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A ADDITIONAL EXPERIMENTS AND SETUP

A.1 SYNTHETIC EXPERIMENTS WITH PRIVATE ALGORITHMS

DP LRS Simulations: We conduct the experiment on a synthetic dataset: for each task i ∈ [t], we
generate m = 100 samples {(x(i)

j , y
(i)
j )}j∈[m] where x

(i)
j ∼ N (0, Id×d), y(i)

j = 〈x(i)
j ,u?w?(i) +

b?(i)〉 and w?(i) = 1 is fixed for simplicity. We select number of tasks t = 5000, d = 10, data
dimension k, ζ, and both the column and row sparsity level of {b?(i)}i∈[t] to be 2. We sample u?

uniformly from the unit sphere and the non-zero elements of {b?(i)}i∈[t] are sampled i.i.d. from
N (0, 1) with the indices of zeros selected randomly.

We run the algorithm for 15 epochs and use RDP sequential composition to compute the privacy risk
accumulated over the epochs. We set minimum possible clipping norm values for A1,A2 and A3 s.t.
a majority portion of samples don’t get clipped. We fix δ = 10−5. For hyperparameter tuning, we
perform a search pick the values which give the minimum RMSE on the validation set. Finally we
plot the RMSE on the Test Set for different values of ε in .

(a) Overall comparison of RMSE.

Figure 3: Comparison of Overall RMSE on the simulated data for both the private and non-private versions of
AMHT-LRS and the Single Model Baseline.

We note that while DP AMHT-LRS performs quite well for each ε, both the private and non-private
Single Model baselines fare badly even on higher values of ε. Further, DP AMHT-LRS is able to
achieve RMSE comparable to its non-private version by ε ≈ 2 mark.

A.2 EXPERIMENTS WITH LINEAR MODELS

A.2.1 NETFLIX DATASET

We consider the Netflix Challenge dataset comprising of 17k users and 480k movies where ratings
are provided as integers on a scale of 1− 5. We choose the top 200 users who have rated the most
movies and top 200 movies that have been rated the most and consider the 200× 200 rating matrix
restricted to these sets of top users and movies - this rating matrix comprises approximately 35k
ratings. We perform the train-validation split in the following way: for 70 users, we keep 10% of
their ratings in the training set (small data/user); for 70 users, we kept 50% of their ratings in their
training set (medium data/user) and for the rest of 60 users, we kept 90% of their ratings in their
training set (large data/user). All the observed ratings restricted to the 200× 200 ratings matrix that
are absent in the training set is inserted into the validation set. By using standard low rank matrix
completion techniques (Chen et al., 2020b), we complete the ratings matrix by minimizing the MSE
w.r.t to the entries in the training set with a nuclear norm regularizer. Following this, we compute
SVD UΣVT and take the first 50 columns of V; this results in a truncated 200× 50 dimensional
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(a) Overall RMSE (b) RMSE for data-starved tasks (c) RMSE for data surplus tasks

Figure 4: Decrease in RMSE on Netflix validation data for AMHT-LRS algorithm on increase in fine-tunable
parameters. Note that AMHT-LRS outperforms other baselines for both data-starved and data-surplus tasks.

matrix V̂ where each row corresponds to a 50-dimensional embedding of each movie. Note that we
ensure there is no data leakage while creating the embeddings.

For each task representing each user, the samples consist of (movie embedding, rating) tuples; the
response is the average rating of the movie given by users in that task. We use the training data to
learn the different models (with some hyper-parameter tuning) mentioned earlier and use them to
predict the ratings in the validation data.

Empirical Observations on Netflix validation data:

The overall average validation RMSE for AMHT-LRS and the different baselines that we consider
is shown in Fig. 4a against percentage of fine-tunable parameters used by the model. As in the
Movielens dataset, with respect to the single model as reference, in the linear rank-1 case, the
representation learning and the prompt learning based baselines have 1 and 50 additional parameters
per task respectively; they are unable to personalize well. In contrast, with only 4%(= 2) additional
parameters per task, AMHT-LRS has smaller RMSE than fully fine-tuned model, which require
200x more parameters. Note that AMHT-LRS outperforms other baselines for both data-starved and
data-surplus tasks.

A.2.2 JESTER DATASET

The Jester dataset comprises of 4.1m ratings from 73k users for 100 jokes with each rating being
on a scale of −10.0 to +10.0. We choose 100 users who have rated all the 100 jokes and consider
the 100× 100 rating matrix restricted to these users and jokes - this rating matrix is entirely filled.
Similar to the Netflix dataset, we perform the train-validation split in the following way: for 30 users,
we keep 10% of their ratings in the training set (small data/user); for 40 users, we kept 50% of their
ratings in their training set (medium data/user) and for the rest of 30 users, we kept 90% of their
ratings in their training set (large data/user). We use the training data to learn the different models
(with some hyper-parameter tuning) and use them to predict the ratings in the validation data.

Empirical Observations on Jester validation dataset:

The conclusions are mostly similar as in the case of Netflix dataset. The overall average validation
RMSE for AMHT-LRS and the different baselines that we consider is shown in Fig. 5a against
percentage of fine-tunable parameters used by the model. Again, with respect to the single model
as reference, in the linear rank-1 case, the representation learning and the prompt learning based
baselines have 1 and 50 additional parameters per task respectively; they are unable to personalize
well. In contrast, with only 2%(= 1) additional parameter per task, AMHT-LRS has smaller RMSE
than fully fine-tuned model, which require 100x more parameters and the other baselines. Note that
our method outperforms other baselines for both data-starved and data-surplus tasks.

A.3 EXPERIMENTS WITH NEURAL NETWORKS

As described in Section 3, our techniques/approaches can be extended to complex classes of non-linear
model. To demonstrate this, we fix the class of models to Neural Networks (denoted by F : Rd → R).
Similar to Section 3, we consider the following baselines: 1) Single Model (F(x; ucentral)): learns a
single Neural Network model for all tasks, 2) Full Fine-tuning (F(x; uindv)) Learns a separate fully-
trained Neural Network model for each task, 3) Rep. Learning (F(x; uw)): Learns separate Neural
Networks for each task such that the NN parameters of each task lie on a low dimensional manifold.
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(a) Overall RMSE (b) RMSE for data-starved tasks (c) RMSE for data surplus tasks

Figure 5: Decrease in RMSE on Jester validation data for AMHT-LRS algorithm on increase in fine-tunable
parameters. Note that AMHT-LRS outperforms other baselines.

4) Prompt Learning (F(x || c; ucentral)): The covariate is concatenated with a trainable embedding
of the corresponding task and a single Neural network model is trained with the modified covariates.
AMHT-LRS (F(x; uw + bsparse)) itself trains a separate Neural Network model for each task but
assumes that the entire set of parameters of the Neural networks for each task can be represented as a
Low Rank+Sparse matrix.

As in the case of linear models, we use the training data to learn the parameters of different models
(with some hyper-parameter tuning) described above and use them to predict the ratings in the
validation data. The overall average validation RMSE for AMHT-LRS and the 4 different baselines
(modified for neural networks) that we consider against different amounts of sparsity in bsparse is
computed (shown in figures for each of three datasets that we experiment with). The memory footprint
of the different methods (for each of the three datasets) has been provided in Table A.3.3.

More Details on Experimental Setup: To compute the single model and fully fine-tuned model
metrics, we used batched gradient descent. To compute the low rank model metrics, we performed
alternating optimization as per the algorithm described in (Thekumparampil et al., 2021). Finally, to
compute AMHT-LRS metrics, we used rank-1 case of Algorithm 1 and used an L2 regularization
for each b(i,`). For all the gradient based methods, we used Adam Optimizer with weight decay and
learning rate scheduler. We experimented with Cosine Annealing and Decay on Plateau schedulers.
We performed a search over learning rates, L2 weight decay values and learning rate scheduler
hyperparameters (decay factor for Decay on Plateau and window size for Cosine Annealing) and
reported the model metrics which gave the best overall RMSE on the validation dataset.

A.3.1 NETFLIX DATASET

LRS with 2 layer Neural Net for Netflix: For the Neural Network (NN) experiments on Netflix
dataset, we consider the function class F - a 2 layer Neural Net with a single hidden layer of 50
neurons and tanh activation. The training and the validation data on the Netflix dataset is same as
created for the linear models (see Section A.2.1). The comparison of validation RMSE of AMHT-LRS
and all the 4 baselines corresponding to the Netflix dataset is given in Figure 6a.

Observe that AMHT-LRS outperforms the rest of the baselines with a small memory overhead (see
Table A.3.3). In particular, the improvement in performance is achieved along with a significant im-
provement in memory cost compared to Full fine-tuning - AMHT-LRS (with only 1% sparsity/tunable
parameters for each user) outperforms the Full-Finetuning baseline with only 2% of the corresponding
number of parameters.

A.3.2 JESTER DATASET

LRS with 2 layer Neural Net for Jester: For the Neural Network (NN) experiments on Jester
dataset, we consider the function class F - a 2 layer Neural Net with a single hidden layer comprising
50 neurons and tanh activation. As before, the training and the validation data is the same that was
created for the case of linear models (see Sec. A.2.2). The comparison of validation RMSE of
AMHT-LRS and all the 4 baselines corresponding to the Jester dataset is given in Figure 7a.

Again, we observe that AMHT-LRS outperforms the rest of the baselines with a small memory
overhead (see Table A.3.3). As before, the improvement in performance is achieved along with a
significant improvement in memory cost compared to Full fine-tuning - AMHT-LRS (with only 2%
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(a) Overall comparison of RMSE.

Figure 6: Comparison of Overall RMSE on the Netflix validation data achieved by AMHT-LRS and the different
baselines we consider where the training is modified for toy Neural Network models with a single hidden layer
of 50 neurons and tanh activation. AMHT-LRS outperforms other baselines along with a significantly smaller
memory footprint (see Table A.3.3 for exact numbers on model parameters).

sparsity/tuneable parameters for each user) outperforms the Full-Finetuning baseline with only 1.5%
of the corresponding number of parameters.

(a) Overall comparison of RMSE.

Figure 7: Comparison of Overall RMSE on the Jester validation data achieved by AMHT-LRS and the different
baselines we consider where the training is modified for toy Neural Network models with a single hidden layer
of 50 neurons and tanh activation. AMHT-LRS outperforms other baselines along with a significantly smaller
memory footprint (see Table A.3.3 for exact numbers on model parameters).

A.3.3 MOVIELENS DATASET

LRS with 3 layer Neural Net for MovieLens: For the Neural Network (NN) experiments on
MovieLens dataset, we consider the function class F - a 3 layer Neural Net with 2 hidden layers
of 50 neurons each and tanh activation. The training and the validation data on the MovieLens
dataset is created in a similar manner as discussed in Section 3. The comparison of validation RMSE
of AMHT-LRS and all the 4 baselines corresponding to the MovieLens dataset is given in Figure
8a. Here, we can observe that AMHT-LRS has almost similar performance as the best performing
baseline Full Fine-tuning (F(x; uindv)) while outperforming the other baselines. However, note that
the individual models F(x; uindv) have a high memory overhead since every trained model per task
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has the same memory usage as a single Neural Network model. In particular AMHT-LRS (with only
20% sparsity/tunable parameters) matches the Full-finetuning baseline with approximately 20% of
the corresponding number of parameters.

(a) Overall comparison of RMSE.

