
SUNMASK: Appendix and Supplementary Material1

A Generative Co-Creation and Possible Ethical Concerns2

The application areas shown in SUNMASK have clear areas of concern (in terms of ethics), we3

describe them in detail as well as possible mitigation strategies.4

A.1 Music5

A chief concern in generative co-creation as demonstrated by our music sampling, is direct plagiarism6

through the training corpus or indirect plagiarism of outside work. Direct plagiarism has a number of7

mitigation strategies, either with exact matches, approximate dataset matches [10] (note sequences8

across voices, regardless of duration), or secondary tools such as automated copyright matchers. The9

latter category (automated copyright matchers) can also be used for the most difficult plagiarism -10

indirect plagiarism.11

Due to most Western music sharing similar underlying rules and structure, it is possible to accidentally12

stumble upon a copyrighted work without a version of that work ever appearing in the training corpus.13

This goes especially for models trained on foundational scores, for example the underlying harmonic14

rules J.S. Bach followed and popularized underwrite a vast swath of the classical canon. Direct debut15

of any generative co-creation tool should have at least some consideration for tagging or labeling16

possible matches and conflicts, letting creators inspect the relevant matches to decide for themselves17

if there is an issue which warrants modification. Given the complexities of musical copyright, there is18

no clear cut automated solution but using recognition tools to provide information can help mitigate19

surprise issues for end users [4].20

The music dataset used in this work (JSB) is fully in the public domain, as such the ethical concerns21

listed above are minimized, and any secondary issues related to music copyright are unlikely to22

be a problem with the direct output of this model. The short, quantized MIDI-style output from23

SUNMASK is a not a suitable format for general listening, needing substantial post-processing,24

combination, and interpretation in order to form a musical piece [12].25

A.2 Text26

There are many complexities around generative modeling of language, and especially with generative27

co-creation of text. The particular datasets and schemes used in this work are relatively limited28

compared to more direct and large scale applications of language models, however it is always a key29

concern to think about the limitations and biases of the underlying datasets used to train these models.30

Given the propensity for using SUNMASK and related methods to infill given context, certain31

applications should have strong investigations into the biases and private information present in the32

underlying data. Imputing missing information in order to strengthen downstream classification (not33

directly shown in this work, but certainly possible) can be problematic with respect to imputed features34

amplifying underlying biases in the training corpus, or violating user privacy. Many mitigation and35

detection strategies proposed by researchers in fairness, bias, and privacy in machine learning [11]36

should be directly applicable to SUNMASK if deemed necessary, given the commonality of the37

modeling and training schemes to other well studied methods such as AR transformers, and deep38

learning more generally.39

The text datasets used in our experiments are a common benchmark, chosen to enable comparison to40

existing work. Any underlying biases or issues with models trained on these particular datasets will41

be shared across many generative language models, and any proposed corrections specific to these42

datasets should be directly applicable to SUNMASK.43

1

B Convolutional SUNMASK Model Hyperparameters and Training44

Information45

Training
Input channels 4
Pitch count 57
Sequence length 128
Training steps 50000
Batch size 1
Unrolled steps 2
Hidden size 64
Kernel size (4, 57)
Block scales (1, 1, 2, 4)
Residual layers per block 3
Optimizer Adam
Learning rate 1E-4
Total parameter count 417M
Downweight multiplier .75
Downweight learning rate steps 5000

B.1 Architecture Design46

Attention is applied on the innermost U-Net block size as well as the middle block, with 1 attention47

head [9]. Convolutions are used in all resampling, and all resampling happens only on the time axis,48

making the Attentional U-Net effectively a 1-D architecture. However, rather than learning both49

instrument and pitch relations across channels, we isolate pitch relations and instrument relations50

into separate axes of the overall processing, the "width" and "channels" axes, respectively assuming51

(N,C,H,W) == (N, I, T, P) axes. As is standard in many U-Net designs, we double the number52

of hidden values for layers every time the resolution is halved, with the reverse process being used53

when upsampling. Though the parameter count here is large, it is similar in spirit to other approaches54

to small datasets on text [1].55

Sampling
Temperature .6
Steps 2 ×I × T = 2× 4× 128
Mask dwell 1
Active balance False
Final mask dwell 0
Keep prob "triangular"
Sampling typical
Top k 3
Top p False
Intermediate noise False
Mask max .999
Mask min .001

