Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 BOUNCE SIMULATOR DESIGN DETAILS

We use PyMunk as physics engine and PyGame which provides backend for rendering. Creating a
simulator is only necessary because we do not have full access to the original game simulator used
by Code.org (which was written in JavaScript). We do not need to explicitly design simulator for
other assignments if the original simulator is accessible. The simulator will be made available along
with the dataset.

A.2 GENERALIZING OVER DIFFERENT THEMES

In Table 2] we evaluate each training strategy under different thematic combinations of visual el-
ements of our game. Note that the “Mixed Theme” training strategy trained exactly on these 8
combinations. The table shows that vision-based data augmentations do not allow generalization
across themes in our game.

Baseline Color Jitter Cutout Cutout Color Gray Scale Mixed Theme

Hardeourt 360 59.0 73.0 77.0 88.0 62.0
+20.8 +19.0 +21.9 +12.8 + 125 +20.0
HLHR -44.0 460 -40.0 -36.0 -42.0 87.0
£11.0 +4.9 £6.1 +78 +8.1 £6.7
HRH -38.0 380 -420 -30.0 -40.0 71.0
+9.8 + 8.1 + 6.0 + 14.5 + 6.1 + 13.8
HR.R -32.0 460 420 -42.0 -42.0 74.0
+6.6 +49 +6.0 +6.0 + 8.1 + 155
RULH -44.0 480 -40.0 -30.0 -44.0 80.0
+78 +3.7 +11.3 +£16.2 +5.6 + 125
RUHLR -44.0 440 420 -44.0 -46.0 76.0
+5.6 +5.6 +8.1 +5.6 +49 +15.7
RR.H -50.0 460 =300 -44.0 -44.0 65.0
£0.0 +49 +95 +78 +5.6 +21.9
Retro -46.0 500 320 -42.0 -42.0 65.0
+49 +0.0 £8.6 £112 +9.8 + 18.8

Table 2: We show the average total reward for 10 runs from agent trained with different strategies.
The confidence interval is computed with 90% confidence level. We evaluate the agent with eight
theme variations. We refer to other settings in the order of background, paddle, ball (i.e., H-H-R
refers to Hardcourt background, Hardcourt paddle, Retro ball).

A.3 GENERALIZING OVER DIFFERENT SPEEDS

Other than changing themes of game objects, Bounce also allows the change of game object’s speed.
There are five speed settings for each object. We trained all our agents under the “normal paddle”
speed and “normal ball” speed setting. Since we have established that mixed-theme trained agent is
best performing for all thematic differences, here we evaluate its ability to generalize to other speed
settings.

From Table[3] we note that unlike human players, who find more challenging to play when both ball
and paddle moves “very fast”, the agent can generalize easily to environments when both ball and
paddle move faster than the speed it was trained on. We also didn’t observe symmetry where the
game play should be easy when both ball and paddle are at the same speed (i.e., “very slow paddle
+ very slow ball” receives very low reward, same for “slow paddle + slow ball”).

A.4 DISTRIBUTIONAL SHIFT

In Figure[6] we visualize how our programs distribute in the feature space. Incorrect programs have
a larger spread compared to correct programs in terms of both features. We can actually see that our

11

Under review as a conference paper at ICLR 2021

| very slow ball ~slow ball normal ball ~fast ball ~very fast ball

7.0 24.0 -17.0 -14.0 4.0

very slow paddle +225 + 145 +13.4 + 120 +19.0
dow paddle 22.0 51.0 27.0 40.0 27.0

P 4249 4257 +227 +219 +318

64.0 77.0 82.0 73.0 75.0

normal paddle +17.8 +10.2 +7.1 +18.1 +18.4
fast paddie 82.0 93.0 76.0 87.0 54.0

+94 +39 +15.0 +9.1 +24.8

69.0 78.0 88.0 94.0 91.0

very fast paddle +26.4 +22.7 +6.6 +4.9 +58

Table 3: We show the 10-run average reward for the mixed-theme trained agent under different speed

variations. We evaluate for maximal 2000 steps.

. . . .
= 1=
E g
2 125 Z 1251
= = A
o o
o 1.00 © 1.00 %
2 5 0 @3
) 2 -
g o075 & 0.751
g g
< <
2 050 S 0.501
[)
o o
5 025 5 0.251
8 8
2 7]
[A
= 0.00 > 0.007
g g
é ~0.25 E —0.254
© @
:I: T T T T E T T T T
-1000 -500 0 500 -1000 —500 0 500
Total Reward Total Reward
(a) Reference programs (b) Head programs

AL

kel hel
3 g 124
g g
o 20
° =} U7 X
¢
=) 2 0.8 x X
o O . © X
=] = co X
Z 2 o0s6] e
8 8 x
8 g 04y
=1 g
ol ol
7 7 02
a A
£ 2 0.0
g g
< 3 —0.21
= 1 s
-1000 -500 0 500 —-1000 —500 0 500
Total Reward Total Reward
(c) Body programs (d) Tail programs

Figure 6: We show the kernel density plot when we visualize each program by their two features.
Blue represents incorrect programs. Purple indicates correct programs. We overlay the error made
by our best performing model as red x.

hand-crafted reference programs actually serve as a decent representation of the program space. We
can also see that even with two features, we still can’t completely tear apart correct and incorrect
programs.

