al., 2017) and (Wang and de Freitas, 2014).

(Wang and de Freitas, 2014) is an unpublished since 2014 and we believe that the technical analysis
in this paper seem incorrect. For example, while their proof depends crucially on Lemma 10, we
found a possible error in the proof of Lemma 10. For Lemma 10 to hold, the authors needed to lower
bound the posterior variance function σ2

t−1(x) at x = x+t as σ2
t−1(x+t ) ≥ σ2/(t − 1 + σ2) where

σt−1(.) is the posterior variance function at time t− 1, x+t = argmaxµt−1(x). However, as per their
proof, this inequality holds for any x , i.e., the function σt−1(x) has a lower bound for any x, which
seems strange.

(Nguyen et al., 2017) proposed a solution to avoid this error by using a user-defined parameter κ to
prevent the posterior variance function σt−1(.) to exceed this lower bound κ. By this way they can
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derive an upper bound for their EI algorithm, however the regret bound depends on κ and, as κ→ 0,
this bound quickly explodes and thus, their algorithm does not converge.

Compared to (Nguyen et al., 2017), our algorithm converges with a sublinear rate for the cumulative
regret. In addition, while most of EI algorithms are designed to theoretical analysis for the simple
regret, these two works (Nguyen et al., 2017) and (Wang and de Freitas, 2014) are rare to focus on
analyzing EI for the cumulative regret, however these analysis are incomplete. Thus in our knowledge,
our algorithm is the first EI in the literature which obtains a sublinear cumulative regret guarantee.

On the asymptotic regret (Lattimore and Szepesvari, 2017) analyzed the asymptotic regret for
linear bandits. While showing that both optimism principle and Thompson sampling cannot be
close to asymptotically optimal in the setting of linear bandits, Lattimore and Szepesvari (2017)
proposed a new allocation matching based algorithm that obtains an optimal asymptotic regret. In
this paper we analyze the worse-case regret of EI-based algorithms for the linear contextual bandits
and neural contextual bandits which are more general than the linear bandit considered in (Lattimore
and Szepesvari, 2017). To our knowledge, the analysis of the optimal asymptotic regret for contextual
bandits as we consider (where context may be controlled by an adversary) is still an open problem.

C CHALLENGES IN COMBINING EI WITH CONTEXTUAL BANDITS

First, we show that the “best arm” identification (BAI) problem does not exist in the setting of the
contextual bandit problem. We start from the setting of a standard MAB problem with K arms.
The mean reward of arm i, where i ∈ [K], denoted by µi is unknown but fixed. We assume that
µ1 > µ2 > ... > µK i.e., the arm 1 is the best arm. The goal of the best arm identification is to
identify the arm 1. However, in the contextual bandits with the linear reward function, the mean
reward of arm i is additionally associated with a context xi,t which is controlled by an adversary. It
follows that the mean reward for each arm i can be different in all iterations in this setting. Thus, the
concept “best arm” over time which is the arm with highest mean reward does not exist in this setting.
In context bandits that we consider, it would be more suitable to identify an arm at each iteration such
that the cumulative regret is as small as possible. This means that the goal of our problem is different
from that of BAI.

In the standard MAB setting, the EI strategy suggests the arm that offers the largest amount of
improvement upon the largest posterior mean among all arms which is computed at current time.
Therefore, an improvement based strategy like EI seems suitable for BAI problem whose the goal is
to seek the arm with the best reward. Combining EI technique with the allocation technique (Qin et
al., 2017) where we seek to allocates enough the number of samples to suboptimal arms so that we
can eliminate these arm with a high confidence, is enough to solve BAI.

In contextual bandits where the best arm does not exist, and even the mean reward of any arm can
are different in all iterations, the allocation technique is not suitable anymore, and the standard EI
strategy seems not achieve its power. It is because we can not transfer knowledge among iterations
because the mean reward of each arm is not fixed anymore as in the standard MAB setting. To make
use of EI technique for the goal to minimize the cumulative regret, we have a crucial observation
that when the largest EI value (i.e., maxi∈KαEIi,t ) is small, by choosing the arm with the largest
posterior reward mean instead that with the largest EI, we can make tighter the regret. This make our
algorithm different from the standard EI algorithm which we believe that it is impossible to solve
contextual bandits. The second technical challenge just is how to determining when we use the arm
with the largest posterior reward mean instead that with the largest EI. Here we propose to use a
decreasing function of t in the form of C0

tβ
, where C0 is chosen in the interval [

√
d, d] and β is chosen

in the interval [0.5, 3] as we explained in the proof of Theorem 1. By this choice, we show that our
algorithm achieve an optimal regret bound like LinUCB.

D REGRET ANALYSIS FOR LINEI ALGORITHM

D.1 AUXILIARY RESULTS

For our theoretical analysis for LinEI, we use the following auxiliary lemmas from the literature.

14



Under review as a conference paper at ICLR 2022

Lemma 1 (Lemma 1 of (Agrawal and Goyal, 2013)). For all t, 0 < δ < 1, with probability 1− δ
t2 ,

we have
∀i : |xTi,tθ̂t − xTi,tθ∗| ≤ βtsi,t,

where βt = R
√
dln( t

3

δ ) + 1, and si,t =
√
xTi,tX(t)−1xi,t.