Figure 8: Comparison of RMSE on the MovieLens validation data achieved by AMHT-LRS and the different
baselines we consider where the training is modified for toy Neural Network models with 2 hidden layers of
50 neurons each. AMHT-LRS has similar performance as individual models F(x; uindv) trained for each task;
however our models have a significantly smaller memory footprint (see Table A.3.3 for exact numbers on model
parameters).

B WARM-UP: CENTRAL MODEL + FINE-TUNING

B.1 SPARSE FINE-TUNING OF CENTRAL MODEL

Inspired by parameter efficient transfer learning applications shown in Guo et al. (2020) where the
authors propose learning a task-specific sparse vector, we consider the following simple variant of our
problem in the noiseless rank-1 setting (r = 1) with (W?)T being a multiple of an all 1 t-dimensional
vector. We will denote the representation vector by u? ∈ Rd that is shared by all the tasks. Therefore,
the ERM for this model is given by the LRS problem with w(i) = 1 for all i ∈ [t]. We can also
pose this problem as the setting when the low rank representation of the datapoints corresponds
to projection on a fixed unknown vector; there exists a central model (parameterized by the fixed
unknown vector shared across tasks) and each task is a fine-tuned version of the central model. Our
AM algorithm to solve the modified ERM problem is significantly simpler; in particular Steps 2-8
in Algorithm 1 is replaced by the following set of updates given estimates u(`−1) ∈ Rd (of u?) and
{b(i,`−1)}i∈[t] (of {b?(i)}i∈[t]) in the `th iteration with a suitable choice of ∆(`):

c(i,`) ← b(i,`−1) − (m−1X(i))T(X(i)(u(`−1) + b(i,`−1))− y(i)) (9)

b(i,`) ← HT(c(i,`),∆(`)) (10)

u(`) ←
(∑

i

(X(i))TX(i)
)−1(∑

i

(X(i))T
(
y(i) −X(i)b(i,`)

))
(11)

Notice that the updates in eq. 11 are only implemented once in each iteration (unlike Algorithm 2)
which improves the run-time as well as the sample complexity of the algorithm by logarithmic factors.
The detailed Algorithm is provided in Appendix B. We present the main theorem below:

Theorem 4. Consider the LRS problem with t linear regression tasks and samples obtained by
equation 1 where rank r = 1, σ = 0, U? ≡ u? ∈ Rd and w?

i ≡ w? ∈ R. Let model parameters
{b?(i)}i∈[t] satisfy assumption A1. Suppose Algorithm 1 with modified updates (eq. 11) is run for L =

log
(
ε−1
0

(
maxi∈[t]

∣∣∣∣b?(i)∣∣∣∣∞ + ||u?||∞ +
||u?||2√

k

))
iterations. Then, w.p. ≥ 1−O(δ0), the outputs
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Dataset Method #Parameters

MovieLens

Single Model F(x; ucentral) 5,151
Full Fine-tuning F(x; uindv) 1,241,391
Rep. Learning F(x; uw) 5,392
Prompt Learning F(x || c; ucentral) 19,701
AMHT-LRS F(x; uw + b1% sparse) 17,924
AMHT-LRS F(x; uw + b5% sparse) 67,570
AMHT-LRS F(x; uw + b10% sparse) 129,748
AMHT-LRS F(x; uw + b15% sparse) 191,685
AMHT-LRS F(x; uw + b20% sparse) 253,863

Jester

Single Model F(x; ucentral) 2,601
Full Fine-tuning F(x; uindv) 260,100
Rep. Learning F(x; uw) 2,701
Prompt Learning F(x || c; ucentral) 10,101
AMHT-LRS F(x; uw + b1% sparse) 5,302
AMHT-LRS F(x; uw + b5% sparse) 15,706
AMHT-LRS F(x; uw + b10% sparse) 28,711
AMHT-LRS F(x; uw + b15% sparse) 41,716
AMHT-LRS F(x; uw + b20% sparse) 54,721

Netflix

Single Model (F(x; ucentral)) 2,601
Full Fine-tuning F(x; uindv) 520,200
Rep. Learning F(x; uw) 2,801
Prompt Learning F(x || c; ucentral) 15,101
AMHT-LRS F(x; uw + b1% sparse) 8,003
AMHT-LRS F(x; uw + b5% sparse) 28,811
AMHT-LRS F(x; uw + b10% sparse) 54,821
AMHT-LRS F(x; uw + b15% sparse) 80,831
AMHT-LRS F(x; uw + b20% sparse) 106,841

Table 1: Comparison of number of model parameters for AMHT-LRS at different sparsity levels and the different
baselines we consider. Note that our approach AMHT-LRS at 1% and 5% sparsity levels has substantially less
number of parameters than Full fine-tuning F(x; uindv) and comparable number of model parameters with the
other baselines.

u(L), {b(i,L)}i∈[t] satisfy:
∣∣∣∣u(L) − w?u?

∣∣∣∣
∞ ≤ O(ε0) and

∣∣∣∣b(i,L) − b?(i)
∣∣∣∣
∞ ≤ O(ε0) for all i ∈

[t] provided the total number of samples satisfy m = Ω̃(k), mt = Ω̃(d
√
k) and mt2 = Ω̃(ζkd).

Remark 5. Notice from Theorem 4 that our AM algorithm in the sparse fine-tuning setting enjoys
global convergence guarantees and does not require any initialization conditions. Secondly, we do
not need u? to satisfy any incoherence property for convergence guarantees of Theorem 4 (unlike
Theorem 1). Therefore, Theorem 4 is interesting in itself and significantly improves on the guarantees
of Theorem 1 directly applied to the special setting.

B.2 DETAILED ANALYSIS AND PROOF OF THEOREM 4

In the fine-tuning model described in Section B.1, we consider a system comprising of t tasks, each
of which (indexed by i ∈ [t]) is parameterized by an unknown task-specific sparse parameter vector
b?(i) ∈ Rd satisfying ‖b?(i)‖0 ≤ k along with a dense unknown parameter vector u? ∈ Rd that is
shared across all tasks. Now, for each task i ∈ [t], we obtain samples {(x(i)

j , y
(i)
j )}mj=1 according to

the following model:

x
(i)
j ∼ N (0, Id) and y(i)

j | x
(i)
j = 〈x(i)

j ,u? + b?(i)〉 for all i ∈ [t], j ∈ [m] (12)
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Algorithm 3 AMHT-LRS (Central Model+Finetuning)

Require: Data {(x(i)
j ∈ Rd, y(i)

j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B. Initial Error
Bounds maxi∈[t] ‖b(0,`)−b?(i)‖2 ≤ α(0), maxi∈[t] ‖b(i,0)−b?(i)‖∞ ≤ γ(0), ‖u(0)−u?‖∞ ≤
β(0) and ‖u(0) − u?‖2 ≤ τ (0).

1: Suitable constants c1, c2, c3 > 0.
2: for ` = 1, 2, . . . (Until Convergence) do
3: ∆(`) ← β(`−1) + c1√

k

(
τ (`−1) + α(`−1))

4: c(i,`) ← b(i,`−1) − 1
m · (X

(i))T(X(i)(u(`−1) + b(i,`−1))− y(i))

5: b(i,`) ← HT(c(i,`),∆(`))

6: u(`) ←
(

1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T

)−1(
1
mt

∑
i

∑
j x

(i)
j (y

(i)
j − (x

(i)
j )Tb(i,`))

)
7: Set, γ(`) ← 2β(`−1) + 2c1√

k
τ (`−1) + 2c1γ

(`−1)

8: Set τ (`) ← c2
√
kγ(`), β(`) ← c3γ

(`) and α(`) ←
√
kγ(`)

9: end for
10: Return w(`), U+(`) and {b(i,`)}i∈[t].

We will assume that the model parameters {b?(i)}i∈[t] satisfy Assumption A1. More importantly,
we do not assume A2 and furthermore, we do not assume that u? is unit-norm. Since u? is not unit
norm, we can write it as u? = u?

||u?||2
||u?||2. In order to map it to the statement of Theorem 4 and the

general problem statement in 1, we can immediately write w? ← ||u?||2 and u? ← u?

||u?||2
(since u?

in the statement of Theorem 4 is unit-norm). Hence, we can simplify the notation significantly by
assuming that u? is not unit norm and by subsuming the scalar w? (which is same across all tasks for
this special setting) with the norm of vector u?.

Initialization and Notations: For ` = 0, we will initialize u(0) = 0 and b(i,0) = 0 for all tasks
indexed by i ∈ [t]. For any ` ≥ 0, at the beginning of the (`+ 1)th iteration, we will use α(`), τ (`)

to denote known upper bounds on the `2-norm of the approximated parameters and γ(`), β(`) to
denote known upper bounds on the `∞-norm of the approximated parameters that will hold with high
probability as described below:

max
i∈[t]

∣∣∣∣∣∣b(i,`) − b?(i)
∣∣∣∣∣∣

2
≤ α(`) and max

i∈[t]

∣∣∣∣∣∣b(i,`) − b?(i)
∣∣∣∣∣∣
∞
≤ γ(`),∣∣∣∣∣∣u(`) − u?

∣∣∣∣∣∣
∞
≤ β(`) and

∣∣∣∣∣∣u(`) − u?
∣∣∣∣∣∣

2
≤ τ (`).

Lemma 2. For some constant c > 0 and for any iteration indexed by ` ∈ [L], we can have the
following updates

γ(`) = 2β(`−1) + 2c

√
log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
,

α(`) = 2
√
kβ(`−1) + 2c

√
k log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
support(b(i,`) ⊆ support(b?(i)).

with probability 1−O(δ0).

Proof. Fix any i ∈ [t]. It is easy to see that update step 4 of Algorithm 3 gives us

c(i,`) − b?(i) =
(
I− 1

m
(X(i))TX(i)

)(
b(i,`−1) − b?(i)

)
+

1

m
(X(i))TX(i)(u? − u(`−1))

=⇒ c(i,`) − b?(i) − u? + u(`−1) =
(
I− 1

m
(X(i))TX(i)

)(
b(i,`−1) − b?(i)

)
+
(
I− 1

m
(X(i))TX(i)

)
(u(`−1) − u?). (13)
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Let es ∈ Rd denote the sth basis vector for which the sth coordinate entry is 1 and all other coordinate
entries are 0. Then, note that:∣∣∣(c(i,`) − b?(i) − u? + u(`−1)

)
s

∣∣∣
=

∣∣∣∣eT
s

(
I− 1

m
(X(i))TX(i)

)(
b(i,`−1) − b?(i)

)
+ eT

s

(
I− 1

m
(X(i))TX(i)

)
(u(`−1) − u?)

∣∣∣∣
≤
∣∣∣∣eT
s

(
I− 1

m
(X(i))TX(i)

)(
b(i,`−1) − b?(i)

)∣∣∣∣+

∣∣∣∣eT
s

(
I− 1

m
(X(i))TX(i)

)
(u(`−1) − u?)

∣∣∣∣
≤
∣∣∣∣ 1

m
eT
s (X(i))TX(i)(b(i,`−1) − b?(i))− eT

s (b(i,`−1) − b?(i))

∣∣∣∣
+

∣∣∣∣ 1

m
eT
s (X(i))TX(i)(u(`−1) − u?)− eT

s (u(`−1) − u?)

