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Abstract

Restless multi-arm bandits (RMABs) are a model
for sequentially allocating a limited number of re-
sources to agents modeled as Markov Decision
Processes. RMABs have applications in cellular
networks, anti-poaching, and in particular, health-
care. For such high-stakes use cases, allocations
are often required to treat different groups of agents
(e.g., defined by sensitive attributes) fairly. In ad-
dition to the fairness challenge, agents’ transition
probabilities are often unknown and need to be
learned in real-world problems. Thus, group fair-
ness in RMABs requires us to simultaneously learn
transition probabilities and how much budget we
allocate to each group. Overcoming this key chal-
lenge ignored by previous work, we develop a
decision-focused-learning pipeline to solve equi-
table RMABs, using a novel budget allocation al-
gorithm to prevent disparity between groups. Our
results on both synthetic and real-world large-scale
datasets demonstrate that incorporating fair plan-
ning into the learning step greatly improves equity
with little sacrifice in utility.

1 INTRODUCTION

Restless multi-arm bandits (RMABs) are a model for se-
quentially distributing scarce resources to a set of agents.
Concretely, we have a set of arms and a limited budget and
face the question of deciding which arms to pull in each
round. The state of arms evolves according to a Markov
Decision Process where transition probabilities depend on
whether the arm is pulled in this step. RMABs have a broad
range of applications, including resource allocation in anti-
poaching, machine maintenance, cellular networks [Modi
et al., 2019, Zhao et al., 2008, Bagheri and Scaglione, 2015,
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Glazebrook et al., 2006, Qian et al., 2016, Yu et al., 2018,
Ruiz-Hernández et al., 2020]. RMABs have especially be
used in healthcare settings such as call scheduling in a mater-
nal and child care program [Mate et al., 2022, Killian et al.,
2023], screening patients at risk of cancer [Lee et al., 2019],
and allocating hepatitis C treatment [Ayer et al., 2019].

In high-stakes resource allocation settings such as health-
care, authorities often want to give priority to agent groups,
e.g., as defined by sensitive attributes, that are most in need.
For instance, some governments require non-discrimination
based on sensitive attributes [Amon, 2020] and non-profits
commonly aim to prioritize low income groups [Verma
et al., 2023b]. The standard RMAB objective of maximiz-
ing arms’ summed reward falls short in these cases. For
example, if one unit of budget could increase the utility of
a marginalized group from 0.2 to 0.35 or increase that of a
non-marginalized group from 0.5 to 0.7, a strictly utilitar-
ian policy would favor the non-marginalized group, further
widening the socio-economic gap. Importantly, equal alloca-
tion is often not sufficient, and equity or balanced outcomes
is preferred [Marsh and Schilling, 1994, Luss, 2012]

While the literature [Herlihy et al., 2023, Li and Varakan-
tham, 2022, Killian et al., 2023] has mainly focused on how
to plan fairly, a main challenge in using RMABs in the real
world is how to predict unknown transition probabilities
of arms. The task of predicting transition probabilities that
are later used in a planning problem falls within a well-
studied predict-then-optimize framework [Elmachtoub and
Grigas, 2022]. A naive “two-stage” approach is to first learn
transition probabilities minimizing prediction error and sub-
sequently use them to decide on an allocation maximizing
the fairness objective. However, it has been shown that such
approaches suffer from objective mismatch [Wilder et al.,
2019] and inaccurate predictions in our setting may even
increase disparity among groups.

Decision-focused-learning (DFL) approaches that incorpo-
rate the downstream optimization problem have proven to
be both scalable and effective [Mandi et al., 2023, Agrawal
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et al., 2019], and have been studied for RMABs when maxi-
mizing the summed reward [Wang et al., 2023]. However,
applying the DFL paradigm to optimize a group fairness ob-
jective presents us with novel challenges: The optimization
objective becomes more complex and makes it necessary to
simultaneously learn agents’ transition probabilities and the
allocation of budget to groups. To incorporate how both tran-
sition probabilities and budget allocations affect the fairness
objective, one needs to differentiate through the process of
allocating budgets to different groups.

Tackling this challenge, we provide a DFL pipeline for equi-
table RMABs that simultaneously learns budget allocation
and transition probabilities, in an offline learning setting.
Our main contributions are:

• To the best of our knowledge, we are the first to develop
a decision-focused-learning (DFL) method to solve
equitable RMABs, outperforming various baselines by
20-40% in fairness objectives, on both synthetic and
real-world large-scale datasets.