B.2 Sampling Details56

All parameters and sampling designs were tuned based on generated sample quality, rather than direct57

tuning to the grading function used for final metric calculation. It is likely that these numbers could58

be greatly improved, but tuning directly against this metric may also result in less musical samples59

that exploit quirks in the metric calculation.60

During sampling we have a number of additional parameters to set. Crucially, the use of typical61

sampling [8] and strong filtering (either small top-k, small top-p, or both) resulted in generally62

stronger samples than both the equivalent, or typical sampling with looser settings. We note that the63

2

importance of this setting is demonstrated in the paper introducing typical sampling, in the difference64

between settings for summarization and story generation. These settings also interact heavily with65

the temperature setting.66

When typical sampling top-k values or top-p values are too large, we see samples end up with the67

same result for either typical or standard sampling, so setting these filters is critical to see the full68

impact of typical sampling.69

Triangular keep probability is described in SUNDAE, and we utilize it here as well, linearly ramping70

accept probability from 0 to 1 at steps
2 , ramping back down to 0 at steps . The keep probability71

schedule excludes the optional "final mask dwell", which we only utilize alongside intermediate72

noise. We also found fixed keep probabilities (such as .33, .5, and even 1.0) also performed well.73

Mask proposals follow the scheme proposed by Coconet, sampling bernoulli masks with probability74

p, ramping from the mask min to mask max, over the total range of steps. These masks are further75

combined with pre-specified masks, specifically we allow two types of secondary specification. Focus76

masks hold the input value fixed at every diffusion step, and always specify a mask value of 1 in77

the model input. Keep masks allow a mask value of 0 or 1 (depending on the bernoulli random78

sampled mask) in the model input, but the value will be reset to the specified input value at each step79

of diffusion. The allowance of these two different mask types is unique to SUNMASK, and seems to80

have a large impact on the sampled outcome based on our testing.81

When using intermediate noise, it is beneficial to set a final mask dwell, which holds the last mask82

(which is set to all 1) constant and then samples repeatedly to form final corrections. During final83

mask dwell, we set accept probability to 1, as triangular sampling would by default set accept84

probability to near 0. Intermediate noise is effectively disabled everywhere the mask is 1, so this85

is similar in spirit to noise tapering in other applications using gaussian style noise, and allows the86

SUNMASK learned improvement operator to make small changes and fixes to the general "skeleton"87

of the proposed sample.88

C Transformer SUNMASK Model Hyperparameters and Training89

Information90

Training
Pitch count 57
Training steps 120000
Sequence length (JSB) 256
Batch size (JSB) 20
Unrolled steps 2
Transformer layers 16
Embedding dim 512
Transformer input dim 512
Transformer hidden dim 2048
Transformer attention heads 8
Transformer head dim 64
Optimizer Adam
Learning rate max 5E-5
Learning rate max 5E-6
Ramp up steps (min to max) 5000
Ramp down steps (max to min) 100000
Gradient clip (value) 3
Total parameter count 50M

There is a large discrepancy in model parameter count between our best performing convolutional91

models for JSB, and our best transformers. Training larger transformers can work well for generation92

[1], but our large parameter transformers (on the order of 400M parameters) had poor generative93

performance on JSB. Given the foundational work in SUNDAE, it is clear that it should be possible94

to train these larger transformer models well, and finding the correct recipe may drastically improve95

the quality of the transformer generated musical examples.96

3

Pitch size / vocabulary size, sequence length, and batch size changed for the transformers used in97

the text experiments. Notably, we use vocabulary size 5.7k, sequence length 52, batch size 48 for98

EMNLP2017 News and vocabulary size 27, sequence length 64, batch size 20, and a slightly extended99

training step length of 150000 for text8.100

D Pseudocode Loss for Convolutional SUNMASK, Training Loop, Example101

Model API102

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
losses = []

N = batch_size
data_random_state = np.random.RandomState(2122)
gumbel_sampling_random_state = np.random.RandomState(3434)
corruption_sampling_random_state = np.random.RandomState(1122)

def gumbel_sample(logits, temperature=1.):
noise = gumbel_sampling_random_state.uniform(1E-5, 1. - 1E-5, logits.shape)
torch_noise = torch.tensor(noise).contiguous().to(device)

max indices
maxes = torch.argmax(logits / float(temperature) - torch.log(-torch.log(torch_noise)),

axis=-1, keepdim=True)
one_hot = 0. * logits
one_hot.scatter_(-1, maxes, 1)
return one_hot

def get_random_pitches(shape, vocab_size, low=0):
random_pitch = torch.tensor(corruption_sampling_random_state.randint(low=low,