∣∣∣∣
≤ c
√

log(1/δ0)

m

(
τ (`−1) + α(`−1)

)
,

w.p. ≥ 1 − O(δ0), where we invoke Lemma 17 in the last step and plugging a = es and b =
b(i,`−1) − b?(i) and u(`−1) − u? for the two terms respectively. Therefore, by taking a union bound
over all entries s ∈ [d], and a further union bound over all tasks (t of them), we can conclude that for
all i ∈ [t], we must have∣∣∣∣∣∣c(i,`) − b?(i) − u? + u(`−1)

∣∣∣∣∣∣
∞
≤ c
√

log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
=⇒

∣∣∣∣∣∣c(i,`) − b?(i)
∣∣∣∣∣∣
∞
≤ β(`−1) + c

√
log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
(14)

w.p. 1−O(δ0). Now, we have

b(i,l) = HT(c(i,`),∆(`))

=⇒ b(i,l)s =

{
c
(i,`)
s if |c(i,`)s | > ∆(`),

0 otherwise,
(15)

=⇒ |b(i,l)s − b?(i)s | =

{
|c(i,`)s − b?(i)s | if |c(i,`)s | > ∆(`),

|b?(i)s | otherwise.
(16)

Therefore if we set ∆(`) = β(`−1) + c
√

log(td/δ0)
m

(
τ (`−1) + α(`−1)

)
(as described in Step 2 of the

algorithm), then, by using equation 14 and equation 16, we have
∣∣∣∣b(i,`) − b?(i)

∣∣∣∣
∞ ≤ 2∆(`) and

therefore,

=⇒
∣∣∣∣∣∣b(i,`) − b?(i)

∣∣∣∣∣∣
∞
≤ 2β(`−1) + 2c

√
log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
= γ(`) (17)

and
∣∣∣∣∣∣b(i,`) − b?(i)

∣∣∣∣∣∣
2
≤ 2
√
kβ(`−1) + 2c

√
k log(td/δ0)

m

(
τ (`−1) + α(`−1)

)
= α(`), (18)

with probability 1−O(δ0). Furthermore, from equation equation 14 we have for any coordinate s∣∣∣(c(i,`) − b?(i)
)
s

∣∣∣ ≤ ∆(`).

Thus, if s /∈ support(b?(i)), then the above gives |c(i,`)| ≤ ∆(`). Using this in equation 15 gives
b
(i,l)
s = 0. Hence, for all s ∈ [d], we must have s /∈ support(b?(i)) =⇒ s /∈ support(b?(i,`))

implying that support(b(i,`) ⊆ support(b?(i)). Hence, the proof of the lemma is complete.
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Lemma 3. For some constant c > 0 and for any iteration indexed by ` > 0, we have

τ (`) =

√
2ζk
t γ

(`) + 4α(`)
√

d log(d/δ0)
mt

1− c
√

d log(1/δ0)
mt

with probability 1−O(δ0).

Proof. Update step 3 of the Algorithm for the `th iteration gives us

u(`) =
( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T

)−1( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T(u? + b?(i) − b(i,`))

)
=⇒ u(`) − u? =

( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T︸ ︷︷ ︸

A

)−1( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T(b?(i) − b(i,`))︸ ︷︷ ︸
v

)

Let us denote the vector b?(i) − b(i,`) by z(i,`) for simplicity. Notice that for any h ∈ [d], we have

vh =
( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )Tz(i,`)

)
h

=
1

mt

∑
i

∑
j

((
x

(i)
j,h

)2

z
(i,`)
h +

∑
u:u 6=h

x
(i)
j,hx

(i)
j,uz

(i,`)
u

)
. (19)

Now, note that the random variable
(
x

(i)
j,h

)2

z
(i,`)
h is a

(
4(z

(i,`)
h )2, 4|z(i,`)

h |
)

sub-exponential random

variable. Similarly, x(i)
j,hx

(i)
j,uz

(i,`)
u is a

(
2(z

(i,`)
u )2,

√
2|z(i,`)

u |
)

sub-exponential random variable.
Therefore, we must have(

x
(i)
j,h

)2

z
(i,`)
h +

∑
u:u6=h

x
(i)
j,hx

(i)
j,uz

(i,`)
u

=
(

4(z
(i,`)
h )2 + 2

∑
u:u6=h

(z(i,`)
u )2,max

(
4|z(i,`)

h |, max
u:u 6=h

(
√

2|z(i,`)
u |)

))
=
(

4‖z(i,`)‖22, 4‖z(i,`)‖∞
)

sub-exponential random variable. (20)

Furthermore,

E [vh] =
1

mt

∑
i

∑
j

(
E
[(
x

(i)
j,h

)2

z
(i,`)
h

]
+ E

 ∑
u:u6=h

x
(i)
j,hx

(i)
j,uz

(i,`)
u

)
=

1

mt

∑
i

∑
j

(
z

(i,`)
h + 0

)
=

1

t

∑
i

z
(i,`)
h . (21)

Using equation 20, equation 21 and Lemma 23 in equation 19 implies that∣∣∣∣∣vh − 1

t

∑
i

z
(i,`)
h

∣∣∣∣∣ ≤ max
(

2‖z(i,`)‖2

√
2 log(1/δ0)

mt
, 2‖z(i,`)‖∞

2 log(1/δ0)

mt

)
≤ max

(
2α(`)

√
2 log(1/δ0)

mt
, 2γ(`) 2 log(1/δ0)

mt

)
︸ ︷︷ ︸

εh

.
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will be true with probability at least 1− δ0. On taking a union bound over all h ∈ [d], we will have
that ∣∣∣∣∣vh − 1

t

∑
i

z
(i,`)
h

∣∣∣∣∣ ≤ max
(

2α(`)

√
2 log(d/δ0)

mt
, 2γ(`) 2 log(d/δ0)

mt

)
︸ ︷︷ ︸

εh

. (22)

with probability 1−O(δ0). Note that ‖v‖22 =
∑
h v

2
h. Hence, we have∑

h

v2
h ≤

∑
h

(
2
(1

t

∑
i

z
(i,`)
h

)2

+ 2ε2h

)
≤ 2ζ

∑
h

∑
i

(
z

(i,`)
h

t
)2 + 2

∑
h

ε2h

≤ 2ζ
∑
i

∑
h

(z(i,`)
h

t

)2

+ 2
∑
h

ε2h

≤ 2ζ

t
(α(`))2 + 8(α(`))2 2d log(d/δ0)

mt
,

where we use that 2α(`)
√

2 log(d/δ0)
mt > 2γ(`) 2 log(d/δ0)

mt . Hence, with probability at least 1−O(δ0),

we must have by using that α(`) ≤
√
kγ(`)

‖v‖2 ≤
√

2ζk

t
γ(`) + 4α(`)

√
d log(d/δ0)

mt
(23)

Furthermore, from Lemma 19, we have with probability 1− δ0 for any iterations ` ∈ [L]

‖ 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T − I‖2 ≤ c

√
d log(1/δ0)

mt
. (24)

implying that the minimum eigenvalue of the matrix 1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I is at least 1 −

c
√

d log(1/δ0)
mt ; hence the maximum eigenvalue of the matrix ( 1

mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I)−1 is at

most (1 − c
√

d log(1/δ0)
mt )−1. Using equation 23 and equation 24, we get for any iterations ` ∈ [L]

with probability 1−O(δ0),

‖u(`) − u?‖2 ≤

√
2ζk
t γ

(`) + 4α(`)
√

d log(d/δ0)
mt

1− c
√

d log(1/δ0)
mt

, τ (`). (25)

Lemma 4. For some constant c > 0 and for any iteration indexed by ` > 0, we have

β(`) =
(ζ
t

+ 2c

√
log(d/δ0)

mt

√
2ζk

t

)
γ(`) +

(
c

√
log(d/δ0)

mt
+ 8c
√
d

log(d/δ0)

mt

)
α(`)

with probability at least 1−O(δ0).

Proof. With probability at least 1 − O(δ0), we have that ||E||2 ≤
√

d log 9
mt . We fix mt = Ω(d) so

that ||E||2 < 1. Our goal is to bound the quantity ‖u(`) − u?‖∞ from above. Denoting A = I + E
and using the fact that (I + E)−1 = I−E + E2 + . . . (since ||E||2 < 1), by using Lemma 16 and
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taking a union bound over all entries s ∈ [d], we have with probability at least 1− δ0,∣∣∣∣∣
∣∣∣∣∣v − 1

t

∑
i

(b?(i) − b(i,`))

∣∣∣∣∣
∣∣∣∣∣
∞

= max
s

∣∣∣∣∣∣ 1

mt

∑
i

∑
j

eT
sx

(i)
j (x

(i)
j )T(b?(i) − b(i,`))− 1

t

∑
i

eT
s (b?(i) − b(i,`))

∣∣∣∣∣∣
= max

s

∣∣∣∣∣∣ 1

mt

∑
i

∑
j

(x
(i)
j )T(b?(i) − b(i,`))eT

sx
(i)
j −

1

t

∑
i

eT
s (b?(i) − b(i,`))

∣∣∣∣∣∣
≤ c

√√√√∑
i

∑
j

‖(b?(i) − b(i,`))eT
s ‖2F

log(d/δ0)

m2t2

≤ cα(`)

√
log(d/δ0)

mt
.

Hence with probability at least 1− δ0, we will have the following statement

||v||∞ ≤ cα
(`)

√
log(d/δ0)

mt
+
ζ

t
γ(`). (26)

Since u(`) − u? = (I + E)−1v with E = 1
mt

∑
i

∑
j x

(i)
j (x

(i)
j )T − I, we will have∣∣∣∣∣∣u(`) − u?

∣∣∣∣∣∣
∞
≤
∞∑
j=0

∣∣∣∣Ejv
∣∣∣∣
∞. (27)

Let V , {z ∈ Rd|‖z‖ = 1}. Then for ε ≤ 1, there exists an ε-net, Nε ⊂ Z , of size (1 + 2/ε)d w.r.t
the Euclidean norm, i.e. ∀ z ∈ Z , ∃ z′ ∈ Nε s.t. ‖z− z′‖2 ≤ ε. Now consider any z ∈ Nε. Then,
Lemma 17 with a = es and b = z and taking a union bound over all entries s ∈ [d] gives∣∣∣∣∣∣eT

s

( 1

mt

∑
i

∑
j

x
(i)
j (x

(i)
j )T − I

))
z

∣∣∣∣∣∣ ≤ c‖z‖22 max
(√ log(1/δ0)

mt
,

log(1/δ0)

mt

)

=⇒ ‖Ez‖∞ ≤ cmax
(√ log(d|Nε|/δ0)

mt
,

log(d|Nε|/δ0)

mt

)
≤ cmax

(√ log(d(1 + 2/ε)d/δ0)

mt
,

log(d(1 + 2/ε)d/δ0)

mt

)
, ∀v ∈ Nε (28)

Further, ∃ z ∈ Nε s.t. ‖z′ − z‖2 ≤ ε. This implies that setting ε← 1/4 and c← 2c gives:

‖Ez′‖∞ ≤ ‖E(z− z′)‖∞ + ‖Ez‖∞
≤ ‖E(z− z′)‖2 + ‖Ez‖∞

≤ c
√
d log(d/δ0)

mt
. (29)

with probability at least 1− δ0. Hence, with probability at least 1− O(δ0), we have that ||E||2 ≤√
d log 9
mt and ||Ez||∞ ≤ c

√
d log(dδ−1

0 )
mt for all z ∈ V . Therefore, let us conditioned on these events in

order to prove the next steps. We will show an upper bound on ‖A−1v‖∞.