Lemma 2. (Upper Bounds of a Hyperharmonic Series, (Chlebus, 2009)) Given a hyperharmonic
series pn =

∑n
t=1

1
tβ

, where n ∈ N. Then,

• pn < 1 + n1−β−1
1−β if β ≥ 0 and β 6= 1,

• pn < 1 + ln(n) if β = 1

Lemma 3 (Lemma 3 of (Chu et al., 2011)). For T ≥ 2, we have
T∑
i=1

sa(t),t ≤ 5
√
dT ln(T ).

D.2 PROOF FOR THEOREM 1

Before we proceed to analyze the regret bound of LinEI, we need the following lemma to lower
bound and upper bound the expected improvement for each arm i ∈ [K].
Lemma 4. Pick 0 < δ < 1. Set Ii,t = max{0, xTi,tθ∗ − r

+
t }. Then with probability 1− δ

t2 we have

Ii,t − βtsi,t ≤ αEIi,t ≤ Ii,t + (βt + vt)si,t.

Proof. If si(t) = 0 then αEIi,t = Ii,t, which makes the result trivial. We now assume that si,t > 0.

Set q =
xTi,tθ

∗−r+t
si,t

and u =
xTi,tθ̂t−r

+
t

si,t
. Set τ(z) = zΦ(z) + φ(z). Then we have that

αEIi,t = vtsi,tτ(
u

vt
).

By Lemma 1, we have that |u − q| ≤ βt with probability 1 − δ. As τ ′(z) = Φ(z) ∈ [0, 1], τ is
non-decreasing and τ(z) ≤ 1 + z for z > 0. Hence,

αEIi,t ≤ vtsi,tτ(
max{0, q}+ βt

vt
)

≤ vtsi,t(
max{0, q}+ βt

vt
+ 1)

= Ii,t + (βt + vt)si,t

If Ii,t = 0 then the lower bound is trivial as αEIi,t is non-negative. Thus suppose Ii,t > 0. Since
αEIi,t ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,

αEIi,t ≥ vtsi,tτ(
q − βt
vt

)

≥ vtsi,t(
q − βt
vt

)

= Ii,t − βtsi,t

We now analyze the cumulative regret R(T ). To do this, we upper bound rt = xTa∗(t),tθ
∗ − xTa(t),tθ

∗.
We break down rt into two terms as follows:

rt = xTa∗(t),tθ
∗ − xTa(t),tθ

∗

= xTa∗(t),tθ
∗ − r+t︸ ︷︷ ︸

Term 1

+ r+t − xTa(t),tθ
∗︸ ︷︷ ︸

Term 2

,

where r+t = maxi∈[K]{xTi,tθ̂t}. We will upper bound Term 1 and Term 2 according to two cases of
a(t).
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D.3 CONSIDERING THE CASE a(t) = a(t)

This condition happens when αEIa(t),t ≥
C0

tβ
.

Bounding Term 1
Lemma 5. Pick δ ∈ (0, 1). Then with probability at least 1− δ

t2 we have

xTa∗(t),tθ
∗ − r+t ≤

τ(βtvt )

τ(−βtvt )
(2βt + vt)sa(t),t.

Proof. First, we consider sa∗(t),t > 0. If xTa∗(t),tθ
∗ < r+t then the lemma will be trivial. We

now consider xTa∗(t),tθ
∗ ≥ r+t . Following the derivation of the acquisition function αEI , we have

αEIa∗(t),t = vtsa∗(t),tτ(
xTa∗(t),tθ̂t−r

+
t

vtsa∗(t),t
). Further, we also have

xTa∗(t),tθ̂t−r
+
t

vtsa∗(t),t
≥ −βt

vt
with probability

1 − δ
t2 . It is because xTa∗(t),tθ̂t − xTa∗(t),tθ

∗ ≥ −βtsa∗(t),t with probability 1 − δ
t2 and we are

considering the case when xTa∗(t),tθ
∗ ≥ r+t . Therefore, αEIa∗(t),t ≥ vtτ(−βtvt )sa∗(t),t with probability

1− δ
t2 .

Now, we combine inequalities αEIa∗(t),t ≥ vtτ(−βtvt )sa∗(t),t and αEIa∗(t),t ≥ Ia∗(t),t − βtsa∗(t),t which
is proven in Lemma 4, we obtain the following inequality:

Ia∗(t),t ≤
τ(βtvt )

τ(−βtvt )
αEIa∗(t),t (6)

Here we use the fact τ(z) = z + τ(−z). Finally, with probability at least 1− δ
t2 we achieve

xTa∗(t),tθ
∗ − r+t ≤ Ia∗(t),t

≤
τ(βtvt )

τ(−βtvt )
αEIa∗(t),t

≤
τ(βtvt )

τ(−βtvt )
αEIa(t),t

≤
τ(βtvt )

τ(−βtvt )
(max{0, xTa(t),tθ̂t − r

+
t }+ (βt + vt)sa(t),t)

≤
τ(βtvt )

τ(−βtvt )
(max{0, xTa(t),tθ̂t + βtsa(t),t − r+t }+ (βt + vt)sa(t),t)

≤
τ(βtvt )

τ(−βtvt )
(max{0, βtsa(t),t}+ (βt + vt)sa(t),t)

=
τ(βtvt )

τ(−βtvt )
(2βt + vt)sa(t),t,

where the first inequality holds by the definition of the function It. The second one comes from
Eq(8). The third one holds by the property of the chosen point a(t) = argmaxi∈[K]α

EI
i,t . The fourth

inequality holds due to Lemma 1. The sixth inequality holds due to the fact that xTa(t),tθ̂t ≤ r
+
t .

