OPEL: Optimal Transport Guided ProcedurE Learning
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Figure R1: Key-steps required to prepare a brownie, showcasing temporal variations
and corresponding key-step alignment challenges, namely (i) background frames
(depicted as gray blocks), (ii) non-monotonic frames. OPEL learns an embedding space
where corresponding key-steps have similar embeddings while tackling the above

challenges.
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analysis on variation of k.

Table R1: Additional ablation study on the effect of k

K Meccano EPIC-Tents

R F loU R F loU
7 60.5 39.2 20.2 23.0 20.7 10.6
10 54.9 30.3 17.6 19.8 17.2 9.8
12 50.2 28.1 15.5 18.4 16.5 8.7
15 47.6 26.8 14.8 16.9 15.8 8.2

Codeblock R1: Pytorch Function to determine the sequential
ordering of tasks from frame-wise key-step predictions

def temporal_order(R, k):
# M: No. of frames
# R: Predicted key-steps of each frame
# k: No. of key-steps # T: Normalized time
# indices: Final sequential order of task
=len(R)
T = (torch.arange(0, M)+1)/M
cluster_time = torch.zeros(k)

# Finding the mean time for each cluster and sorting
# them to obtain their sequential order
for i in range(k):
cluster_time[i] = T[R==i].mean()
_, indices = torch.sort(cluster_time)
return indices
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Figure R3: Importance of choosing Laplace
distribution as prior.

Sample Input (R): tensor([6,2,1,3,5,1,1,1,1,6,0,4, 6, 1,

Sample Output (indices): tensor([6, 1, 0, 5, 3, 4, 2])
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Figure R4: Predictions made only with
optimal prior. Temporal prior is needed to
preserve temporal coherence among videos.