‖A−1v‖∞ = ‖(I + E)−1v‖∞

≤
∞∑
j=0

∣∣∣∣Ejv
∣∣∣∣
∞. (30)
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We have with probability at least 1− δ0
‖Epv‖∞ = ‖EEp−1v‖∞

= ‖
(
E‖Ep−1v‖2

)( Ep−1v

‖Ep−1v‖2

)
‖∞

= ‖Ep−1v‖2‖
(
E
)( Ep−1v

‖Ep−1v‖2

)
‖∞

≤ ‖Ep−1v‖2c
√
d log(d/δ0)

mt

≤
(
c

√
d log(1/δ0)

mt

)p−1

c

√
d log(d/δ0)

mt
‖v‖2 (31)

Therefore, if mt = Ω(d log(d/δ0)) by taking a union bound we must have with probability at least
1− δ0,

∞∑
p=1

||Epv||∞ = O
(√d log(d/δ0)

mt

)
||v||2. (32)

Therefore we have w.p. ≥ 1−O(δ0)∣∣∣∣∣∣u(`) − u?
∣∣∣∣∣∣
∞
≤ ||v||∞ + 2c

√
d log(d/δ0)

mt
||v||2. (33)

Plugging the bounds of ||v||∞ and ||v||2 from equation 26 and equation 23 in equation 33, we obtain
that w.p. ≥ 1− δ0)∣∣∣∣∣∣u(`) − u?

∣∣∣∣∣∣
∞

≤ cα(`)

√
log(d/δ0)

mt
+
ζ

t
γ(`) + 2c

√
d log(d/δ0)

mt

(√2ζk

t
γ(`) + 4α(`)

√
d log(d/δ0)

mt

)
=
(ζ
t
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√
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mt

√
2ζk

t

)
γ(`) +

(
c

√
log(d/δ0)

mt
+ 8c

d log(d/δ0)

mt

)
α(`) = β(`) (34)

Lemma 5. After L iterations, for some constant c > 0. we will have with probability 1−O(Lδ0),∣∣∣∣∣∣u(L) − u?
∣∣∣∣∣∣
∞
≤ c32L−1(c3 + c1c2 + c1)L−1Z,∣∣∣∣∣∣b(i,L) − b?(i)
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t + 4

√
d log(dL/δ0)

mt

1− c
√
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mt

,

c3 =
(ζ
t
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√
d log(d/δ0)
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√
2ζk

t

)
+
√
k
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c

√
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Proof. Using Lemma 2 and the fact that α(`) ≤
√
kγ(`), we have for ` ≥ 1

γ(`) ≤ 2β(`−1) +
2c1√
k
τ (`−1) + 2c1γ

(`−1), (35)

τ (`) ≤ c2
√
kγ(`), (36)

β(`) ≤ c3γ(`), (37)

Using equation 36 and equation 37 in equation 35, we get

γ(`) ≤ (2c3 + 2c1c2 + 2c1)γ(`−1)

= 2(c3 + c1c2 + c1)γ(`−1)

≤ . . .
≤ 2`−1(c3 + c1c2 + c1)`−1γ(1)

≤ 2`−1(c3 + c1c2 + c1)`−1
(

2β(0) +
2c1√
k
τ (0) + 2c1γ

(0)
)
, (38)

where in the last step we plug in the value γ(1) ≤ 2β(0) + 2c1√
k
τ (0) + 2c1γ

(0) from equation 35 at
` = 1.

Using equation 38 in equation 37 gives

β(`) ≤ c32`−1(c3 + c1c2 + c1)`−1
(

2β(0) +
2c1√
k
τ (0) + 2c1γ

(0)
)
. (39)

Using equation 38, equation 36 and α(`) ≤
√
kγ(`) further gives:

α(`) ≤
√
k2`−1(c3 + c1c2 + c1)`−1

(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
, (40)

τ (`) ≤ c2
√
k2`−1(c3 + c1c2 + c1)`−1

(
2β(0) +

2c1√
k
τ (0) + 2c1γ

(0)
)
. (41)

equation 38, equation 39,equation 40 and equation 41 give us the required result.

Theorem (Restatement of Theorem 4). Consider the LRS problem with t linear regression tasks and
samples obtained by equation 1 where rank r = 1, σ = 0, U? ≡ u? ∈ Rd and w?

i ≡ w? ∈ R. Let
model parameters {b?(i)}i∈[t] satisfy assumption A1 with ζ = O(t). Suppose Algorithm 1 with mod-

ified updates (eqns. 9,10,11) is run for L = log
(
ε−1
0

(
maxi∈[t]

∣∣∣∣b?(i)∣∣∣∣∞ + ||u?||∞ +
||u?||2√

k

))
iterations. Then, w.p. ≥ 1−O(δ0), the outputs u(L), {b(i,L)}i∈[t] satisfy:∣∣∣∣∣∣u(L) − w?u?

∣∣∣∣∣∣
∞
≤ O(ε0) and

∣∣∣∣∣∣b(i,L) − b?(i)
∣∣∣∣∣∣
∞
≤ O(ε0) for all i ∈ [t]. (42)

provided the total number of samples satisfy

m = Ω̃(k), mt = Ω̃(d
√
k) and mt2 = Ω̃(ζkd).

Proof. In order to map 12 to the statement of Theorem 4 and the general problem statement in 1,
recall that we can immediately write w? ← ||u?||2 and u? ← u?

||u?||2
(since u? in the statement

of Theorem 4 is unit-norm). For the simplicity of notation, we had subsumed w? within ||u?||2.
Therefore, we directly use Lemma 5 to prove our theorem where the result is stated after mapping
back to the setting in 12 and the Theorem statement.

C ALGORITHM AND PROOF OF THEOREM 1 (PARAMETER RECOVERY)

Assumption 3 (A3). We assume that ||U?||2,∞ ≤
√
ν?/k for some constant ν? > 0.
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Algorithm 4 AMHT-LRS (Alternating Minimization for LRS in (2))

Require: Data {(x(i)
j ∈ Rd, y(i)

j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B,∣∣∣∣∆(U+(0),U?)
∣∣∣∣
F
≤ B, maxi ‖b(i,0) − b?(i)‖∞ ≤ γ(0), Parameters ε > 0 and A.

1: for ` = 1, 2, . . . do
2: Set T (`) = Ω

(
` log

(
γ(`−1)

ε

))
3: for i = 1, 2, . . . , t do
4: b(i,`) ← OptimizeSparseVector((X(i),y(i)),v = U+(`−1)w(i,`−1), α = O

(
c`−1
4

B√
k

+

A
)
, β = O(c`−1

5 B + A), γ = γ(`−1) + A,T = T (`))

{Use a fresh batch of data samples; c4, c5 are suitable constants}1

5: w(i,`) =
(

(X(i)U+(`−1))T(X(i)U+(`−1))
)−1(

(X(i)U+(`−1))T(y(i)−X(i)b(i,`))
)

{Use
a fresh batch of data samples}

6: end for
7: Set A :=

∑
i∈[t]

(
w(i,`)(w(i,`))T⊗

(∑m
j=1 x

(i)
j (x

(i)
j )T

))
and V :=

∑
i∈[t](X

(i))T
(
y(i)−

b(i,`)
)

(w(i,`))T {Use a fresh batch of data samples}

8: Compute U(`) = vec−1
d×r(A

−1vec(V)) and U+(`) ← QR(U(`)) {U(`) = U+(`)R}
9: γ(`) ← (c3)`−1εB + A for a suitable constant c3 < 1.

10: end for
11: Return w(`), U+(`) and {b(i,`)}i∈[t].

Algorithm 5 DP-AMHT-LRS ( Private Alternating Minimization for LRS in (2))

Require: Data {(x(i)
j ∈ Rd, y(i)

j ∈ R)}mj=1 for all i ∈ [t], column sparsity k of B,∣∣∣∣∆(U+(0),U?)
∣∣∣∣
F
≤ B, maxi ‖b(i,0) − b?(i)‖∞ ≤ γ(0), Parameters ε > 0 and A.

1: for ` = 1, 2, . . . do
2: Set T (`) = Ω

(
` log

(
γ(`−1)

ε

))
3: for i = 1, 2, . . . , t do
4: b(i,`) ← OptimizeSparseVector((X(i),y(i)),v = U+(`−1)w(i,`−1), α = O

(
c`−1
4

B√
k

+

A
)
, β = O(c`−1

5 B + A), γ = γ(`−1) + A,T = T (`)) for suitable constants c4, c5

5: w(i,`) =
(

(X(i)U+(`−1))T(X(i)U+(`−1))
)−1(

(X(i)U+(`−1))T(y(i) −X(i)b(i,`))
)

6: end for
7: ∀i, j : x̂

(i)
j ← clipA1

(
x

(i)
j

)
, ŷ(i)

j ← clipA2

(
y

(i)
j

)
, ̂

(x
(i)
j )Tb(i,`) ← clipA3

(
(x

(i)
j )Tb(i,`)

)
and ŵ(i,`) ← clipAw

(
w(i,`)

)
8: A := 1

mt

(∑
i∈[t]

(
ŵ(i,`)(ŵ(i,`))T ⊗

(∑m
j=1 x̂

(i)
j (x̂

(i)
j )T

))
+ N1

)
9: V := 1

mt

(∑
i∈[t]

∑
j∈[m] x̂

(i)
j

(
ŷ

(i)
j − (

̂
x

(i)
j )Tb(i,`)

)
(ŵ(i,`))T + N2

)
10: U(`) = vec−1

d×r(A
−1vec(V))

11: U+(`) ← QR(U(`)) {U(`) = U+(`)R}
12: γ(`) ← (c3)`−1εB + A for a suitable constant c3 < 1.
13: end for
14: Return w(`), U+(`) and {b(i,`)}i∈[t].

Note that Assumption A3 is weaker than Assumption A2 where ||U?||2,∞ ≤
√
µ?/d provided

k ≤ dν?

µ? . We will use Assumption A3 in place of A2 for simplicity of exposition and for sharper
guarantees as well. Recall that in the general setting described in eq. 1, we obtain samples that are
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generated according to the following process:

x
(i)
j ∼ N (0, Id) and y(i)

j | x
(i)
j = 〈x(i)

j ,U?w?(i) + b?(i)〉+ z
(i)
j for all i ∈ [t], j ∈ [m], (43)

where each z(i)
j ∼ N (0, σ2) denotes the independent measurement noise with known variance σ2.

For each task i ∈ [t], we will denote the noise vector to be z(i) such that its jth co-ordinate is z
(i)
j .

Further, with some abuse of notation we will denote:

• λj ≡ λj
(
r
t (W

(`))TW(`)
)

, λ?j = λj
(
r
t (W

?)TW?
)
≡ λj

(
r
t (W

?)TW?
)
∀ j ∈ [r],

• µ ≡ µ(`) and µ? for the incoherence factors for W(`) and W? respectively,
• ν ≡ ν(`) for the incoherence factor of U+(`).

We will now prove Theorem 1 via an inductive argument. We will start with the base case.

C.1 BASE CASE

We initialize W(0) = 0 and recall
∣∣∣∣(I−U?(U?)T)U+(0)

∣∣∣∣
F

= O
(√

λ?r
λ?1

)
,
∣∣∣∣U+(0)

∣∣∣∣ ≤ √ν(0)

k

where ν(0) is an appropriate constant less than 1. We use Lemma 13 that is proved later in its full
generality. We have by using Lemma 13 :∣∣∣∣∣∣b(i,1) − b?(i)

∣∣∣∣∣∣
2
≤ 2ϕ(i) + ε and

∣∣∣∣∣∣b(i,1) − b?(i)
∣∣∣∣∣∣
∞
≤ 1√

k

(
2ϕ(i) + ε

)
with probability at least 1− T (`)δ, where ϕ(i) is an upper-bound on ϕ̂(i) s.t.

