
Figure R1: Key-steps required to prepare a brownie, showcasing temporal variations
and corresponding key-step alignment challenges, namely (i) background frames
(depicted as gray blocks), (ii) non-monotonic frames. OPEL learns an embedding space
where corresponding key-steps have similar embeddings while tackling the above
challenges.

Figure R3: Importance of choosing Laplace
distribution as prior.

Table R1: Additional ablation study on the effect of k

R F IoU R F IoU
7 60.5 39.2 20.2 23.0 20.7 10.6
10 54.9 30.3 17.6 19.8 17.2 9.8
12 50.2 28.1 15.5 18.4 16.5 8.7
15 47.6 26.8 14.8 16.9 15.8 8.2

k
Meccano EPIC-Tents

Figure R2: Qualitative
analysis on variation of k.

Codeblock R1: Pytorch Function to determine the sequential
ordering of tasks from frame-wise key-step predictions

def temporal_order(R, k):
M: No. of frames
R: Predicted key-steps of each frame
k: No. of key-steps # T: Normalized time
indices: Final sequential order of task
 M = len(R)
 T = (torch.arange(0, M)+1)/M
 cluster_time = torch.zeros(k)

Finding the mean time for each cluster and sorting
them to obtain their sequential order
 for i in range(k):
 cluster_time[i] = T[R==i].mean()
 _, indices = torch.sort(cluster_time)
 return indices

Sample Input (R): tensor([6, 2, 1, 3, 5, 1, 1, 1, 1, 6, 0, 4, 6, 1,
1, 3, 0, 4, 0, 4, 5, 5, 5, 1, 3, 2, 0, 4, 3, 6, 0, 1, 2, 4, 2, 3, 5, 4, 6, 2,
5, 1, 2, 4, 3, 2, 2, 3, 4, 1])

Sample Output (indices): tensor([6, 1, 0, 5, 3, 4, 2])
Figure R4: Predictions made only with
optimal prior. Temporal prior is needed to
preserve temporal coherence among videos.

OPEL: Optimal Transport Guided ProcedurE Learning