Second, if sa∗(t),t = 0 then by definition of αEIa∗(t),t, we have αEIa∗(t),t = Ia∗(t),t. We have Ia∗(t),t =

αEIa∗(t),t ≤ α
EI
a(t),t, where we use the definition αEIa(t),t = maxi∈[K]α

EI
i,t . Similar to the above proof,

we obtain xTa∗(t),tθ
∗−r+t ≤ (2βt+vt)sa(t),t ≤

τ(
βt
vt

)

τ(− βtvt )
(2βt+vt)sa(t),t because

τ(
βt
vt

)

τ(− βtvt )
≥ τ(0)

τ(0) = 1.

Thus, the lemma holds.
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Bounding Term 2
Lemma 6. Pick a δ ∈ (0, 1). Then with probability 1− δ

t2 we have

r+t − xTa(t),tθ
∗ ≤ (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vtsa(t),t.

Proof. We have

αEIa(t),t = (xTa(t),tθ̂t − r
+
t )Φ(

xTa(t),tθ̂t − r
+
t

vtsa(t),t
) + vtsa(t),tφ(

xTa(t),tθ̂t − r
+
t

vtsa(t),t
)

≤ vtsa(t)(t)φ(
xTa(t),tθ̂t − r

+
t

vtsa(t),t
)

= vtsa(t),t
1

2
√
π

exp(−1

2
(
xTa(t),tθ̂t − r

+
t

vtsa(t),t
)2)

where the first inequality holds due to the definition of action a(t). The second equality holds due to
the definition of αEIa(t),t. The second inequality comes from the fact that xTa(t),tθ̂t ≤ r+t . The third
equality holds due to the definition of function φ(.).

From the last inequality, we obtain

|xTa(t),tθ̂t − r
+
t | ≤

√
2ln(

vtsa(t),t

αEIa(t),t
)vtsa(t),t.

By using the condition that αEIa(t),t ≥
C0

tβ
and the facts that sa(t),t ≤ 1, vt = R

√
9dln( tδ ), we have

|xTa(t),tθ̂t−r
+
t | ≤

√√√√
2log(

R
√

9dln( t+1
δ )tβ

C0
)vtsa(t),t =

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
)vtsa(t),t.

Finally, we have

r+t − xTa(t),tθ
∗ = (r+t − xTa(t),tθ̂t) + (xTa(t),tθ̂t − x

T
a(t),tθ

∗)

≤

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
)vtsa(t),t + vtsa(t),t

= (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vtsa(t),t

Combining Lemma 5 and 6 we have

xTa∗(t),tθ
∗ − xTa(t),tθ

∗ = (xTa∗(t),tθ
∗ − r+t ) + (r+t − xTa(t),tθ

∗)

≤
τ(βtvt )

τ(−βtvt )
(2βt + vt)sa(t),t(t) + (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vtsa(t),t

≤ [
τ(βtvt )

τ(−βtvt )
(2βt + vt) + (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)]vtsa(t),t
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D.4 CONSIDERING THE CASE a(t) = ARGMAXi∈[K]{xTi,tθ̂t}

Bounding Term 1
Lemma 7. Pick δ ∈ (0, 1). Then with probability at least 1− δ

t2 we have

xTa∗(t),tθ
∗ − r+t ≤

τ(βtvt )

τ(−βtvt )

C0

tβ
.

Proof. If sa∗(t),t = 0 then by definition of αEIa∗(t),t, α
EI
a∗(t),t = Ia∗(t),t. We have Ia∗(t),t = αEIa∗(t),t ≤

αEIa(t),t ≤
C0

tβ
.

We now consider sa∗(t),t > 0. If xTa∗(t),tθ
∗ < r+t then the lemma will be trivial. We now consider

xTa∗(t),tθ
∗ ≥ r+t . Following the derivation of the acquisition function αEI , we have αEIa∗(t),t =

vtsa∗(t),tτ(
xTa∗(t),tθ̂t−r

+
t

vtsa∗(t),t
). Further, we also have

xTa∗(t),tθ̂t−r
+
t

vtsa∗(t),t
≥ −βtvt with probability 1− δ

t2 . It is

because xTa∗(t),tθ̂t − x
T
a∗(t),tθ

∗ ≥ −βtsa∗(t),t with probability 1 − δ
t2 and we are considering the

case when xTa∗(t),tθ
∗ ≥ r+t . Therefore, αEIa∗(t),t ≥ vtτ(−βtvt )sa∗(t),t with probability 1− δ

t2 .

Now, we combine inequalities αEIa∗(t),t ≥ vtτ(−βtvt )sa∗(t),t and αEIa∗(t),t ≥ Ia∗(t),t − βtsa∗(t),t which
is proven in Lemma 4, we obtain the following inequality:

Ia∗(t),t ≤
τ(βtvt )

τ(−βtvt )
αEIa∗(t),t (7)

Here we use the fact τ(z) = z + τ(−z). Finally, with probability at least 1− δ
t2 we achieve

xTa∗(t),tθ
∗ − r+t ≤ Ia∗(t),t

≤
τ(βtvt )

τ(−βtvt )
αEIa∗(t),t

≤
τ(βtvt )

τ(−βtvt )
αEIa(t),t

≤
τ(βtvt )

τ(−βtvt )

C0

tβ

where the first inequality holds by the definition of the function It. The second one comes from Eq(7).
The third one holds by the definition of a(t). The fourth one holds because αEIa(t),t ≤

C0

tβ
.