ϕ̂(i) = 2
(√

k‖U?w?(i)‖∞ + c1‖U?w?(i)‖2 + σ

√
k log(dδ−1)

m

)
≤ 2
(√

k‖U?‖2,∞‖w?(i)‖2 + c1‖w?(i)‖2 + σ

√
k log(dδ−1)

m

)
≤ 2
(√

ν? + c1

)
‖w?(i)‖2 + 2σ

√
k log(dδ−1)

m

Choosing ε = 4
(√

ν? + c1

)
gives us the required expression for ` = 0. Hence, we have that for

c′ = O
(

1
B
U(0)

λ?1
λ?r

)
, we will have that

∣∣∣∣∣∣b(i,0) − b?(i)
∣∣∣∣∣∣ ≤ c′max(ε,

∣∣∣∣∣∣w?(i)
∣∣∣∣∣∣

2
)BU(0)

√
λ?r
λ?1

+ 4σ

√
k log(dδ−1)

m
(44)

∣∣∣∣∣∣b(i,0) − b?(i)
∣∣∣∣∣∣ ≤ c′max(ε,

∣∣∣∣∣∣w?(i)
∣∣∣∣∣∣

2
)BU(0)

√
λ?r
kλ?1

+ 4σ

√
k log(dδ−1)

m
(45)

C.2 INDUCTIVE STEP

We will begin with the inductive assumption. Note that these assumptions are true in the base case as
well due to our initialization and optimizing the task-specific sparse vector. Let

Λ = O
(√

λ?rµ
?
(
σ2r
mtλ?r

+ σ1r
3/2

mtλ?r

√
rd log rd+ σ

√
r3dµ? log2(rδ−1)

mtλ?r

)
+ σ

(√
r3 log2(rδ−1)

mλ?r

)
+
√

k log(dδ−1)
m

))
Λ′ = O

( Λ√
µ?λ?r

)
.
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Assumption 4 (Inductive Assumption). At the beginning of the `th iteration, we will use
q(`−1),Bu+(`−1) to describe the following upper bounds on the quantities of interest:

1) 1/2 < λmin(Q(`−1)) ≤ λmax(Q(`−1)) < 1, where Q(`−1) := 〈(U?)TU+(`−1)〉 (46)

2) ‖∆(U+(`−1),U?)‖F = ‖(I−U?(U?)T)U+(`−1)‖F = ‖U+(`−1) −U?Q(`−1)‖F

≤ BU(`−1)

√
λ?r
λ?1

+ Λ′, (47)

3) ‖b(i,`) − b?(i)‖2 ≤ c′‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2

≤ c′max{ε, ‖w?(i)‖2}BU(`−1)

√
λ?r
λ?1

+ Λ, (48)

4) ‖b(i,`) − b?(i)‖∞ ≤ c′‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2/
√
k

≤ c′max{ε, ‖w?(i)‖2}BU(`−1)

√
λ?r
λ?1k

+
Λ√
k
, (49)

5) ‖U+(`−1)‖2,∞ ≤
√
ν(`−1)/k, (50)

where ν(`−1) < 1
181c , c′ > 0 and Λ′ < 1/1000. Note that Λ,Λ′ are fixed and do not change with

iterations.

Note that the base case satisfies the inductive assumption for our problem. Let us denote h(i,`) ,
w(i,`) − (Q(`−1))−1w?(i) and and (H(`))T =

[
h(1,`) h(2,`) . . . h(t,`)

]
Rr×t .

Lemma 6. For some constant c > 0 and for any iteration indexed by ` > 0, we have

‖h(i,`)‖2 ≤
1

1− c
√

r log(1/δ0)
m

{
‖U+(`−1) −U?Q(`−1)‖F‖(Q(`−1))−1‖‖w?(i)‖2·

(
‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
+ ‖b?(i) − b(i,`)‖2

(√
k‖U+(`−1)‖2,∞ + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
+ σ

√
r log2(rδ−1)

m

}
,

‖H(`)‖F ≤
1

1− c
√

r log(1/δ0)
m

·
{
‖U+(`−1) −U?Q(`−1)‖F‖(Q(`−1))−1‖

√
t

r
λ?1·

(
‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U(`−1)‖F

)
+
√
kζ‖U?‖F‖b?(i) − b(i,`)‖∞ +

√√√√∑
i∈[t]

(
c‖b?(i) − b(i,`)‖2

√
log(r/δ0)

m
‖U+(`−1)‖F

)2

+ σ

√
rt log2(rδ−1)

m

}
with probability at least 1− δ0, where h(i,`) = w(i,`) − (Q(`−1))−1w?(i).

Proof. According to the update step equation 5, we have

w(i,`) − (Q(`−1))−1w?(i) =
( (X(i)U+(`−1))T(X(i)U+(`−1))

m

)−1

·( (X(i)U+(`−1))T(y(i) −X(i)b(i,`))

m

)
− (Q(`−1))−1w?(i)
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⇐⇒ h(i,`)

:=
( (X(i)U+(`−1))T(X(i)U+(`−1))

m

)−1

︸ ︷︷ ︸
A

·

( (X(i)U+(`−1))T(y(i) −X(i)b(i,`))

m
− (X(i)U+(`−1))T(X(i)U+(`−1))(Q(`−1))−1w?(i)

m

)
︸ ︷︷ ︸

z

.

(51)

Therefore,

‖h(i,`)‖∞ ≤ ‖A‖‖z‖∞ and ‖h(i,`)‖2 ≤ ‖A‖‖z‖2. (52)

We will analyse the terms A and z separately.

Analysis of A:

Note that:

A−1 =
1

m
(X(i)U+(`−1))T(X(i)U+(`−1))

=
1

m
(U+(`−1))T(X(i))TX(i)U+(`−1)

=
1

m
(U+(`−1))T

(∑
j

x
(i)
j (x

(i)
j )T

)
U+(`−1)

=
1

m

∑
j

(U+(`−1))Tx
(i)
j (x

(i)
j )TU+(`−1). (53)

Now, let V , {v ∈ Rr|‖v‖ = 1}. Then for ε ≤ 1, there exists an ε-net, Nε ⊂ V , of size (1 + 2/ε)r

w.r.t the Euclidean norm, i.e. ∀ v ∈ V , ∃ v′ ∈ Nε s.t. ‖v − v′‖2 ≤ ε. Then for any v ∈ Nε,

vT
( 1

m

∑
j

(U+(`−1))Tx
(i)
j (x

(i)
j )TU+(`−1)

)
v

=
1

m

∑
j

(
vT(U+(`−1))T

)
x

(i)
j (x

(i)
j )T

(
U+(`−1)v

)
=

1

m

∑
j

(
U+(`−1))v

)T
x

(i)
j (x

(i)
j )T

(
U+(`−1)v

)
. (54)

Further, note that(
U+(`−1)v

)T(
U+(`−1)v

)
= Tr

((
U+(`−1)v

)T(
U+(`−1)v

))
= Tr

(
vT
(

(U+(`−1))TU+(`−1)
)
v
)
. (55)

Using equation 54 and equation 55 in Lemma 17 with a = b = U+(`−1)v gives∣∣∣∣∣∣vT
( 1

m

∑
j

(U+(`−1))Tx
(i)
j (x

(i)
j )TU+(`−1) − (U+(`−1))TU+(`−1)

))
v

∣∣∣∣∣∣
≤ c‖U+(`−1)v‖22 max

(√ log(1/δ0)

m
,

log(1/δ0)

m

)
=⇒ ‖vTEv‖ ≤ c‖U+(`−1)v‖22 max

(√ log(|Nε|/δ0)

m
,

log(|Nε|/δ0)

m

)
≤ c‖U+(`−1)v‖22 max

(√ log((1 + 2/ε)r/δ0)

m
,

log((1 + 2/ε)r/δ0)

m

)
∀v ∈ Nε (56)
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where E , 1
m

∑
j(U

+(`−1))Tx
(i)
j (x

(i)
j )TU+(`−1) − (U+(`−1))TU+(`−1). Since E is symmetric,

therefore ‖E‖ = (v′)TEv′ where v′ ∈ V is the largest eigenvector of E. Further, ∃ v ∈ Nε s.t.
‖v′ − v‖ ≤ ε. This implies

‖E‖ = (v′)TEv′ = (v′ − v)TEv + (v′)TE(v′ − v) + vTEv

≤ ‖v′ − v‖‖E‖‖v‖+ ‖v′‖‖E‖‖v′ − v‖+ vTEv

≤ 2ε‖E‖+ vTEv

=⇒ ‖E‖ ≤ vTEv

1− 2ε
. (57)

Using equation 56 and equation 57 and setting ε← 1/4 and c← 2c
√

log(9) then gives:

‖E‖ ≤ c‖U+(`−1)v‖22 max

√
r log(1/δ0)

m
(58)

Using equation 58 in equation 53 then gives

‖A−1‖ ≥ ‖U+(`−1)v‖22
(

1− c
√
r log(1/δ0)

m

)
≥ λmin

(
(U+(`−1))TU+(`−1)

)(
1− c

√
r log(1/δ0)

m

)
=⇒ ‖A‖ ≤ 1

λmin

(
(U+(`−1))TU+(`−1)

)(
1− c

√
r log(1/δ0)

m

)
=

1

1− c
√

r log(1/δ0)
m

(59)

since (U+(`−1))TU+(`−1) = I.

Analysis of z:

Similarly, we have

z =
1

m
(X(i)U+(`−1))T(y(i) −X(i)b(i,`))− 1

m
(X(i)U+(`−1))T(X(i)U+(`−1))(Q(`−1))−1w?(i)

=
1

m
(U+(`−1))T(X(i))TX(i)(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)︸ ︷︷ ︸

:=d
(i,`)
1

+
1

m
(U+(`−1))T(X(i))TX(i)(b?(i) − b(i,`))︸ ︷︷ ︸

:=d
(i,`)
2

+
1

m
(U+(`−1))T(X(i))Tz(i)︸ ︷︷ ︸

d
(i,`)
3

.

Analysis of d
(i,`)
3 :

Let us condition on the vector z(i). In that case (X(i))Tz(i) is a d× 1 vector, each of whose entry
is generated independently according to N (0,

∣∣∣∣z(i)
∣∣∣∣2

2
). Therefore, if we consider any vector v

satisfying ||v||2 = 1, we have

vT(X(i))Tz(i) ∼ N (0,
∣∣∣∣∣∣z(i)

∣∣∣∣∣∣2
2
)

and therefore, with probability 1− δ, we must have∣∣∣∣∣∣∣∣ 1

m
(U+(`−1))T(X(i))Tz(i)

∣∣∣∣∣∣∣∣
2

≤ σ

√
r log2(rδ−1)

m
.
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Analysis of d
(i,`)
1 :

d
(i,`)
1 =

1

m
(U+(`−1))T(X(i))TX(i)(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)

= (U+(`−1))T
( 1

m
(X(i))TX(i) − I

)
(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)︸ ︷︷ ︸

d
(i,`)
1,1

+ (U+(`−1))T(U?Q(`−1))−U+(`−1))(Q(`−1))−1w?(i)︸ ︷︷ ︸
d

(i,`)
1,2

. (60)

Note that

E
[
d

(i,`)
1,1

]
= E

[
(U+(`−1))T

( 1

m
(X(i))TX(i) − I

)
(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)

]
= 0.

Further,

(z
(i,`)
1,1 )k =

1

m

∑
j

(u(k,`−1))Tx
(i)
j (x

(i)
j )T(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)

− (u(k,`−1))T(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i).