• We propose a novel differentiable budget allocation
method such that the effect of changes in budget on
the fairness objective is incorporated during training.
Our theoretical results shed light on the feasibility and
effectiveness of this method.

• Our method optimizes fairness objectives while achiev-
ing utility >90% of a state-of-the-art algorithm [Wang
et al., 2023] that purely optimizes utility, on a real-
world health information dataset.

• Our pipeline is compatible with a broad range of fair-
ness objectives, including Maximin Reward, Gini In-
dex, and Max Nash Welfare, and generally to a range
of functions defined over utilities of groups.

2 LITERATURE REVIEW

RMAB Restless multi-arm bandits are shown to be PSPACE
hard [Papadimitriou and Tsitsiklis, 1994] and approximated
algorithms have been proposed [Hawkins, 2003, Whittle,
1988]. In particular, Whittle [1988] uses a Lagrangian relax-
ation to decouple computations for arms and select actions
by computing Whittle indices of each arm. The resulting
Whittle index policy is asymptotically optimal under an
indexability assumption [Akbarzadeh and Mahajan, 2019,
Weber and Weiss, 1990].

Fairness in RMABs Li and Varakantham [2022], Herlihy
et al. [2023] consider individual fairness constraints that
ensure sufficient resources are given to each arm. Li and
Varakantham [2023] studies fairness by always probabilisti-
cally favoring an arm that yields higher long-term cumula-
tive reward. Biswas et al. [2023] studies fairness for workers
who pull the arms, ensuring that we never overburden the
workers. However, above works do not consider group-level

fairness, where balancing group outcomes is a key challenge.
Killian et al. [2023] designs RMAB algorithms to achieve
equal outcomes but fails to address practical settings with
unknown transition dynamics. Notice none of the above
works have dealt with unknown transition probabilities.

Decision focused learning The predict-then-optimize
framework contains a prediction problem where predicted
parameters are used in a downstream optimization problem
that solves for a solution, and the overall goal is to obtain
high-quality solutions [Elmachtoub and Grigas, 2022]. Two-
stage approaches that ignore the downstream optimization
problem when solving the prediction problem result in a
mismatch of the prediction loss and the solution quality
[Lambert et al., 2020, Wilder et al., 2019, Mandi et al.,
2020]. Incorporating the downstream optimization task in
the prediction problem is shown to improve model perfor-
mance both theoretically [Grigas et al., 2021, Mandi et al.,
2023, Shah et al., 2022] and empirically [Amos and Kolter,
2017, Huang et al., 2019, Agrawal et al., 2019, Wang et al.,
2021]. Verma et al. [2023a] and Wang et al. [2023] provide
DFL methods tailored to RMABs but ignore fairness.

Fair top-k ranking Choosing which arms to pull is concep-
tually similar to top-k ranking. Singh and Joachims [2019],
Yadav et al. [2021] provide policy gradient methods for
learning fair ranking policies. Celis et al. [2017] constructs
a mixed integer programming problem to solve for rankings
and explicitly enforces fair representation between groups.
Zehlike et al. [2017] studies fairness up to a threshold and
provides a greedy algorithm to achieve fair ranking. Singh
and Joachims [2018], Biega et al. [2018] use fairness con-
straints that link relevance to allocation to exposure items.
Interestingly, top-k selection can be formulated as an LP
and solved using DFL [Kotary et al., 2022, Wilder et al.,
2019]. However, existing works in fair top-k ranking do not
address MDPs, where actions affect future states.

Equity and Group Fairness Since groups have different
needs, allocating the same resources to each group is not
sufficient, and balanced outcomes are preferred [Luss, 2012,
McGlaughlin and Garg, 2020]. Although much theory in
social welfare studies individual level equity, equity is often
measured on a group level in applications such as facility
location [Marsh and Schilling, 1994], healthcare [Braveman
and Gruskin, 2003], and humanitarian logistics [Gutjahr
and Fischer, 2018]. Existing works on fair allocation extend
equity to a group level [Barman et al., 2018, Suksompong,
2018] but fail to consider settings where resources are scarce
and only a small subpopulation receives resources.