Bounding Term 2
Lemma 8. Pick a δ ∈ (0, 1). Then with probability 1− δ

t2 we have

r+t − xTa(t),tθ
∗ ≤ vtsa(t),t.

Proof. By definition a(t) = argmaxi∈[K]{xTi,tθ̂t}, we have r+t = xTa(t),tθ̂t. By Lemma 1, we have
r+t − xTa(t),tθ

∗ ≤ vtsa(t),t. The lemma holds.

Combining Lemma 7 and 8 we have

xTa∗(t),tθ
∗ − xTa(t),tθ

∗ = (xTa∗(t),tθ
∗ − r+t ) + (r+t − xTa(t),tθ)

≤
τ(βtvt )

τ(−βtvt )

C0

tβ
+ vtsa(t),t

For all these cases, we obtain the following bound of the regret xTa∗(t),tθ
∗ − xTa(t),tθ

∗.
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Lemma 9. For every 1 ≤ t ≤ T , with probability 1− δ
t2 we always have

xTa∗(t),tθ
∗−xTa(t),tθ

∗ ≤ [
τ(βtvt )

τ(−βtvt )
(2βt+vt)+(

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
)+1)vt]sa(t),t+

τ(βtvt )

τ(−βtvt )

C0

tβ
.

Now we seek to bound
τ(
βt
vt

)

τ(− βtvt )
via the following lemma.

Lemma 10. Pick a δ ∈ (0, 1). There exists a constant C > 0 which is independent of T,K such that
for every t ≥ 1 we have that

τ(βtvt )

τ(−βtvt )
≤ C.

Proof.

βt
vt

=
R
√
dln( t

3

δ ) + 1

R
√

9dln( t+1
δ )

=

√
ln( t

3

δ )√
9ln( t+1

δ )
+

1

R
√

9dln( t+1
δ )

≤

√
ln( t

3

δ )√
9ln( t+1

δ )
+

1

R

≤

√
ln( (t+1)3

δ3 )√
9ln( t+1

δ )
+

1

R

≤ 1√
3

+
1

R
,

where the first inequality holds because
√

9dln( t+1
δ ) > 1 due to δ < 1 and t ≥ 1. The second

inequality holds also due to δ < 1.

We set C ′ = 1√
3

+ 1
R . Since the function τ(.) is non-decreasing, we have that, τ(βtvt ) ≤ τ(C ′) and

τ(−βtvt ) ≥ τ(−C ′). Thus,

τ(βtvt )

τ(−βtvt )
≤ τ(C ′)

τ(−C ′)
= C.

We now are ready to prove Theorem 1.

Theorem 3. Given any δ ∈ (0, 1). If
√
d ≤ C0 ≤ d and 0.5 ≤ β ≤ 3 then with probability 1 − δ,

the cumulative regret of the Expected Improvement algorithm is bounded as

R(T ) = O(d

√
T ln2(T )ln

T

δ
).
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Proof. For every 1 ≤ t ≤ T , we have

xTa∗(t),tθ
∗ − xTa(t),tθ

∗ ≤ [
τ(βtvt )

τ(−βtvt )
(2βt + vt) + (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vt]sa(t),t +

τ(βtvt )

τ(−βtvt )

C0

tβ

≤ [C(2βt + vt) + (

√
2ln(Rtβ) + 6

√
C−20 dln(

t+ 1

δ
) + 1)vt]sa(t),t +

CC0

tβ

≤ [C(2βT + vT ) + (

√
2ln(RT β) + 6

√
C−20 dln(

T + 1

δ
) + 1)vT ]sa(t),t +

CC0

tβ

Thus,

R(T ) =

T∑
t=1

xTa∗(t),tθ
∗ − xTa(t),tθ

∗

=

T∑
t=1

[C(2βT + vT ) + (

√
2ln(RT β) + 6

√
C−10 dln(

T + 1

δ
) + 1)vT ]sa(t),t +

CC0

tβ

= [C(2βT + vT ) + (

√
2ln(RT β) + 6

√
C−20 dln(

T + 1

δ
) + 1)vT ]

T∑
t=1

sa(t),t +

T∑
t=1

CC0

tβ

≤ 5[C(2R

√
dln(

T 3

δ
) + 1 +R

√
9dln(

T + 1

δ
))

+R(

√
2ln(RT β) + 6

√
C−20 dln(

T + 1

δ
) + 1)

√
9dln(

T + 1

δ
)]
√
dT ln(T ) +

T∑
t=1

CC0

tβ
,

where the inequality holds by using Lemma 3. We consider three cases:

• if β = 1 then by Lemma 2,
∑T
t=1

1
tβ
≤ 1 + lnT . Hence, using the assumption that√

d ≤ C0 ≤ d, we get that C−20 d ≤ 1 and C0C
∑T
t=1

1
tβ
≤ Cd(1 + lnT ). Thus, R(T ) =

O(d
√
T ln2(T )lnTδ ).

• if β 6= 1 then by Lemma 2,
∑T
t=1

1
tβ
≤ 1 + T 1−β−1

1−β . Combining with the assumption that
1/2 ≤ β ≤ 3, we consider two cases:

– if 1/2 ≤ β < 1, we have
∑T
t=1

1
tβ
≤ 1 + T 1−β−1

1−β ≤ 1 + 2(
√
T − 1). Hence,

CC0

∑T
t=1

1
tβ
≤ Cd(1 + 2(

√
T − 1)). Thus, R(T ) = O(d

√
T ln2(T )lnTδ ).