high=vocab_size, size=shape)).type(torch.LongTensor).to(device)
return random_pitch

def corrupt_pitch_mask(batch, mask, vocab_size):
reduced_batch = torch.max(batch, dim=-1)[1]
random_pitches = get_random_pitches(reduced_batch.shape, vocab_size)
one_hot_random_pitches = 0. * batch
one_hot_random_pitches.scatter_(-1, random_pitches[..., None], 1)
corrupted = (1 - mask[..., None]) * one_hot_random_pitches + (1 * mask[..., None]) * batch
return corrupted

def build_logits_fn(vocab_size, n_unrolled_steps, enable_sampling):
def logits_fn(input_batch, input_mask, input_noise_x_based_on_mask=False):

def fn(batch, mask, noise_x_based_on_mask=False):
logits = model(batch, mask, noise_x_based_on_mask)
return logits

def unroll_fn(batch, mask, noise_x_based_on_mask=False):
samples = corrupt_pitch_mask(batch, mask, vocab_size)
all_logits = []
for _ in range(n_unrolled_steps):

logits = fn(samples, mask, noise_x_based_on_mask)
samples = gumbel_sample(logits).detach()
sanity check to be sure stacked outputs are correct
assert samples.shape[0] == batch.shape[0]
all_logits += [logits[None]]

final_logits = torch.cat(all_logits, dim=0)
return final_logits

4

if enable_sampling:
return fn(input_batch, input_mask, input_noise_x_based_on_mask)

else:
return unroll_fn(input_batch, input_mask, input_noise_x_based_on_mask)

return logits_fn

def build_loss_fn(vocab_size, n_unrolled_steps=4):
logits_fn = build_logits_fn(vocab_size, n_unrolled_steps, enable_sampling=False)

def local_loss_fn(batch, mask):
repeated targets are now n_unrolled_steps
repeated_targets = torch.cat([batch] * n_unrolled_steps, dim=0)

passing True noises internally, used at inference
logits = logits_fn(batch, mask, False)

logits = logits.reshape(n_unrolled_steps * batch.shape[0], logits.shape[2],
logits.shape[3], logits.shape[4])

raw_loss = -1. * (nn.functional.log_softmax(logits, dim=-1) * repeated_targets)
raw_masked_loss = raw_loss * torch.cat([(1. - mask[..., None])] * n_unrolled_steps,

dim=0)

reduced_mask_active = torch.cat([1. / ((1. - mask).sum(dim=1).sum(dim=1) + 1)] *
n_unrolled_steps, dim=0)

reduced_loss = reduced_mask_active * raw_masked_loss.view(n_unrolled_steps * N,
I * T * P).mean(dim=1)

loss = torch.sum(reduced_loss)
upweight by unrolling * time. since longer sequences will tend to have more
active mask elements, the loss gets downweighted more
loss = n_unrolled_steps * T * loss
return loss

return local_loss_fn

u_loss_fn = build_loss_fn(P, n_unrolled_steps=n_unrolled_steps)
for i in range(n_train_steps):

if not DO_TRAIN:
break

mask drawn with random probability
C_prob = data_random_state.rand(N)
C_mask_base = data_random_state.rand(N, I, T)
C = 1 * (C_mask_base < C_prob[:, None, None])
C = (1. - C) # convert to 0 drop format
technically doesn't matter here with uniform prob
C = C.astype(np.int32)
mask convention is set for 0 == drop (or noise) 1 == keep
shape is N, I, T

batch is an np array of shape (N, I, T), entries are integers in [0, P)
indices = data_random_state.choice(train_tracks.shape[0], size=N)
batch = train_tracks[indices]

x is of shape (N, I, T, P)
batch = batch.reshape(N*I*T)
x = np.zeros((N*I*T, P))
r = np.arange(N*I*T)
x[r, batch] = 1
x = x.reshape(N, I, T, P)

5

x = torch.tensor(x).type(torch.FloatTensor).to(device)
C2 = torch.tensor(C).type(torch.FloatTensor).to(device)

loss = u_loss_fn(x, C2)
losses.append(loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
adjust learning rate
if i % 5000 == 0:

for g in optimizer.param_groups:
g['lr'] *= .75

We use this same loss framework for both SUNMASK and SUNDAE experiments. The primary103

difference between SUNMASK and SUNDAE models is inside the model forward function - in104