Using Lemma 17 in the above with a = u(k,`−1) and b = (U?Q−U+(`−1))Q−1w?(i), we get

(z
(i,`)
1,1 )k ≤ c

√
log(1/δ0)

m
‖u(k,`−1)‖2‖(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)‖2. (61)

Taking the Union Bound overall entries k ∈ [r], we have

‖d(i,`)
1,1 ‖2 =

√∑
k∈[r]

|(z(i,`)
1,1 )k|2

≤ c
√

log(r/δ0)

m

√∑
k∈[r]

‖u(k,`−1)‖22 · ‖(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)‖2

= c

√
log(r/δ0)

m
‖U+(`−1)‖F‖(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)‖2. (62)

Further,

‖d(i,`)
1,2 ‖2 = ‖(U+(`−1))T(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)‖2

= ‖(U+(`−1))T(I−U?(U?)T)U+(`−1)(Q(`−1))−1w?(i)‖2
= ‖(U+(`−1))T(I−U?(U?)T)2U+(`−1)(Q(`−1))−1w?(i)‖2

=
∥∥∥((U+(`−1))T − (U+(`−1))TU?(U?)T

)
·(

U+(`−1) −U?(U?)TU+(`−1)
)

(Q(`−1))−1w?(i)
∥∥∥

2

≤ ‖U+(`−1) −U?(U?)TU+(`−1)‖2F‖(U(`−1) −U?(U?)TU+(`−1))(Q(`−1))−1w?(i)‖2
= ‖U+(`−1) −U?Q(`−1)‖F‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2
≤ ‖U+(`−1) −U?Q(`−1)‖2F‖(Q(`−1))−1‖‖w?(i)‖2. (63)

We will also use the sharper bound below later for finding the Frobenius norm of H(`)

‖d(i,`)
1,2 ‖2 = ‖(U+(`−1))T − (U+(`−1))TU?(U?)T‖F‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2.

(64)
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Using equation 62 and equation 63 in equation 60, we have

‖d(i,`)
1 ‖2 ≤ c

√
log(r/δ0)

m
‖U+(`−1)‖F‖(U?Q(`−1) −U+(`−1))(Q(`−1))−1w?(i)‖2

+ ‖U+(`−1) −U?Q(`−1)‖2F‖(Q(`−1))−1‖‖w?(i)‖2
≤ ‖U+(`−1) −U?Q(`−1)‖F‖(Q(`−1))−1‖‖w?(i)‖2·(

‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
(65)

As before, using equation 62 and equation 64, we have

‖d(i,`)
1 ‖2 ≤ ‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2·(

‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U(`−1)‖F

)
. (66)

Analysis of d
(i,`)
2 :

Note that

d
(i,`)
2 =

1

m
(U+(`−1))T(X(i))TX(i)(b?(i) − b(i,`))

= (U+(`−1))T
( 1

m
(X(i))TX(i) − I

)
(b?(i) − b(i,`))︸ ︷︷ ︸

d
(i,`)
2,1

+ (U+(`−1))T(b?(i) − b(i,`))︸ ︷︷ ︸
d

(i,`)
2,2

and E
[
d

(i,`)
2,1

]
= E

[
(U+(`−1))T

( 1

m
(X(i))TX(i) − I

)
(b?(i) − b(i,`))

]
= 0.

Further,

(z
(i,`)
2,1 )k =

1

m

∑
j

(u(k,`−1))Tx
(i)
j (x

(i)
j )T(b?(i) − b(i,`))− (u(k,`−1))T(b?(i) − b(i,`)).

Using Lemma 17 in the above with a = u(k,`−1) and b = (b?(i) − b(i,`)), we get

(z
(i,`)
2,1 )k ≤ c

√
log(1/δ0)

m
‖u(k,`−1)‖2‖b?(i) − b(i,`)‖2. (67)

Taking the Union Bound overall entries k ∈ [r], using the above we have

‖d(i,`)
2,1 ‖2 =

√∑
k∈[r]

|(z(i,`)
2,1 )k|2

≤ c
√

log(r/δ0)

m

√∑
k∈[r]

‖u(k,`−1)‖22 · ‖b?(i) − b(i,`)‖2

= c

√
log(r/δ0)

m
‖U+(`−1)‖F‖b?(i) − b(i,`)‖2. (68)

Further,

‖d(i,`)
2,2 ‖2 = ‖(U+(`−1))T(b?(i) − b(i,`))‖2

= ‖
(

(U+(`−1))T(b?(i) − b(i,`))
)
supp(b?(i))

‖2

≤ ‖U+(`−1)

supp(b?(i))
‖2‖(b?(i) − b(i,`))supp(b?(i))‖2

≤
√
k‖U+(`−1)‖2,∞‖b?(i) − b(i,`)‖2. (69)

Using equation 68 and equation 69 we have

‖d(i,`)
2 ‖2 ≤ ‖b?(i) − b(i,`)‖2

(√
k‖U+(`−1)‖2,∞ + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
. (70)
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Using equation 59, equation 65 and equation 70 we have

‖h(i,`)‖2 ≤
1

1− c
√

r log(1/δ0)
m

·
{
‖U+(`−1) −U?Q(`−1)‖F‖(Q(`−1))−1‖‖w?(i)‖2·

(
‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U(`−1)‖F

)
+ ‖b?(i) − b(i,`)‖2

(√
k‖U+(`−1)‖2,∞ + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
+ σ

√
r log2(rδ−1)

m

}
.

(71)

Using equation 59, equation 66 and equation 70, we also have the sharper bound

‖h(i,`)‖2 ≤
1

1− c
√

r log(1/δ0)
m

{
‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖2·

(
‖U+(`−1) −U?Q(`−1)‖F + c

√
log(r/δ0)

m
‖U(`−1)‖F

)
+ ‖b?(i) − b(i,`)‖2

(√
k‖U+(`−1)‖2,∞ + c

√
log(r/δ0)

m
‖U+(`−1)‖F

)
+ σ

√
r log2(rδ−1)

m

}
.

(72)

Further note that
∑
i∈[t] ‖(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)‖22:

=
∑
i∈[t]

Tr
((

(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)
)T
·

(
(U+(`−1) −U?Q(`−1))(Q(`−1))−1w?(i)

))
=
∑
i∈[t]

Tr
(

(w?(i))T
(

(U+(`−1) −U?Q(`−1))(Q(`−1))−1
)T
·

(
(U+(`−1) −U?Q(`−1))(Q(`−1))−1

)
w?(i)

)
= Tr

((
U+(`−1) −U?Q(`−1))(Q(`−1))−1

)T
·(
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Proof. The proof follows from plugging the various constant bounds of the lemma statement and
Inductive Assumption 4 in the expressions of Lemma 6:
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Similarly using the Inductive Assumption expressions from 4, we also have
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Corollary 2. If Assumption 4 and Corollary 1 hold, and Λ′ = O
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Proof. Using Triangle Inequality, Assumption 4 and Corollary 1, we have
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s.t. A−1 = E [A] + E where E is the error matrix due to perturbation. Then for vectors a,b ∈ Rrd,
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Lemma 10. For some constant c > 0 and for any iteration indexed by ` > 0, we have
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Proof. Analysis of ‖U(`) −U?Q(`−1)‖F:
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where

N1 ∼ σ1MNrd×rd(0, Ird×rd, Ird×rd),
N2 ∼ σ2MNd×r(0, Id×d, Ir×r)
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whereMN denotes the Matrix Normal Distribution. Note that equation 103 gives:
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Now, We will analyse the two multiplicands separately.
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Using equation 109, equation 118, equation 113, equation 114, equation 115 and equation 106 in
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Analysis of
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We can compute the above following similar lines as before.
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Analysis of ‖∆(U+(`),U?)‖F:
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Proof. The proof follows from plugging the various constant bounds from the corollary statement
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Using Assumption 4 for b(i,`) and Q(`−1) terms, the fact that U? is orthonormal and eigenvalue
ratios and incoherence bounds for H(`) and W(`) from Corollaries 1 and 2, the above becomes,
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where J1 denotes the terms which arise from analysing the problem in the noiseless setting and J2

denotes the contribution of noise terms (σ1, σ2, σ,Λ,Λ
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Rearranging the terms in above gives
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Substituting mt = Ω̃(dr2µ?(1 + 1
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Using equation 136, equation 139 in equation 135 gives us the required norm bound for ‖U(`) −
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Using the stated bounds on
√

r3d log(1/δ0)
mt , σ1

mtr

(
2
√
rd + 4

√
log rd

)
, Corollary 2 as well as H(`)

and W(`) bounds from Corollaries 1 and 2 in the above, we have

≤ ‖R−1‖
{ O(1)

1−O(1)

1

λ?r
· 2

t
O
((BU(`−1)

λ?r
λ?1

√
t
rλ

?
1

√
rµ?

+

√
t

r
λ?r

Λ′√
rµ?

+
1√
rµ?

√
t

r
Λ + σ

√
r log2(rδ−1)

m

)√
tµ?λ?r

)
+

1

1−O(1)

r

λr
·

{√4ζ

t
· O(

√
µ?λ?r)

(
c′max{ε, ‖w?(i)‖2}BU(`−1)

√
λ?r
λ?1

+ Λ
)

+ 4

√
d log(rd/δ0)

mt
· O(

√
µ?λ?r) · O

(max{ε, ‖w?(i)‖2}BU(`−1)

√
λ?r
λ?1√

rµ?
+

Λ′‖w?(i)‖2√
rµ?

+
Λ√
rµ?

+ σ

√
r log2(rδ−1)

m
+ max{ε, ‖w?(i)‖2}BU(`−1)

√
λ?r
λ?1

+ Λ
)

+
σ2

mt
6
√
rd log(rd) +

σ1

mt

(
2
√
rd+ 4

√
log rd

)√
r +

2σ
√
dµ?λ?r log(2rdmt/δ0)

√
mt

}}
(141)

= J ′1 + J ′2 (142)

where as before, J ′1 denotes the terms which arise from analysing the problem in the noiseless setting
and J ′2 denotes the contribution of noise terms (σ1, σ2, σ,Λ,Λ
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Rearranging the terms in above gives
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Using equation 144 and equation 147 in equation 142 gives us the required bound for∣∣∣∣∆(U+(`),U?)
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Using the bounds from Corollary 1 and 3 and Inductive Assumption 4 in the above we get,
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Rearranging the terms in the above gives
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Bounds equation 151 and equation 153 complete the proof.
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w.p. 1−O(δ0)
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each zi ∈ Rd. Then for s-th standard basis vector es ∈ Rrd, we have using Lemma 9
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with probability at least 1− δ0 where we use equation 112, equation 113 and the fact that ‖MN‖2 ≤
‖M‖2‖N‖2. Hence, with probability at least 1 − O(δ0), we have ||CE||2 and ||CEz||∞ for all
z ∈ Z . Therefore, let us condition on these events in order to prove the next steps. We will now show
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We have with probability at least 1− δ0,
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where in equation 160 we use equation 158 and in equation 161 the fact that mt =
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Using the above and equation 156 in equation 159, we have
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Similarly, we also have the following bound ‖U(`)‖2,∞ =
∣∣∣∣∣∣vec−1

(
A−1vec

(
V′ + N2

mt + Ξ
))∣∣∣∣∣∣

2,∞

≤
∣∣∣∣∣∣∣∣vec−1

(
Cvec

(
V′ +

N2

mt
+ Ξ

))∣∣∣∣∣∣∣∣
2,∞

+

√
r
(
c
√∑

i∈[t]

∑
j∈[m] ‖w(i,`)‖42

√
rd log(rd/δ0)

m2t2 + σ1

mt

(
2
√
rd+ 2

√
2rd log(2rd/δ0)

))
1
rλr

(
r
t (W

(`))TW(`)
) ·

∣∣∣∣∣∣∣∣V′ + N2

mt
+ Ξ

∣∣∣∣∣∣∣∣
F

. (164)

Now Cvec(V′)

=
(1

t
(W(`))TW(`) ⊗ I

)−1

vec
( 1

mt

∑
i∈[t]

(X(i))TX(i)
(
U?w?(i) + (b?(i) − b(i,`))

)
(w(i,`))T

)
=
((1

t
(W(`))TW(`)

)−1

⊗ I
)
·

1

mt

∑
i∈[t]

(
vec
(

(X(i))TX(i)U?w?(i)(w(i,`))T
)

+ vec
(

(X(i))TX(i)(b?(i) − b(i,`))(w(i,`))T
))

=
((1

t
(W(`))TW(`)

)−1

⊗ I
)
·

1

mt

∑
i∈[t]

((
w?(i)(w(i,`))T ⊗ (X(i))TX(i)

)
vec(U?)