– if 1 < β ≤ 3, then
∑T
t=1

1
tβ
≤ 1 + T 1−β−1

1−β ≤ 1 and T β ≤ T 3. Thus, R(T ) =

O(d
√
T ln2(T )lnTδ ).

Remark. We choose C0 ∈ [
√
d, d] to eliminate the term d in the expression 6

√
C−20 dln(Tδ ) and to

ensure that the term
∑T
i=1

CC0

tβ
= O(d

√
d). We choose β ≤ 3 to ensure that the order of R(T ) is

the same as the case when 1/2 ≤ β < 1. For β > 3, the higher β, the larger the cumulative regret is.

Remark. Upper bounding “directly” the regret rt = xTa∗(t),tθ
∗ − xTa(t),tθ

∗ is very challenging
because we can not exploit properties from EI strategy. We break down rt into two terms as we
explained in the paper: rt = (xTa∗(t),tθ

∗ − r+t ) + (r+t − xTa(t),tθ
∗). While the first term can be

bounded by using the properties of EI, bounding the second term is a challenge which we believe that
a standard EI is impossible to solve.
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Indeed, as we showed in Lemma 6, using the EI technique for the contextual bandits, the second term
(r+t − xTa(t),tθ

∗) can be bounded as

|xTa(t),tθ̂t − r
+
t | ≤

√
2ln(

vtsa(t),t

αEIa(t),t
)vtsa(t),t.

We can see that when αEIa(t),t → 0,
√

2ln(
vtsa(t),t
αEI
a(t),t

)vtsa(t),t → ∞. Hence, the smaller the largest

EI value is, the larger the bound for second term is, so the larger the upper bound for regret rt.
Thus, to obtain an optimal rate for EI in this case is a challenge! Fortunately, we have a crucial
observation that when the largest EI value is small, by choosing the arm with the largest posterior
reward mean instead that with the largest EI, we can obtain an upper bound smaller for the second term
as (r+t −xTa(t),tθ

∗) ≤ vtsa(t),t (see Lemma 8) while still upper bound the first term (xTa∗(t),tθ
∗− r+t )

as (xTa∗(t),tθ
∗ − r+t ) ≤

τ(
βt
vt

)

τ(− βtvt )
C0

tβ
(see Lemma 7). By this way, the difficulty now depends on how to

determining when we use the arm with the largest posterior reward mean instead that with the largest
EI so that the minimum regret rate is guaranteed. This is also our second technical contribution. Here
we use a decreasing function of t in the form of C0

tβ
, where C0 is chosen in the interval [

√
d, d] and β

is chosen in the interval [0.5, 3] as we explained in the proof of Theorem 1.

E REGRET ANALYSIS FOR NEURALEI

The novelty in our analysis for NeuralEI While at a high level it is true that the regret analysis
for NeuralEI combines the proof techniques of LinEI and the existing NTK techniques (Zhou et
al., 2020; Zhang et al., 2021), we still needed some additional proof techniques for NeuralEI. To
explain further, to analyze the regret h(xa∗(t),t)− h(xa(t),t), the regret of LinEI is decomposed as
xTa∗(t),tθ

∗ − xTa(t),tθ
∗ = (xTa∗(t),tθ

∗ − r+t ) + (r+t − xTa(t),tθ
∗). However, for NeuralEI, we have to

consider two cases in Lemma 19 with respect to the set of saturated arms St. If St = ∅ then the
regret is simply bounded as h(xa∗(t),t) − h(xa(t),t) < (1 + ct)νσa(t),t + 2ε(m). Otherwise, it is
decomposed as

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f̃i0,t] + [f̃i0,t − f+t ] + [f+t − h(xa(t),t)],

where f̃i0,t is a sample from N (f(xi,t; θt−1), ν2σ2
i,t), f+t = maxi∈[K]{f(xi,t; θt−1) and i0 is an

arm satisfying the condition h(xa∗(t),t) − h(xi0,t) < (1 + ct)νσi0,t + 2ε(m). Then we go on to
upper bound each term independently.

Now we start to prove Theorem 2. Similar to the work of Zhang et al. (2021), to guarantee our
convergence analysis, the following condition on the neural network width is required.

m ≥ Cmax{
√
λL−3/2[log(TKL2/δ)]3/2, T 6K6L6log(TKL/δ)max{λ−40 , 1}}

and

m[log(m)]−3 ≥ CTL12λ−1 +CT 7λ−8L18(λ+ LT )6 +CL21T 7λ−7(1 +
√
T/λ)6, where C is a

positive absolute constant.

We define filtration Ft−1 as the union of history until time t− 1, and the contexts at time t. For any t,
we define an event Eσt as follows:

Eσt = {ω ∈ Ft : ∀i ∈ [K], |f̃i,t − f(xi,t; θt−1)| ≤ ctνσi,t},
where ct =

√
4logt+ 2logK.

Lemma 11 (Lemma 4.2 of (Zhang et al., 2021)). For any t ∈ [T ], P(Eσt ) ≥ 1− t−2.

For any t, we define an event Eµt as follows:
Eµt = {ω ∈ Ft : ∀i ∈ [K], |f(xi,t; θt−1)− h(xt,k)| ≤ νσi,t + ε(m)},

where ε(m) is defined as in (Zhang et al., 2021).
Lemma 12 (Lemma 4.3 of (Zhang et al., 2021)). Set η = C(mλ + mLT )−1, then we have
P(Eµt ) ≥ 1− δ.

