OPEL: Optimal Transport Guided ProcedurE Learning

Figure R1: Key-steps required to prepare a brownie, showcasing temporal variations and corresponding key-step alignment challenges, namely (i) background frames (depicted as gray blocks), (ii) non-monotonic frames. OPEL learns an embedding space where corresponding key-steps have similar embeddings while tackling the above challenges.

Figure R2: Qualitative analysis on variation of *k*.

k	Meccano			EPIC-Tents		
	R	F	IoU	R	F	IoU
7	60.5	39.2	20.2	23.0	20.7	10.6
10	54.9	30.3	17.6	19.8	17.2	9.8
12	50.2	28.1	15.5	18.4	16.5	8.7
15	47.6	26.8	14.8	16.9	15.8	8.2

Codeblock R1: Pytorch Function to determine the sequential ordering of tasks from frame-wise key-step predictions

def temporal_order(R, k):

M: No. of frames

R: Predicted key-steps of each frame

k: No. of key-steps # T: Normalized time

indices: Final sequential order of task

M = len(R)

T = (torch.arange(0, M)+1)/M

cluster_time = torch.zeros(k)

Finding the mean time for each cluster and sorting

them to obtain their sequential order

for i in range(k):

cluster_time[i] = T[R==i].mean()

_, indices = torch.sort(cluster_time)

return indices

Sample Input (R): tensor([6, 2, 1, 3, 5, 1, 1, 1, 1, 6, 0, 4, 6, 1, 1, 3, 0, 4, 0, 4, 5, 5, 5, 1, 3, 2, 0, 4, 3, 6, 0, 1, 2, 4, 2, 3, 5, 4, 6, 2, 5, 1, 2, 4, 3, 2, 2, 3, 4, 1])

Sample Output (indices): tensor([6, 1, 0, 5, 3, 4, 2])

Figure R3: Importance of choosing Laplace distribution as prior.

Figure R4: Predictions made only with optimal prior. Temporal prior is needed to preserve temporal coherence among videos.