3 PRELIMINARIES

3.1 RMABS AND THE WHITTLE INDEX POLICY

We consider a restless multi-arm bandit problem with N
arms and a budget of B. We focus on an offline learning
setting where a historical dataset is available. Each arm
has a discrete state space Si and actions are binary {0, 1}.
We denote the transition probability of arm i from state
s to state s′ under action a as Pi(s, a, s

′). The transition
probabilities are unknown and arm features xi are available.
We let Ri(s) denote the per-arm reward for arm i at state s.
Since in practice, it is common that Si, Ri are the same for
all arms [Herlihy et al., 2023, Mate et al., 2022], we drop the
subscript i. Notice our methods apply to the general setting.
We let M = |S| denote the number of possible states. The
vector of arm states is s ∈ RN , and the one-hot encoding
of actions on arms is a ∈ {0, 1}N . A policy π maps arm
states s to actions a, while satisfying budget constraints∑N

i=1 ai ≤ B, ∀t at each timestep t ∈ [H]. For a reward-
maximizing RMAB without fairness considerations, the
optimal policy maximizes the following Bellman equation:

V (s, B) = max
a

{
N∑
i=1

R (si) + βE [V (s′, B) | s,a]

}
,

s.t.
N∑
i=1

ai ≤ B, (1)

where β ∈ (0, 1] is a discount factor. Note the state space
and the action space grow exponentially in N . To learn
a policy, a scalable approach is to use the Whittle Index
derived from the Lagrangian relaxation [Whittle, 1988].

J (s,B) = min
λ≥0

(
λB

1− β
+

N∑
i=1

max
ai∈{0,1}

{Qi (si, ai, λ)}

)
,

(2)

s.t. Qi(si, ai, λ) = R(si)− λai + βE [Qi(s
′
i, ai, λ) | π(λ)] .

The Whittle Index Wi(si) is equal to the smallest action
charge m that makes pulling as rewarding as not pulling

Definition 1 (Whittle index). The Whittle index associated
to state si is:

Wi(si) := inf
m
{Qi(si, ai = 0,m) = Qi(si, ai = 1,m)} .

Intuitively, given a unit budget, an arm with a higher Whittle
index would benefit from a larger increase in discounted
cumulative reward. The Whittle Index policy πwhittle is to
pull B arms with the highest Whittle indices.

3.2 FAIRNESS OBJECTIVES AND GROUP
BUDGET ALLOCATIONS

The set of N arms can be partitioned into groups G ac-
cording to known arm features (such as age, geographical

location, and education [Mate et al., 2022]). Let Ng denote
the size of group g. We define the value function for a group:

Vg(sg, bg) =
1

Ng
V (sg, bg), (3)

where sg ∈ {0, 1}Ng is a vector representing states of all
arms in group g. We develop a differentiable pipeline that
accommodates any objective that satisfies a key assumption:

Assumption 1. The fairness objective or a proxy of it is
differentiable in group values (3).

A fairness objective that fails to satisfy Assumption 1 has
little hope of being compatible with a differentiable pipeline,
where the gradient of the objective with respect to group
budget allocations needs to be evaluated. Many popular
fairness objectives, including Max Nash Welfare (MNW),
Maximin Reward (MMR), and Gini Index, satisfy Assump-
tion 1. Given fixed groups g ∈ G, MNW optimizes the
product of group values:

MNW(s) := max
bg,g∈G

∏
g∈G

Vg (sg, bg) s.t.
∑
g∈G

bg = B. (4)

By giving diminishing returns for any group’s marginal in-
crease in utility, MNW naturally trades off efficiency and
equity [Caragiannis et al., 2019, Ramezani and Endriss,
2009]. MMR optimizes the so-called egalitarian social wel-
fare [Asadpour and Saberi, 2007, Caragiannis et al., 2012]:

MMR(s) := max
bg,g∈G

min
g∈G

Vg (sg, bg) s.t.
∑
g∈G

bg = B. (5)

By maximizing the utility of the worst-off group, MMR is
shown to be favorable both theoretically and empirically
[Brandt et al., 2016, Bonald et al., 2006]. We will provide a
differentiable proxy of MMR.

4 EQUITABLE RMABS WITH
DECISION-FOCUSED-LEARNING

We begin by illustrating that naive approaches to address
fairness fail. Next, we propose a differentiable pipeline com-
patible with a broad range of fairness objectives and provide
theoretical results that shed light on the feasibility and ef-
fectiveness of our pipeline. After that, we discuss details on
how to use the pipeline with various fairness objectives.