Besides above lemmas, we also need several results from the previous works.
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E.1 AUXILIARY LEMMAS

Lemma 13 (Lemma B.9 of (Zhang et al., 2021)). For any time t ∈ [T ], i ∈ [K] and any δ ∈ (0, 1), if
the network width m satisfies Condition 1, we have with probability at least 1− δ, that σi,t ≤ C1

√
L,

where C1 is a positive constant.
Lemma 14 (Lemma 4.4 of (Zhang et al., 2021)). For any t ∈ [T ], i ∈ [K], we have P[r̃i,t + ε(m) >
h(xi,t)|Ft] ≥ (4e

√
π)−1.

Lemma 15 (Lemma 4.8 of (Zhang et al., 2021)). Assume that the width of the neural network m
satisfies

m ≥ Cmax{
√
λL−3/2[log(TKL2/δ)]3/2, T 6K6L6log(TKL/δ)max{λ−40 , 1}}

and

m[log(m)]−3 ≥ CTL12λ−1 +CT 7λ−8L18(λ+ LT )6 +CL21T 7λ−7(1 +
√
T/λ)6, where C is a

positive absolute constant.

With high probability 1− δ, for every i ∈ [K] we have
T∑
i=1

min{σat,t, 1} ≤
√

2λT (d̃log(1 + TK) + 1) + C2T 13/6
√

logmm−1/6λ−2/3L9/2,

where C1, C2 are absolute constants.

E.2 PROOF FOR THEOREM 2

Similar to the case of linear bandits, before we proceed to analyze the expected cumulative regret
of the NeuralEI, we need the following lemma to lower bound and upper bound the expected
improvement for neural contextual bandits.

Lemma 16. Assume that the event Eσt holds. Set Ii,t = max{0, f̃i,t − f+t }. Then for every i ∈ [K],
we have

Ii,t − ctνσi,t ≤ αEIi,t ≤ Ii,t + ν(ct + 1)σi,t.

Proof. If σi,t = 0 then αEIi,t = Ii,t, which makes the result trivial. We now assume that σi,t > 0. Set

q =
f̃i,t−f+

t

σi,t
and u =

f(xi,t;θt−1)−f+
t

σi,t
. Set τ(z) = zΦ(z) + φ(z). Then we have that

αEIi,t = νσi,tτ(
u

ν
).

By Lemma 11, we have that |u− q| ≤ ctν with probability 1− t−2. As τ ′(z) = Φ(z) ∈ [0, 1], τ is
non-decreasing and τ(z) ≤ 1 + z for z > 0. Hence,

αEIi,t ≤ νσi,tτ(
max{0, q}+ ctν

ν
)

≤ νσi,t(
max{0, q}+ ctν

ν
+ 1)

= Ii,t + (ctν + ν)σi,t

If Ii,t = 0 then the lower bound is trivial as αEIi,t is non-negative. Thus suppose Ii,t > 0. Since
αEIi,t ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,

αEIi,t ≥ νσi,tτ(
q − ctν
ν

)

≥ νσi,t(
q − ctν
ν

)

= Ii,t − ctνσi,t

Now we proceed to analyze the regret. Following the algorithm, we consider two cases of a(t).
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E.2.1 CONSIDERING THE CASE a(t) = a(t)

Lemma 17. Assume that the event Eσt holds. Then for every i ∈ [K], we have

f̃i,t − f+t ≤
τ(ct)

τ(−ct)
(2ct + 1)νσa(t),t.

Proof. If σi,t = 0 then by definition of αEIi,t , we have αEIi,t = Ii,t. We have

Ii,t = αEIi,t

≤ αEIa(t),t

≤ Ia(t),t + ν(ct + 1)σa(t),t,

where in the first inequality, we use the definition αEIa(t),t = maxi∈[K]α
EI
i,t . In the second inequality,

we use Lemma 1. Thus, the lemma holds with probability 1− t−2.

We now consider σi,t > 0. If f̃i,t < f+t then the lemma will be trivial. We now consider f̃i,t > f+t .

Following the derivation of the acquisition function αEI , we have αEIi,t = νσi,tτ(
f(xi,t;θt−1)−f+

t

νσi,t
).

Further, we also have f(xi,t;θt−1)−f+
t

νσi,t
≥ −ctνν . It is because f(xi,t; θt−1)− h(xi,t) ≥ −ctνσi,t and

we are considering the case when f̃i,t > f+t . Therefore, αEIi,t ≥ ντ(−ct)σi,t.

Now, we combine the fact that αEIi,t ≥ ντ(−ct)σi,t with the fact that αEIi,t ≥ Ii,t − ctνσi,t which is
proven in Lemma 16 to obtain the following inequality:

Ii,t ≤
τ(ct)

τ(−ct)
αEIi,t (8)

This inequality Eq(8) holds. Finally, we achieve

xTi,tθ
∗ − r+t ≤ Ii,t

≤ τ(ct)

τ(−ct)
αEIi,t

≤ τ(ct)

τ(−ct)
αEIa(t),t

≤ τ(ct)

τ(−ct)
(max{0, f̃a(t),t − f+t }+ ν(ct + 1)σa(t),t

≤ τ(ct)

τ(−ct)
(max{0, f(xa(t),t; θt−1) + ctνσa(t),t − f+t }+ ν(ct + 1)σa(t),t

≤ τ(ct)

τ(−ct)
(max{0, ctνσa(t),t}+ ν(ct + 1)σa(t),t

=
τ(ct)

τ(−ct)
(2ctν + ν)σa(t),t

where the first inequality holds by the definition of the function It. The second one comes from Eq(8).
The third one holds by the property of the chosen point a(t) = argmaxi∈[K]α

EI
i,t . The final inequality

hold due to Lemma 16.

