OPEL: Optimal Transport Guided ProcedurE Learning

r- 4 Background
r' Frames
Background
Va
_ S L\

Frames
\E

=

Non-monotonic
Frames

Task 1
|4 Break Egg

Ground Truth [']:II
(0 1|

adol OPEL (k=7)

- _ MixTca::t:nls OPEL (k = 10) l:[j
9

Key-steps across videos with temporal variation —»

Figure R1: Key-steps required to prepare a brownie, showcasing temporal variations
and corresponding key-step alignment challenges, namely (i) background frames
(depicted as gray blocks), (ii) non-monotonic frames. OPEL learns an embedding space
where corresponding key-steps have similar embeddings while tackling the above

challenges.

v Za\ ; I Ideal itioairaieecaaerss
1 J 9
1 ’ * ’ Frames
[- OPEL (k = 15) I]I i
Task 1 Task 2 Task 3 Task & Task§ [lee] SUCC NEEEe ST 1y EBliml
Break Egg MixEgg Add Water Add Oil Mix contents N
Sequential progression of tasks in preparation of brownies —> Embedding Space Figure R2: Qualitative

analysis on variation of k.

Table R1: Additional ablation study on the effect of k

K Meccano EPIC-Tents

R F loU R F loU
7 60.5 39.2 20.2 23.0 20.7 10.6
10 54.9 30.3 17.6 19.8 17.2 9.8
12 50.2 28.1 15.5 18.4 16.5 8.7
15 47.6 26.8 14.8 16.9 15.8 8.2

Codeblock R1: Pytorch Function to determine the sequential
ordering of tasks from frame-wise key-step predictions

def temporal_order(R, k):
M: No. of frames
R: Predicted key-steps of each frame
k: No. of key-steps # T: Normalized time
indices: Final sequential order of task
=len(R)
T = (torch.arange(0, M)+1)/M
cluster_time = torch.zeros(k)

Finding the mean time for each cluster and sorting
them to obtain their sequential order
for i in range(k):
cluster_time[i] = T[R==i].mean()
_, indices = torch.sort(cluster_time)
return indices

f(x) —

= Laplace distribution
= Gaussian distribution
== Uniform distribution

y:

1 Long-tail data

-4 -2 0 2 4

X —

Figure R3: Importance of choosing Laplace
distribution as prior.

Sample Input (R): tensor([6,2,1,3,5,1,1,1,1,6,0,4, 6, 1,

Sample Output (indices): tensor([6, 1, 0, 5, 3, 4, 2])

) 3’ 2) 0, 4! 3! 6! 0! 1! 2) 4! 2! 3! 5! 4! 6) 2)

Video 1 (Frame) — >

1 2 345>

Optimality Prior

Figure R4: Predictions made only with
optimal prior. Temporal prior is needed to
preserve temporal coherence among videos.