4.1 NEED FOR A DIFFERENTIABLE PIPELINE

One naive approach is to prioritize learning optimal tran-
sition probabilities to maximize utility, and then allocate
budgets proportional to group size. This approach does
not simultaneously learn budget allocations and transition
probabilities, and thus it does not take into account groups’



Algorithm 1 Greedy Budget Allocation
Input: Sorted Whittle indices W , groups g ∈ G, budget B,
states s, initial budgets bg = 0,∀g

1: Compute for each group g ∈ G,
J∆ (sg, bg) = log (J(sg, bg + 1))− log (J(sg, bg))

2: while there is budget remaining do
3: Give one more budget to the group with the highest

J∆(sg, bg) and recompute J∆(sg, bg) for this group.
4: return budget allocation bg

needs. We demonstrate it fails to provide sufficient budgets
to marginalized groups (see Figure 3).

A more principled approach is to first predict the transition
probabilities by minimizing a prediction loss, and then plu-
gin the predictions into a budget allocation algorithm in
Killian et al. [2023] that maximizes the fairness objective.
However, predictions from such a two-stage procedure can
be of poor quality [Wang et al., 2023], which leads to poor
budget allocations (see Figure 1).

4.1.1 A Non-Differentiable Approach

Having discussed why alternatives fail, we introduce our
first DFL approach that simultaneously allocates budgets
and predicts transition probabilities. We will first describe
a budget allocation subroutine, and then discuss a main
algorithm that uses the subroutine. We explain this approach
using MNW, and later discuss other fairness objectives.

Budget Allocation Problem (4) can be rewritten as:

max
bg

∑
g∈G

log (Vg (sg, bg)) s.t.
∑
g∈G

bg = B. (6)

Since computing Vg(sg, bg) is PSPACE hard [Papadimitriou
and Tsitsiklis, 1994], following Killian et al. [2023], we re-
place Vg(sg, bg) by the Lagrangian relaxation J(sg, bg) that
upper bounds it. Taking dJ(sg,bg)

dbg
= λ

1−β , we have that
J(sg, bg) is increasing in bg . In addition, when bg increases,
an optimal policy would take more actions, which implies
a lower action charge λk. Thus, dJ(sg,bg)

dbg
= λ

1−β is de-
creasing in bg, and J(sg, bg) is concave. Consequently, to
maximize MNW, it suffices to greedily assign one additional
budget to the group that achieves the maximum increase in
log J(sg, bg). Based on above, Algorithm 1 gives budget to
the group that provides the highest increase in log MNW.

Main Algorithm Algorithm 2 simultaneously predicts tran-
sition probabilities and allocates group budgets. At each
epoch, we predict transition probabilities and compute whit-
tle indices (lines 3-4). After that, we allocate budgets (lines
5-6) and collect trajectories using the Whittle index policy
πwhittle (lines 7-9). For each group, having the budget allo-
cation, we choose arms to pull according to a soft version of

Algorithm 2 Equitable DFL Algorithm for RMABs
Input: offline dataset, groups g ∈ G, learning rate αw, fre-
quency nf , warm-up epochs nini

1: Initialize a neural network with weights w to predict
transition probabilities

2: for epoch = 1,2,... do
3: Predict transition probabilities P
4: Compute Whittle indices W .
5: if epoch > nini and (epoch−nini)%nf == 0 then
6: Allocate budget bg using Algorithm 1 or 3
7: for timestep t =1,2,...,H do
8: for g ∈ G do
9: Given bg , Take actions according to the Whittle

index policy πWhittle with soft-top-B selection.
10: For each group g, use importance sampling to com-

pute group value Vg(sg, bg).
11: Compute Max Nash Welfare objective

MNW =
∏

g Vg(sg, bg)

12: Update w ← w + αw
dMNW
dπWhittle

dπWhittle

dW
dW
dP

dP
dw

13: return trained neural network with weights w

Whittle index policy, where instead of pulling arms with top
Whittle indices, we use a soft-top-K selection [Xie et al.,
2020]. Using the collected trajectories and importance sam-
pling, we compute the Max Nash Welfare objective (lines
11). Finally, we update the weights using the gradient. See
Appendix A for additional details, including importance
sampling (line 10) and gradient computations (line 12).