Lemma 18. Assume that the event Eµt holds. Pick a δ ∈ (0, 1). Then with probability 1− δ we have

f+t − h(xa(t),t) ≤ (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ε(m).
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Proof. We have

αEIa(t),t = (f(xa(t),t; θt−1)− f+t )Φ(
f(xa(t),t; θt−1)− f+t

νσa(t),t
) + νσa(t),tφ(

f(xa(t),t; θt−1)− f+t
νσa(t),t

)

≤ νσa(t),tφ(
f(xa(t),t; θt−1)− f+t

νσa(t),t
)

= νσa(t),t
1

2
√
π

exp(−1

2
(
f(xa(t),t; θt−1)− f+t

νσa(t),t
)2)

where the first inequality holds due to the definition of action a(t). The second equality holds due to
the definition of αEIa(t),t. The second inequality comes from the fact that f(xa(t),t; θt−1) ≤ f+t . The
third equality holds due to the definition of function φ(.).

From the last inequality, we obtain

|f(xa(t),t; θt−1)− f+t | ≤
√

2log(
νσa(t),t

αEIa(t),t
)νσa(t),t.

By using the condition that αEIa(t),t ≥
C0

tβ
and the fact that σa(t),t ≤ C1

√
L with probability 1 − δ,

we have

|f(xa(t),t; θt−1)− f+t | ≤
√

2log(C1C
−1
0

√
Lνtβ)νσa(t),t (9)

with probability 1− δ.

Finally, with probability 1− δ, we have

f+t − h(xa(t),t) = f+t − f(xa(t),t; θt−1) + f(xa(t),t; θt−1)− h(xa(t),t)

≤
√

2log(C1C
−1
0

√
Lνtβ)νσa(t),t + νσa(t),t + ε(m)

= (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ε(m),

where in the first inequality, we use the inequality Eq(9) and Lemma 12

For any t we define an event Eσt such that ∀i ∈ [K] : |f̃i,t − f(xi,t; θt−1)| ≤ ctνσi,t, where ct =.

We define the set of saturated arms St as follows:

St = {i|i ∈ [K], h(xa∗(t),t)− h(xi,t) ≥ (1 + ct)νσi,t + 2ε(m)}.

Lemma 19. We assume that both Eσt and Eµt hold. Then,

• if St = ∅ then we have that

h(xa∗(t),t)− h(xa(t),t) < (1 + ct)νσa(t),t + 2ε(m)

• if St 6= ∅ then with probability 1− δ, we have that

h(xa∗(t),t)−h(xa(t),t) ≤
τ(ct)

τ(−ct)
ν(2ct+1)σa(t),t+(

√
2log(C1C

−1
0

√
Lνtβ)+1)νσa(t),t+2ε(m)

Proof. There are two cases:

• If St = ∅ then every i ∈ [K], we always have h(xa∗(t),t)−h(xi,t) < (1+ct)νσi,t+2ε(m).
Thus, by choosing i = a(t) which is the arm chosen by the NeuralEI algorithm, we get that
h(xa∗(t),t)− h(xa(t),t) < (1 + ct)νσa(t),t + 2ε(m).
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• If St 6= ∅, then there exists an arm i0 such that

h(xa∗(t),t)− h(xi0,t) < (1 + ct)νσi0,t + 2ε(m) (10)

On the other hand, we have that |h(xi0,t)− f̃i0,t| ≤ |h(xi0,t)−f(xi0,t; θt)|+ |f(xi0,t; θt)−
f̃i0,t| ≤ ε(m) + (1 + ct)νσi0,t

Hence, combining with Eq(10), we have that h(xa∗(t),t)− f̃i0,t ≥ h(xa∗(t),t)− h(xi0,t) +

|h(xi0,t)− f̃i0,t| ≥ ε(m)

Combining this result with Lemma 17 and 18, with probability 1− δ, we have

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f̃i0,t] + [f̃i0,t − f+t ] + [f+t − h(xa(t),t)]

≤ ε(m) +
τ(ct)

τ(−ct)
ν(2ct + 1)σa(t),t +

+(

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ε(m)

=
τ(ct)

τ(−ct)
ν(2ct + 1)σa(t),t + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t +

+2ε(m)

We note that in the above inequality, we apply Lemma 17 for the arm i0.

E.2.2 CONSIDERING THE CASE a(t) = ARGMAXi∈[K]{f(xi,t; θt−1)}

Lemma 20. We assume that both Eσt holds. Then for i ∈ [K] we have

f̃i,t − f+t ≤
τ(ct)

τ(−ct)
C0

tβ
.

Lemma 21. We assume that Eµt holds. Then we have

f+t − h(xa(t),t) ≤ νσa(t),t.

Proof. By definition, a(t) = argmaxi∈[K]{f(xi,t; θt−1)}. Hence f+t = f(xa(t),t; θt−1). By Lemma
11, we have f+t −h(xa(t),t) = f(xa(t),t; θt−1)−h(xa(t),t) ≤ νσa(t),t+ε(m). The lemma holds.

Lemma 22. We assume that both Eσt and Eµt hold. Then,

• if St = ∅ then we have that

h(xa∗(t),t)− h(xa(t),t) < (1 + ct)νσa(t),t + 2ε(m)

,

• if St 6= ∅ then we have that

h(xa∗(t),t)− h(xa(t),t) ≤
τ(ct)

τ(−ct)
C0

tβ
+ νσa(t),t + ε(m)

.