SUNDAE we ignore the mask (unless doing internal noising at inference), passing the input to a105

layer which expects input channels of 4. In SUNDAE we concatenate the mask to the input along the106

channel axis, and pass to an input layer which expects input channels of 8.107

Transformer versions of this setup are similar, with the primary differences being in the axes of108

computation - our default transformer model assumptions are shaped (T,B, P) so the internal logic109

is changed to match. The learning rate reduction scheme is also changed to the ramp-up, ramp-down110

learning rate schedule that is common when training transformer models.111

E Inference Pseudocode for Convolutional SUNMASK112

def torch_infer(y, C, model,
keep_mask=None,
n_steps=I * T,
n_reps_per_mask=1,
n_reps_final_mask_dwell=0,
sundae_keep_prob=0.33,
initial_corrupt=True,
intermediate_corrupt=False,
frozen_mask=False,
use_active_balance=False,
top_k=0, top_p=0.0,
use_typical_sampling=False,
temperature=1.0, o_nade_eta=3./4, seed=12, verbose=True):

assert len(y.shape) >= 3
if len(y.shape) == 3:

assert y.shape[-1] != 1

model.eval()
rs = np.random.RandomState(seed)
trsg = torch.Generator(device=device)
trsg.manual_seed(seed)

def lcl_gumbel_sample(logits):
torch_noise = torch.rand(logits.shape, generator=trsg, device=device) *

((1 - 1E-5) - 1E-5) + 1E-5

maxes = torch.argmax(logits - torch.log(-torch.log(torch_noise)),
axis=-1, keepdim=True)

return maxes

def lcl_get_random_pitches(shape, vocab_size):
random_pitch = torch.randint(low=0, high=vocab_size, size=shape,

device=device, generator=trsg)

6

return random_pitch

with torch.no_grad():
x = torch.tensor(y).float().to(device)
C = torch.tensor(C).long().to(device)
if keep_mask is not None:

keep_C = torch.tensor(keep_mask).long().to(device)

C2 = torch.clone(C)
alpha_max = .999
alpha_min = .001
eta = o_nade_eta

x_cache = torch.clone(x)
if initial_corrupt:

x = lcl_get_random_pitches(x.shape, P).float()
x[C2==1] = x_cache[C2==1]
if keep_mask is not None:

x[keep_C==1] = x_cache[keep_C==1]

n_steps = max(1, int(n_steps))
if sundae_keep_prob == "triangular":

sundae_keep_tokens_per_step = [2 * x.shape[2] *
min((t + 1) / float(n_steps), 1 - (t + 1) / float(n_steps))
for t in range(int(n_steps))] +

[1.0 * x.shape[2] for t in range(int(n_reps_final_mask_dwell))]
else:

sundae_keep_tokens_per_step = [sundae_keep_prob * x.shape[2]
for t in range(int(n_steps))] +

[1.0 * x.shape[2] for t in range(int(n_reps_final_mask_dwell))]

has_been_kept = 1. + 0. * x
has_been_kept_torch = torch.tensor(has_been_kept).to(device)

sampled_binaries = None
for n in range(int(n_steps + n_reps_final_mask_dwell)):

k = int(sundae_keep_tokens_per_step[n])
if k == 0:

skip zero keep scheduled steps to speed things up
do it this way because very long schedules need small k values
which necessarily causes 0 to be more frequent
continue

fwd_step = n
if n_reps_per_mask > 1:

roll mask forward
fwd_step = int(fwd_step + n_reps_per_mask)

p = np.maximum(alpha_min,
alpha_max - fwd_step*(alpha_max-alpha_min)/(eta*int(n_steps)))

if not frozen_mask:
if n % n_reps_per_mask == 0:

sampled_binaries = torch.bernoulli(1. - (0 * C + p), generator=trsg).long()
C2 += sampled_binaries

if n > n_steps:
set final mask to all ones
C2[:] = 1

C2[C==1] = 1

7

expand things to one-hot representation
x_e, C2_e = model.expand(x, C2, is_torch=True)
passing true will noise things
logits_x = model(x_e, C2_e, intermediate_corrupt)

dont predict just logits anymore
top k top p gumbel

if use_typical_sampling:
logits_x = logits_x / float(temperature)
filtered_logits_x = typical_top_k_filtering(logits_x, top_k=top_k, top_p=top_p,

temperature=float(temperature))
else:

logits_x = logits_x / float(temperature)
filtered_logits_x = top_k_top_p_filtering(logits_x, top_k=top_k, top_p=top_p)

