
Figure R1: Key-steps required to prepare a brownie, showcasing temporal variations 
and corresponding key-step alignment challenges, namely (i) background frames 
(depicted as gray blocks), (ii) non-monotonic frames. OPEL learns an embedding space 
where corresponding key-steps have similar embeddings while tackling the above 
challenges. 

Figure R3: Importance of choosing Laplace 
distribution as prior. 

Table R1: Additional ablation study on the effect of k 

R F IoU R F IoU
7 60.5 39.2 20.2 23.0 20.7 10.6
10 54.9 30.3 17.6 19.8 17.2 9.8
12 50.2 28.1 15.5 18.4 16.5 8.7
15 47.6 26.8 14.8 16.9 15.8 8.2

k
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Figure R2: Qualitative 
analysis on variation of k. 

Codeblock R1: Pytorch Function to determine the sequential 
ordering of tasks from frame-wise key-step predictions 

def temporal_order(R, k): 
# M: No. of frames        
# R: Predicted key-steps of each frame  
# k: No. of key-steps    # T: Normalized time 
# indices: Final sequential order of task 
  M = len(R) 
  T = (torch.arange(0, M)+1)/M 
  cluster_time = torch.zeros(k) 

# Finding the mean time for each cluster and sorting 
# them to obtain their sequential order 
  for i in range(k): 
    cluster_time[i] = T[R==i].mean() 
  _, indices = torch.sort(cluster_time) 
  return indices 

Sample Input (R): tensor([6, 2, 1, 3, 5, 1, 1, 1, 1, 6, 0, 4, 6, 1, 
1, 3, 0, 4, 0, 4, 5, 5, 5, 1, 3, 2, 0, 4, 3, 6, 0, 1, 2, 4, 2, 3, 5, 4, 6, 2, 
5, 1, 2, 4, 3, 2, 2, 3, 4, 1]) 

Sample Output (indices): tensor([6, 1, 0, 5, 3, 4, 2]) 
Figure R4: Predictions made only with 
optimal prior. Temporal prior is needed to 
preserve temporal coherence among videos. 

OPEL: Optimal Transport Guided ProcedurE Learning