Proof. There are two cases:

• If St = ∅ then every i ∈ [K], we always have h(xa∗(t),t)−h(xi,t) < (1+ct)νσi,t+2ε(m).
Thus, by choosing i = a(t) which is the arm chosen by the NeuralEI algorithm, we get that
h(xa∗(t),t)− h(xa(t),t) < (1 + ct)νσa(t),t + 2ε(m).
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• St 6= ∅. Similar to Lemma 21, there exists an arm i0 such that h(xa∗(t),t)− f̃i0,t ≥ ε(m).
Combining this result with Lemma 20 and 21 we have

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f̃i0,t] + [f̃i0,t − f+t ] + [f+t − h(xa(t),t)]

≤ ε(m) +
τ(ct)

τ(−ct)
C0

tβ
+ νσa(t),t

We note that in the above inequality, we apply Lemma 17 for the arm i0.

Lemma 23. We assume that both Eσt and Eµt hold. Then with probability 1− δ, we have

h(xa∗(t),t)−h(xa(t),t) ≤ (
τ(ct)

τ(−ct)
(2ct+1)+(

√
2log(C1C

−1
0

√
Lνtβ)+1))νσa(t),t+

τ(ct)

τ(−ct)
C0

tβ
+2ε(m).

Lemma 24. With probability 1− δ, we have

E[rt|Ft, Eµt ] ≤ (
τ(ct)

τ(−ct)
(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)C1

√
L)νE[min{σa(t),t, 1}|Ft, Eµt ]

+
τ(ct)

τ(−ct)
C0

tβ
+ 2ε(m) +

2

t2

Proof. Set rt = h(xa∗(t),t)− h(xa(t),t), we have

E[rt|Ft, Eµt ] = E[h(xa∗(t),t)− h(xa(t),t)|Ft, Eµt , Eσt ]P(Eσt ) +

+E[h(xa∗(t),t)− h(xa(t),t)|Ft, Eµt , E
σ

t ]P(Eσt )

≤ (
τ(ct)

τ(−ct)
ν(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)ν)E[σa(t),t|Ft, Eµt ] +

+2ε(m) +
2

t2
,

where the first term is bounded by Lemma 22 and the second term is bounded due to the facts that
h(xa∗(t),t)− h(xa(t),t) ≤ |h(xa∗(t),t)|+ |h(xa(t),t)| ≤ 2 and P(Eσt ) ≤ 1

t2 .

Further, due to |h(x)| ≤ 1, we obtain an upper bound for E[rt|Ft, Eµt ] as

E[rt|Ft, Eµt ] ≤ min{( τ(ct)

τ(−ct)
ν(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)ν)E[σa(t),t|Ft, Eµt ], 2}

+2ε(m) +
2

t2

On the other hand, we have ν ≥ 1 by definition, 2ct + 1 = 2
√

4logt+ 2logK + 1 ≥ 2 with t ≥ 2.
τ(ct)
τ(−ct) ≥

τ(0)
τ(0) = 1. Hence,

E[rt|Ft, Eµt ] ≤ (
τ(ct)

τ(−ct)
ν(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)ν)min{E[σa(t),t|Ft, Eµt ], 1}

+2ε(m) +
2

t2

≤ (
τ(ct)

τ(−ct)
ν(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νC1

√
L)E[min{σa(t),t, 1}|Ft, Eµt ]

+2ε(m) +
2

t2
,

where we use Lemma 13 with probability 1− δ.

Theorem 4. If the network width m satisfies:

m ≥ poly(γ, T,K,L, log(1/δ)),

then with probability at least 1− δ, the regret of Algorithm 2 is bounded as

RT ≤ C2(1 + cT )ν

√
2λL(d̃log(1 + TK) + 1)T + (4 + C3(1 + cT )νL)

√
2log(3/δ)T + 5.
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Proof. By Lemma 12, the event Eµt holds for all 1 ≤ t ≤ T with probability at least 1− δ. Hence,
with probability 1− δ we have

R(T ) =

T∑
i=1

h(xa∗(t),t)− h(xa(t),t)1(Eµt )

≤ (C3(2cT + 1) + (

√
2log(C1C

−1
0

√
LνT β) + 1)C1

√
L)ν

T∑
i=1

E[min{σa(t),t, 1}|Ft, Eµt ]

+C3C0

T∑
i=1

1

tβ
+ 2ε(m)T +

π2

3

≤ MN + C3C0

T∑
i=1

1

tβ
+ 2ε(m)T +

π2

3
,

where we set M = (C3(2cT + 1) + (
√

2log(C1C
−1
0

√
LνT β) + 1)C1

√
L)ν and N =

(

√
2λT (d̃log(1 + TK) + 1) + C2T 13/6

√
logmm−1/6λ−2/3L9/2).

With β ≥ 2,
∑T
i=1

1
tβ

< π2

6 . We choose C0 ∈ [
√
d̃, d̃] to eliminate the term d̃ in√

2log(C1C
−1
0

√
LνT β).

By choosing m similar as in (Zhang et al., 2021) such that C3(2cT +
1)C2T 13/6

√
logmm−1/6λ−2/3L5) ≤ 1

3 , 2ε(m)T ≤ 1
3 and taking union bound over Lem-

mas 12, 24, we obtain
R(T ) ≤ O(d̃

√
βlog(1 + TK)log(T )T )
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