x_new = lcl_gumbel_sample(filtered_logits_x).float()

active balance
p = has_been_kept_torch[:, :, :] / torch.sum(has_been_kept_torch[:, :, :],

axis=2, keepdims=True)
r_p = 1. - p
r_p = r_p / torch.sum(r_p, axis=2, keepdims=True)

if k > 0:
shp = r_p.shape
assert len(shp) == 3
r_p = r_p.reshape(shp[0] * shp[1], shp[2])
if use_active_balance:

keep_inds_torch = torch.multinomial(r_p, num_samples=k,
replacement=False, generator=trsg)

else:
keep_inds_torch = torch.multinomial(0. * r_p + 1. / float(shp[2]),

num_samples=k, replacement=False, generator=trsg)

keep_inds_torch = keep_inds_torch.reshape(shp[0], shp[1], -1)

assert x_new.shape[-1] == 1

for _ii in range(x.shape[0]):
for _jj in range(x.shape[1]):

x[_ii, _jj, keep_inds_torch[_ii, _jj]] = x_new[_ii, _jj,
keep_inds_torch[_ii, _jj], 0]

has_been_kept_torch[_ii, _jj, keep_inds_torch[_ii, _jj]] += 1
else:

pass
x[C==1] = x_cache[C==1]
if keep_mask is not None:

x[keep_C==1] = x_cache[keep_C==1]

C2 = torch.clone(C)
return x

This inference code supports the variety of different options used and tested in the body of the main113

paper. Transformer inference is largely similar, again with the primary difference being the use of114

(T,B, P) axis notation, and changes to match this axis convention.115

8

F Sampling Runtime116

One chief drawback of the currently implemented SUNMASK models, primarily the convolutional117

SUNMASK used in JSB, is the time to sample. In part due to the parameter count, as well as the118

non-standard details of the architecture (kernel size in particular), sampling runs at roughly 8×119

slower than real-time, taking approximately 4 minutes to generate a 38 second sample (4 voices, each120

with 128 steps, at 16 steps per measure quantization) on V100 GPUs. On A100 GPUs, this goes121

directly to 66 seconds to generate the same size sample, which gives some indication that simply122

updating hardware may radically improve the runtime of convolutional SUNMASK. Increasing batch123

sizes improves the effective amortized sample speed, but at an increase of latency. In addition, the124

non-causal nature of diffusion sampling means that pipelined sampling to reduce the effective latency125

felt by end-users is not easily applicable, compared to standard AR methods.126

However there are many direct optimizations available for these architectures from both the computer127

vision literature at large, and specifically for symbolic music modeling [6]. More exploration of128

computational improvements, toward fully interactive use remain a key research direction.129

G Code repository and samples player130

We attach several folders of samples (in midi format) from our model for music, as well as the131

evaluation sentences for BLEU / self-BLEU testing on EMNLP2017 News as part of the supplemental132

material.133

Full reproduction code and sample listening page can be found at https://github.com/SUNMASK-134

web/SUNMASK135

H Creating a "Greatest Hits"136

Music demonstrations of the model labeled "BachMock" transformer can be heard at137

https://alisawuffles.github.io/post/grading-function/. We find SUNMASK generations are quali-138

tatively on a similar level as these sample generations, though some SUNMASK samples do fare139

poorly by the grading metrics. However the best SUNMASK samples have remarkably good grades,140

on a similar level as the best "BachMock" samples shown in the linked post, and indeed to a similar141

level as the data itself.142

Of particular note is the high variance in the grade of all SUNMASK models compared to either143

Coconet, or the baselines. Given the existence of the grader function, it is possible to prune generations144

from our SUNMASK diffusion models to improve the overall output. Generating 200 samples from145

the best SUNMASK method, and pruning to only the top 20 overall grades, we see that it is possible146

to produce high quality subsets which rival the "BachMock" transformer and the dataset itself on this147

metric.148

Model Note Rhythm Parallel
Errors

Harmonic
Quality S Intervals A Intervals T Intervals B Intervals Repeated

Sequence Overall

Bach GT 0.24 (0.15) 0.23 (0.14) 0.0 (0.69) 0.41 (0.2) 0.47 (0.28) 0.49 (0.22) 0.53 (0.24) 0.69 (0.4) 1.29 (0.88) 4.91 (1.63)
BachMock 0.37 (0.22) 0.26 (0.14) 2.16 (3.22) 0.54 (0.31) 0.53 (0.35) 0.71 (0.34) 0.73 (0.38) 0.89 (0.68) 1.86 (2.81) 8.94 (4.64)
SMc-T 0.57 (1.79) 0.69 (0.35) 1.28 (3.73) 0.93 (0.49) 0.80 (4.51) 0.99 (4.01) 1.20 (4.68) 1.40 (3.91) 1.81 (0.83) 13.43 (19.27)
SMc-T-BEST20-200 0.39 (0.16) 0.53 (0.26) 0.0 (0.81) 0.68 (0.27) 0.59 (0.25) 0.88 (0.42) 0.80 (0.20) 0.71 (0.27) 1.44 (0.52) 7.16 (0.97)