+ vec
(

(X(i))TX(i)(b?(i) − b(i,`))(w(i,`))T
))

=
1

mt

∑
i∈[t]

((1

t
(W(`))TW(`)

)−1

⊗ I
)
·
(
w?(i)(w(i,`))T ⊗ (X(i))TX(i)

)
vec(U?)

+
1

mt

∑
i∈[t]

((1

t
(W(`))TW(`)

)−1

⊗ I
)
vec
(

(X(i))TX(i)(b?(i) − b(i,`))(w(i,`))T
)

=
1

mt

∑
i∈[t]

((1

t
(W(`))TW(`)

)−1

w?(i)(w(i,`))T ⊗ (X(i))TX(i)
)
vec(U?)

︸ ︷︷ ︸
vec(V′1)

+
1

mt

∑
i∈[t]

((1

t
(W(`))TW(`)

)−1

⊗ I
)
vec
(

(X(i))TX(i)(b?(i) − b(i,`))(w(i,`))T
)

︸ ︷︷ ︸
vec(V′2)

. (165)

Analysis for vec(V′1):
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Thus, using equation 171 and equation 172 in Lemma 16 we have
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where in the last step we use equation 173. Now note that as per the notation discussed above,
s = (q − 1)d + p lies in the q-th (= q?) segment. Since q ∈ [r], therefore summation over s is
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Therefore, using equation 170 in the above, we have
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Analysis for vec(V′2):
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Thus, using equation 181 and equation 182 in Lemma 16 we have
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Therefore, using equation 180 in the above, we have ‖V′2‖2,∞
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Analysis for Cvec
(
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)
:
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Note that:
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Analysis for Cvec(Ξ):
Note that:
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Combining V′1, V′2, V′3 and V′ξ from equation 175, equation 185, equation 186 and equation 187
respectively in equation 165, we have:
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Therefore, using equation 188, equation 109 and equation 115 in equation 164, we have ‖U(`)‖2,∞
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Calculation for ‖U(`) −U?Q(`−1)‖2,∞:

The analysis will follow along similar lines as in the previous section except that we will now have:
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Now, note that:
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while equation 185, equation 186 and equation 187 remain the same

‖V2‖2,∞ ≤ ζ(max
i
‖b?(i) − b(i,`)‖∞‖w(i,`)‖2)‖

(
(W(`))TW(`)

)−1

‖2

c‖
(1

t
(W(`))TW(`)

)−1

‖F‖b?(i) − b(i,`)‖2‖w(i,`)‖2

√
log(1/δ0)

mt
. (194)

‖V3‖2,∞ ≤
2σ2

mt

√
log(rd/δ0) · r

√
r

λr

(
r
t (W

(`))TW(`)
) , (195)

‖Vξ‖2,∞ ≤
2σ
√
µ?λ?r log(2rdmt/δ0)

√
mt

r

λr

(
r
t (W

(`))TW(`)
) (196)

We also have the additional term V4 s.t.

C · N1

mt
vec(U?Q(`−1)) =

(1

t
(W(`))TW(`) ⊗ I

)−1 N1

mt
vec(U?Q(`−1)) := vec(V4) (197)

⇐⇒ V4 = I · vec−1
(N1

mt
vec(U?Q(`−1))

)
·
(1

t
(W(`))TW(`)

)−T
=⇒ ‖V4‖2,∞ ≤

∣∣∣∣∣∣∣∣vec−1
(N1

mt
vec(U?Q(`−1))

)
·
(1

t
(W(`))TW(`)

)−T∣∣∣∣∣∣∣∣
2,∞

≤
∣∣∣∣∣∣∣∣vec−1

(N1

mt
vec(U?Q(`−1))

)∣∣∣∣∣∣∣∣
2,∞

∣∣∣∣∣∣∣∣(1

t
(W(`))TW(`)

)−T∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣vec−1

(N1

mt
vec(U?Q(`−1))

)∣∣∣∣∣∣∣∣
2,∞

r

λr

(
r
tW

(`))TW(`)
) . (198)

Now, N1 ∼ σ1MN (0, Ird×rd, Ird×rd) =⇒ N1
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Using equation 200 in equation 199 and taking a Union Bound ∀ p, q, we have w.p. ≥ 1− δ0
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equation 189 and equation 204 give us the required result.
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Proof. From the Lemma statement we have,
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As done in the analysis for Corollary 3, using Assumption 4 to plug in values for b(i,`) and Q(`−1),
the fact that U? is orthonormal and norm and incoherence bounds for H(`) and W(`) from Corollaries
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= J1 + J2 (207)
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where J1 denotes the terms which arise from analysing the problem in the noiseless setting and J2
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Using equation 209 and equation 211 in equation 207 gives us the required bound for ‖U(`)‖2,∞.

Similarly, using Assumption 4 to plug in values for b(i,`) and Q(`−1), the fact that U? is orthonormal
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where as before, J ′1 denotes the terms which arise from analysing the problem in the noiseless setting
and J ′2 denotes the contribution of noise terms (σ1, σ2, σ,Λ,Λ
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Using equation 213 and equation 214 in equation 212 gives us the required bound for ‖U(`−1) −
U?Q(`−1)‖2,∞.
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w.p. ≥ 1− δ. Now, we have
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w.p. ≥ 1− T (`)δ0. Equations equation 223 equation 224 give us the required result. Also, note that
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Corollary 6. Using Corollaries 1, 2, 3, 4 and 5, we have
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Proof. Using Corollary 5 we have ‖U(`)w(i,`) −U?w?(i)‖∞
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Similarly, Using Corollaries 3 and 4 we have ‖U(`)w(i,`) −U?w?(i)‖2

= ‖U(`)w(i,`) −U(`)(Q(`−1))−1w?(i) + U(`)(Q(`−1))−1w?(i) −U?w?(i)‖2
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Using equation 226 and equation 227, we have:

ϕ(i) = 2
(√

kα(`−1) + c1β
(`−1) + σ

√
k log(dδ−1)

m

)
(228)
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Using equation 229 in Lemma 13 and setting ε′ ← O
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Recall that from Corollaries 3 and 4, we have
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Therefore, it is sufficient to have for sufficiently large constants c̃, ĉ > 0
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such that
∣∣∣∣b(i,`+1) − b?(i)
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Comparing the contribution of noise-deficit terms on both sides for the next iteration, we also get the
value of c’ as
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using sufficiently large m and t to pull down the value of c′′′. Combining with the Base Case we have
c′ = max

(
O(1), O

(
1

B
U(0)

λ?1
λ?r

))
.

Theorem (Restatement of Theorem 3 (Parameter Estimation)). Consider the LRS problem equation 2
with all parametersm, t, ζ obeying the bounds stated in Theorem 1 with ζ = O
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Then, w.p. ≥ 1−O(δ0), the outputs U+(L), {b(i,L)}i∈[t] satisfies:∣∣∣∣∣∣(I−U?(U?)T)U+(L)
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Proof. We will denote the DP noise by σDP > 0. Using standard gaussian concentration in-
equalities, we set A1,A2,A3 and Aw as written in the theorem statement which ensures that
for all i, j, ` in U update of Algorithm, let ‖x(i)

j ‖2 ≤ A1, ‖w(i,`)‖2 ≤ Aw, |y(i)
j | ≤ A2, and

‖(x(i)
j )>b(i,`)‖2 ≤ A3 with probability 1−O( 1

Poly(mtL) ). Setting each entry of N1 independently
according to N

(
0,m2 ·A4

1 ·A4
w · L · σ2

DP

)
(σ2

1 = m2 · A4
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DP) and each entry of N2 is
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DP)

ensures that the algorithm satisfies 1
σDP

2-zCDP and equivalently (ε, δ) Approximate Differential

Privacy if σDP ≥
√

log(1/δ)+ε

ε (Theorem 2).

Using the bounds onm, t,mt, ζ, k in terms of the ground truth model parameters µ?, λ?1, λ
?
r expressed

in the theorem statement, we invoke Corollaries 1, 2, 3, 4, 5 and 6 as well as the Base Case C.1
(` = 1) to show that our Inductive Assumption 4 holds for each iteration of ` and complete out proof
using the Principle of Induction.

Now, note that the error bound guarantees in 4 have two terms in the upper bounds: the first one
(a multiple of BU(`−1) , which stems from analysing the problem in the noiseless setting) decreases
exponentially with the number of iterations the second unchanging one (Λ and Λ′ depends on the
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inherent noise σ and DP noise σDP). Plugging L = log
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σ
√
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in the geometric series

expression, we obtain the guarantees as stated in the main theorem.

Corollary 7 (Restatement of Theorem 1 (Parameter Estimation)). Consider the LRS problem
equation 2 with t linear regression tasks and samples obtained by equation 1. Let model parameters
satisfy assumptions A1, A2. Also, let the row sparsity of B? satisfy ζ = O
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where, the total number of samples satisfies:
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Proof. The proof follows by substituting σDP = 0 (hence σ1, σ2 = 0) in the proof of Theorem 3.

C.3 PROOF OF THEOREM 2

Following along similar lines of proof techniques used for privacy guarantees used in Varshney et al.
(2022), our proof will broadly involve computing the Zero Mean Concentrated Differential Privacy
(zCDP) parameters and then using them to prove the Approximate Differential Privacy. The Update
Step for U(`) without the additive DP Noise is:
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(239)
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U(`) ← vec−1
d×r(A

−1vec(V)). (242)

where clip(,̇)̇ denotes the clipping function. Therefore, the sensitivity of A and V due to samples from
ith-task (w.r.t. the Frobenius norm) is Γ1 = mA2

1A
2
w, and Γ2 = mA1(A2 +A3)Aw respectively. Now,

since each entry of N(1) is independently generated from N
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)
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entry of N(2) is independently generated from N
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steps equation 240 and equation 241 are
(
ρ`,1 =

Γ2
1

2·m2·A4
1·A4

w·L·σ2
DP

= 1
2L·σ2

DP

)
-zCDP and

(
ρ`,2 =

Γ2
2

2·m2·A4
1·A4

w·L·σ2
DP

= 1
2L·σ2

DP

)
-zCDP respectively by virtue of the DP noise standard deviations Bun

& Steinke (2016). Therefore by composition and robustness to post-processing, each iteration step
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is
(
ρ` = ρ`,1 + ρ`,2 = 1

L·σ2
DP

)
-zCDP. By composition of zCDPs, the overall ρ for the algorithm is

given by ρ =
∑L
`=1 ρ` = 1

σ2
DP

.