12

Under review as a conference paper at ICLR 2021

A.5 GOLD LABEL ANNOTATION SCHEMA

def main():
sources = pickle.load (open(root + ’x.pickle’, ’rb’))
nDone = 0
labelMap = {}

for sourceld in tqdm(sources):

rawStr = sources[sourceld]
source = canonicalize (rawStr)
labels = {}

labelWhenRun (labels , source)
labelWhenLeft(labels , source)
labelWhenRight(labels , source)
labelWhenPaddleCollided (labels , source)
labelWhenWallCollided (labels , source)
labelWhenBalllnGoal (labels , source)
labelWhenBallMissesPaddle (labels , source)
labelMap[sourceld] = labels

nDone += 1

if nDone == N.TARGET: break
pickle .dump(labelMap, open(root + ’labels.pickle’, 'wb’))

def labelWhenBallMissesPaddle(labels , source):
if not *whenBallMissesPaddle’ in source:
addLabel (labels , >whenMiss—noOpponentScore)
addLabel(labels , >whenMiss—noBallLaunch’)
return

commands = source[’whenBallMissesPaddle ’]

if not ’'incrementOpponentScore’ in commands:
addLabel (labels , ’>whenMiss—noOpponentScore’)
if not ’launchBall’ in commands:
addLabel (labels , *whenMiss—noBallLaunch’)

illegalCmds = [
incrementPlayerScore ’,
>bounceBall ’,

"moveleft’,
"moveRight’
]
nBalls = 0
for cmd in commands:
if cmd == ’launchBall’:
nBalls += 1

if nBalls > 1:
addLabel (labels , >whenMiss—multipleBalls’)

def labelWhenBalllnGoal(labels , source):
if not >whenBalllnGoal’ in source:
addLabel (labels , >whenGoal—-noPlayerScore’)
addLabel (labels , whenGoal—noBallLaunch’)
return

commands = source |’ whenBalllnGoal]
if not 'incrementPlayerScore’ in commands:

13

Under review as a conference paper at ICLR 2021

addLabel (labels , ’*whenGoal-noPlayerScore’)

if not ’launchBall’ in commands:
addLabel(labels , whenGoal—noBallLaunch’)

illegalCmds = [
“incrementOpponentScore ’,
>bounceBall ’,
"movelLeft’,
moveRight’
1
for illegal in illegalCmds:
if illegal in commands:
addLabel (labels , >whenGoal—illegalCmd)

do you have more than one ball?
nBalls = 0
for cmd in commands:
if cmd == ’launchBall’:
nBalls += 1
if nBalls > 1:
addLabel (labels , ’*whenGoal-multipleBalls)

def labelWhenWallCollided (labels , source):
if not whenWallCollided’ in source:
addLabel (labels , >whenWall-noBounce’)
return

commands = source[’whenWallCollided ’]

if not bounceBall’ in commands:
addLabel (labels , >whenWall-noBounce’)

illegalCmds = [
“incrementOpponentScore ’,
incrementPlayerScore ’,
>launchBall ’,
"moveLlLeft’,
moveRight’
1
for illegal in illegalCmds:
if illegal in commands:
addLabel (labels , >whenWall—illegalCmd)

def labelWhenPaddleCollided (labels , source):
if not >whenPaddleCollided’ in source:
addLabel(labels , >whenPaddle—noBounce’)
return

commands = source [’ whenPaddleCollided’]

if not bounceBall’ in commands:
addLabel(labels , >whenPaddle—noBounce’)

illegalCmds = [

incrementOpponentScore ’,
incrementPlayerScore ’,

14

Under review as a conference paper at ICLR 2021

>launchBall ’,
"movelLeft’,
>moveRight’

]

for illegal in illegalCmds:
if illegal in commands:
addLabel (labels , >whenPaddle—illegalCmd ")

def labelWhenRight(labels , source):
if not whenRight’ in source:

addLabel (labels , >whenRight—noMove)
return

whenDirCommands = source [’ whenRight’]

rightDelta = getRightDelta (whenDirCommands)

if rightDelta ==
addLabel (labels , >whenRight—noMove)
if rightDelta <= O:
addLabel (labels , ’*whenRight—wrongMove’)

illegalCmds = [
>bounceBall ’,
incrementOpponentScore ’,
incrementPlayerScore ’,
>launchBall”’
1
for illegal in illegalCmds:
if illegal in whenDirCommands:
addLabel (labels , >whenRight—illegalCmd’)

def labelWhenLeft(labels , source):
if not *whenLeft’ in source:
addLabel(labels , ’whenLeft—noMove’)

return
whenDirCommands = source[’whenLeft’]
leftDelta = —1 x* getRightDelta (whenDirCommands)

if leftDelta ==
addLabel (labels , >whenLeft—noMove’)
if leftDelta <= O:
addLabel (labels , ’>whenLeft—wrongMove’)

illegalCmds = [
>bounceBall ’,
incrementOpponentScore ’,
incrementPlayerScore ’,
>launchBall”’
|
for illegal in illegalCmds:
if illegal in whenDirCommands:
addLabel (labels , >whenLeft—illegalCmd)

def labelWhenRun(labels , source):
if not ’whenRun’ in source:

15

Under review as a conference paper at ICLR 2021

addLabel(labels , >whenRun—noBallLaunch’)
return

whenRunCmds = source [’whenRun’]
if not ’launchBall’ in whenRunCmds:
addLabel (labels , *whenRun—noBallLaunch’)

illegalCmds = [
’bounceBall ’ ,
“incrementOpponentScore ’,
incrementPlayerScore ’,
>moveleft’,
moveRight’
]
for illegal in illegalCmds:
if illegal in whenRunCmds:
addLabel (labels , ’whenRun—illegalCmd)

nBalls = 0
for cmd in whenRunCmds:
if cmd == ’launchBall’:
nBalls += 1
if nBalls > 1:
addLabel (labels , >whenRun—multipleBalls’)

def getRightDelta (commands):
rightDelta = 0
for cmd in commands:

if cmd == ’movelLeft’:
rightDelta —= 1
if cmd == moveRight’:

rightDelta += 1
return rightDelta

def addLabel(labels, key):

labels[key] = True
allLabels .add(key)

16