While selecting directly against this metric makes it a less useful ranking scheme for the various149

methods, listening to the resulting samples also reveals that this ranked subset are also qualitatively150

among the best of this cohort. We stress that this simple generate-and-test method could be used with151

all available models, and potentially as part of training itself, as in published work on augmented152

generative training [7].153

Given that the best scoring example from Coconet has an overall grade of 12.26, the best SUNDAE154

example (SD-AT in main table) grade 7.78, best SUNMASK example from the small set (SMc-T155

in main table) grade 7.14, and the best SUNMASK example grade from the larger 200 set 4.93 it156

seems SUNMASK may be a better candidate for this kind of scheme due to higher generated sample157

variance. Generating more samples and then curating a top performing subset should yield better158

scores for all methods tested. Comparing this approach against a broader swath of high-performance,159

template based infilling methods [5, 3, 2] remains an important future direction.160

9

https://github.com/SUNMASK-web/SUNMASK
https://github.com/SUNMASK-web/SUNMASK
https://github.com/SUNMASK-web/SUNMASK
https://alisawuffles.github.io/post/grading-function/

References161

[1] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level162

language modeling with deeper self-attention. In Proceedings of the AAAI conference on163

artificial intelligence, volume 33, pages 3159–3166, 2019.164

[2] Mason Bretan, Sageev Oore, Doug Eck, and Larry Heck. Learning and evaluating musical165

features with deep autoencoders. arXiv preprint arXiv:1706.04486, 2017.166

[3] Mason Bretan, Gil Weinberg, and Larry Heck. A unit selection methodology for music167

generation using deep neural networks. arXiv preprint arXiv:1612.03789, 2016.168

[4] Jean-Pierre Briot and François Pachet. Deep learning for music generation: challenges and169

directions. Neural Computing and Applications, 32(4):981–993, 2020.170

[5] Gaëtan Hadjeres and Léopold Crestel. Vector quantized contrastive predictive coding for171

template-based music generation. arXiv preprint arXiv:2004.10120, 2020.172

[6] Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam Roberts, Monica Dinculescu, James Wexler,173

Leon Hong, and Jacob Howcroft. The bach doodle: Approachable music composition with174

machine learning at scale.175

[7] Alisa Liu, Alexander Fang, Gaëtan Hadjeres, Prem Seetharaman, and Bryan Pardo. Incorporat-176

ing music knowledge in continual dataset augmentation for music generation. 2020.177

[8] Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Typical decoding for natural178

language generation. arXiv preprint arXiv:2202.00666, 2022.179

[9] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,180

Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing181

with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.182

[10] Alexandre Papadopoulos, Pierre Roy, and François Pachet. Avoiding plagiarism in markov se-183

quence generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,184

2014.185

[11] Eric Michael Smith, Melissa Hall Melanie Kambadur, Eleonora Presani, and Adina Williams. "186

i’m sorry to hear that": finding bias in language models with a holistic descriptor dataset. arXiv187

preprint arXiv:2205.09209, 2022.188

[12] Bob L Sturm, Oded Ben-Tal, Úna Monaghan, Nick Collins, Dorien Herremans, Elaine Chew,189

Gaëtan Hadjeres, Emmanuel Deruty, and François Pachet. Machine learning research that190

matters for music creation: A case study. Journal of New Music Research, 48(1):36–55, 2019.191

10

	Generative Co-Creation and Possible Ethical Concerns
	Music
	Text

	Convolutional SUNMASK Model Hyperparameters and Training Information
	Architecture Design
	Sampling Details

	Transformer SUNMASK Model Hyperparameters and Training Information
	Pseudocode Loss for Convolutional SUNMASK, Training Loop, Example Model API
	Inference Pseudocode for Convolutional SUNMASK
	Sampling Runtime
	Code repository and samples player
	Creating a "Greatest Hits"