Recall ρ-zCDP for an algorithm is equivalent to obtaining a (µ, µρ)-Renyi differential privacy
(RDP) Mironov (2017) guarantee. Now, we will optimize for µ ∈ [1,∞) and demonstrate that for
the choice of the noise multiplier σDP mentioned in the theorem statement satisfies (ε, δ)-DP. Our
analysis is similar to that of Theorem 1 of Chien et al. (2021).

Note that (µ, µρ)-(RDP) =⇒ (ε, δ) Approximate Privacy where ε = µρ+ log(1/δ)
µ−1 ∀µ > 1. Also

note that εmin = ρ+ 2
√
ρ log(1/δ) is attained at dε

dµ = 0 =⇒ µ = 1 +
√

log(1/δ)
ρ .

Consider a fixed ε. Since we want to minimize σDP (which scales as 1/
√
ρ), we need to com-

pute the maximum permissable ρ s.t. εmin(ρ) ≤ ε. Since εmin(ρ) is an increasing function
of ρ (thus an increasing function of σDP) and a second order polynomial in
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√
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√
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Since the above value of σDP satisfies (ε, δ)-DP and
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,

choosing σDP ≥
2
√
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ε ensures (ε, δ)-DP.

D ALGORITHM AND PROOF OF THEOREM 1 (GENERALIZATION
GUARANTEES)

Consider a new task for which we get the samples {(xi, yi)}m
′

i=1 i.e. yi = 〈xi,U?w? + b?〉 for all
i ∈ [m′]. Suppose we have an estimate U+ of U? such that (U+)TU+ = I and∣∣∣∣(I−U?(U?)T)U+

∣∣∣∣
F
≤ ρ,
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∣∣∣∣

2,∞ ≤
ρ√
k

and
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∣∣∣∣
2,∞ ≤

√
ν

k

Algorithm 6 AM-NEW TASK

Require: Data {(X ∈ Rm′×d,y ∈ Rm′)}, known bounds ||b?||∞ ≤ C. Set parameter ε > 0
appropriately. Estimate U+ of U? satisfying

∣∣∣∣(I−U?(U?)T)U+
∣∣∣∣
F
≤ ρ. Parameter A.

1: for ` = 1, 2, . . . do
2: Initialize w(0),b(0) = 0. Set φ(0) = 2 since

∣∣∣∣w(0) − (U?)TU+)−1w?
∣∣∣∣

2
≤ φ(0)||w?||2 ≤

2||w?||2. Set γ(0) ≥ ||b?||∞.
3: for i = 1, 2, 3, . . . , t do
4: Set T (`) = Ω

(
` log

(
γ(`−1)

ε

))
.

5: w(`) =
(

(X(i)U+(`−1))T(X(i)U+(`−1))
)−1(

(X(i)U+(`−1))T(y(i) −X(i)b(i,`))
)

{Use
a fresh batch of data samples}

6: b(`) ← OptimizeSparseVector(X,y, α = A + c1φ
(`−1)||w?||2 +

2ρ||w?||2√
k

, β = A +

φ(`−1)||w?||2 +2ρ||w?||2, γ = A+
||w?||2√

k

(
φ(`−1)c′+ ||w?||2ρ(1+c′′)

)
,T = T (`)) {Use

a fresh batch of data samples, constants c1, c′, c′′ set appropriately.}
7: Set Φ(`) ← ||w?||2Φ(`−1)c3 + 2ρ||w?||2

(
1 + c4

)
+ A. {c3, c4 can be made arbitrarily

small by increasing number of samples m′.}
8: end for
9: end for

10: Return w(`) and b(`).
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for some known parameters ν, ρ. Our goal is to recover the vectors w? ∈ Rr and b? ∈ Rd satisfying
||b||0 ≤ k. We will again use an Alternating Minimization algorithm for recovery of w?,b?. In the
`th iteration, with probability at least 1−O(δ/L) for m = Ω(k log(dLδ−1)) we have the following
updates for some constant c > 0, (note that the `th iterates of w?,b? are given by w(`),b(`)).

At the `th iteration, we will denote a known upper bound
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and α(`−1), β(`−1) denote upper bounds on ‖U+w(`−1) −U?w?‖∞, and ‖U+w(`−1) −U?w?‖2
respectively. Furthermore, we will also have that support(b(`) ⊆ support(b?). We denote Q =
(U?)TU+. Using a similar analysis as in Corollary 6, we have:
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Similarly, we have:

‖U(`−1)w(`−1) −U?w?‖2
= ‖U+w(`−1) −U(`−1)Q−1w? + U(`−1)Q−1w? −U?w?‖2
≤ ‖U+w(`−1) −Q−1w?)‖2 + ‖(U(`−1) −U?Q)Q−1w?‖2
≤ ‖U+‖2‖w(`−1) −Q−1w?‖2 + ‖U+ −U?Q‖2‖Q−1w?‖2
≤ ‖w(`−1) −Q−1w?‖2 + 2ρ||w?||2

≤ φ(`−1)||w?||2 + 2ρ||w?||2 + 2σ

√
k log(dδ−1)√

m
+ 2σ

√
r log2(rδ−1)
√
m

:= β(`−1). (244)

Using equation 243 and equation 244, we have:
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Using above in Lemma 6 and setting ε← ϕ(i), we have:∣∣∣∣∣∣b(`) − b?
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with probability at least 1− δ/L. Hence, we get that∣∣∣∣w(`) −Q−1w?
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, we get a decrease along with a bias term. We can have

φ(0) = 2||w?||2 by using w(0) = 0. After L iterations, we will get
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Theorem 5 (Restatement of Theorem 3 (Generalization properties in private setting)). Generalization
error for a new task scales as:
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Proof. We assume that ||w?||2 ≤
√
µ?λ?r due to the incoherence (see Assumption A2). We substitute

ρ to be the guarantee that we had obtained in Theorem 3; hence we immediately obtain our desired
guarantees by using equation 245.

Corollary 8 (Restatement of Theorem 1 (Generalization Properties in non-private setting)). Further-
more, for a new task, Algorithm 6 ensures the following generalization error bound:
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Proof. The proof follows again by substituting σDP = 0 (hence σ1, σ2 = 0) which removes the last
term in the generalization properties in Theorem 3.

E DISCUSSION ON OBTAINING INITIAL ESTIMATES USING METHOD OF
MOMENTS

Overview: Note that Algorithm 1 has local convergence properties as described in Theorem 1. In
practice, typically we use random initialization for U+(0). However, similar to the representation
learning framework Tripuraneni et al. (2021), we can use the Method of Moments to obtain a good
initialization. i.e. when the representation matrix U? is of rank r, we can compute the Singular
Value Decomposition (SVD) of the matrix (mt)−1

∑
i∈[t](y

(i)
j )2x

(i)
j (x

(i)
j )T. This is similar to the

Method of Moments technique used in Tripuraneni et al. (2021) and has been used as an initialization
technique in the AM framework of Thekumparampil et al. (2021) as well. Even in the presence of
additional sparse vectors, the SVD decomposition is robust. Such a phenomenon has been also been
characterized theoretically in the robust PCA setting Netrapalli et al. (2014).

Details for Rank-1: Assume ‖u?‖2 = ‖w?‖2 = 1 and ‖b?(i)‖0 ≤ k for all i ∈ [t]. Moreover, for
some constant µ > 0, we will have ‖u?‖∞ ≤

√
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√
µ/t,maxi∈[t] ‖B‖∞ ≤ µ/
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where B is the matrix whose columns correspond to b?(i)’s. Suppose, we obtain samples (x, y) ∈
Rd×R where each sample is randomly generated from the t data generating models corresponding to
each task. In order to generate the ith sample we first draw a latent variable j ∼U [t] and subsequently
generate the tuple according to the following process:

x(i) | j ∼ N (0, Id) and y(i) | x(i), j ∼ N (〈x(i), w?ju
? + b?(j)〉, σ2) (246)

We look at the quantity y2xxT. Our first result is the following lemma:
Lemma 14. Suppose we obtain samples {(x(i), y(i))} generated according to the model described
in equation 246. In that case we have
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where I denotes the d-dimensional identity matrix.

The proof follows from simple calculations. From the data {(x(i)
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Let us write A = E [A] + 2F where 2F is the error in estimating E [A]. Also, let us denote
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Our goal is to show that any eigenvector of L + F is close to u? in infinity norm. Note that
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Fist, note that
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⊥ is the subspace orthogonal to the vector u?.

First, we will show an upper bound on ||F||∞. Recall that according to the data generating mechanism,
each co-variate x is generated according to N (0, Id) and given the co-variate, the response y | x ∼
N (〈x, w?u? + b?〉, σ2) where w?,b? is uniformly chosen at random from the set {w?j ,b?(j)}j .
Hence, we can bound the magnitude of y as follows: Ey2|x = t−1
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and similarly ||F||2 ≤
√
d||F||∞. Hence ||F||2 ≤ 1/800 provided mt = Ω(dσ2). In that case,

we have ||E||2 ≤ 1/400 provided ζ ≤ c1t and k ≤ c2d for appropriate constants 0 ≤ c1, c2 ≤ 1.
Therefore, λ must be at least 399/400 (Weyl’s inequality) and (〈u?, z〉2 − 1) ≤ 4||E||2 (Davis
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Kahan). Hence, we have the following inequality:
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Lemma 15. Let ei ∈ Rd denote the ith standard basis vector. In that case, we will have
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Proof. We can prove this statement via induction. For p = 1, the statement follows from the
incoherence of u?. Suppose the statement holds for p = k for some k > 1. Under this induction
hypothesis, we are going to show that the statement holds for p = k + 1. We will have∣∣∣∣eT
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mt . Hence,

provided mt = Ω(dσ2), by using Davis Kahan inequality, we obtain the initialization guarantees that
we need for the rank-1 setting (see Theorem 1).

F USEFUL LEMMAS

Lemma 16 (Hanson-Wright lemma). Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard
isotropic Gaussian random vectors of dimension d. Then, for some universal constant c ≥ 0, the
following holds true with a probability of at least 1− δ0∣∣∣∣∣∣ 1
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Lemma 17. Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random
vectors of dimension d. Then, for some universal constant c ≥ 0, the following holds true with a
probability of at least 1− δ0.∣∣∣∣∣∣ 1
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Lemma 18. For three real r-rank matrices, satisfying A−B = C, Weyl’s inequality tells that

σk(A)− σk(B) ≤ ‖C‖

∀ k ∈ [r] where σk(·) is the k-th largest singular value operator.

Lemma 19. Let x(1),x(2), . . . ,x(m) ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random
vectors of dimension d. Then, for some universal constant c ≥ 0, the following holds true with a
probability of at least 1− δ0,
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Lemma 20. Let ai,bi ∈ Rd ∀ i ∈ [t]. Then,

‖
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Lemma 21. For a real matrix A ∈ Rm×n and a real symmetric positive semi-definite (PSD) matrix
B ∈ Rn×n, the following holds true: σ2

min(A)λmin(B) ≤ λmin(ABAT), where σmin(·) and
λmin(·) represents the minimum singular value and minimum eigenvalue operators respectively.

Lemma 22. For any three matrices A,B, and C for which the matrix product ABC is defined,

vec(ABC) = (CT ⊗A)vec(B).

Lemma 23. For a (ν2, α) sub-exponential random variable, we have the following tail bound

P(‖X − E [X] | ≥ t) ≤ e− 1
2 min{t2/ν2,t/α}.
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