Limitations. Our first approach already addresses limi-
tations of simple alternatives and provides substantial im-
provement in the MNW objective in several settings (see
Figure 1). However, this approach does not consistently
outperform, and it fails to allocate sufficient budgets to a
marginalized group (see Figure 3). A key limitation of Algo-
rithm 1 is that the budget allocation is non-differentiable and
relies heavily on estimates of J∆(sg, bg). When transition
probability predictions are poor, J∆(sg, bg) estimates are
inaccurate, and the resulting poor budget allocations in turn
harm transition probability learning. In addition, the first
approach requires different procedures tailored to distinct
fairness objectives (e.g. for a fairness objective other than
MNW, we need to provide another greedy procedure based
on its properties).

4.2 OUR DIFFERENTIABLE PIPELINE

To address limitations in the first approach, we propose
to use a differentiable budget allocation procedure (Algo-
rithm 3), where we update budget allocations by taking
gradient steps. To use this procedure, in the main algorithm
(Algorithm 2), when allocating budgets (line 6), we call the
differentiable procedure (Algorithm 3).



Algorithm 3 Differentiable Budget Allocation
Input: groups g ∈ G, budget B, learning rate αb, (if not the
first time this algorithm is called: previous bg, πWhittle, and
MNW )

1: if 1st time this algorithm is called then
2: Initialize budgets bg proportional to group size.
3: else
4: Update bg ← bg + αb

dMNW
dπWhittle

dπWhittle

dbg

5: return budget allocation bg

We explain the pipeline using MNW and later discuss other
fairness objectives. The gradient of the MNW objective with
respect to bg can be calculated as dMNW

dπWhittle
dπWhittle

dbg
. To evalu-

ate the first term, the gradient of the MNW objective with
respect to the Whittle indices, we use the policy gradient
Theorem [Sutton et al., 1998]. To calculate the second term,
we establish the following proposition:

Proposition 1. For each group g ∈ G, to compute an ap-
proximate of the gradient dπWhittle

dbg
, it is sufficient to know

Whittle indices of arms in g, budget bg , the number of arms
Ng in group g.

Proof of Proposition 1. Pulling top-bg arms from each
group g ∈ G can be formulated as an optimal transport
problem. Specifically, we let µ :=

1Ng

Ng
∈ RNg and

v := [
bg
Ng

,
Ng−bg
Ng

]. We let y := [0, 1]⊤ and a cost matrix
Mij := |W̄i − yj |2, where W̄i is normalized Whittle index
of arm i ∈ g. The top-bg operator output can be obtained
from a linear mapping of the optimal transport plan T ∗ [Xie
et al., 2020]:

S(µ,v) := min
T∈Π(µ,v)

⟨T,M⟩, (7)

where Π(µ,v) := {T ∈ RNg,2
+ |T12 = µ, T1Ng = v}.

Notice solving the optimization problem (7) only requires
that we know W̄i, bg , and Ng .

Solving the optimization problem (7) is expensive and a
regularized version is commonly used [Cuturi, 2013]:

S̃ϵ(µ,v) := min
T∈Π(µ,v)

⟨T,M⟩+ ϵ
∑
i,j

Tij(log Tij − 1).

Using the regularized version, an approximate gradient of
the objective in (7) with respect to input v can be computed
(Algorithm 1 in Luise et al. [2018]).

Note the proof of Proposition 1 already provides detailed
procedures on gradient computations. When performing
gradient updates, we project the learned budget onto the
feasible region (we apply softmax normalization in the last
layer of the neural network learning per group budget allo-
cations). Thus, the budget constraint is satisfied throughout.

Since our pipeline relies on gradient updates, it would be de-
sirable if the optimization landscape is “nice”. Specifically,
we will argue that a proxy of MNW that extends to non-
integer values is concave. The analysis, tailored to RMAB
problems, requires arguments to address that budgets are
usually integer-valued. Observe that solving MNW (Prob-
lem 4) is equivalent to solving the log of MNW (Problem 6).
For ease of exposition, we define under a fixed budget bg of
a given group g:

hMNW
g (bg) := max

{bg′}g′∈G\g

∑
g′∈G

log Vg(sg, bg) s.t.
∑
g′∈G

= B.

Since we cannot pull 0.5 arm and hMNW
g (bg) is only de-

fined on integer valued points bg ∈ Z, we construct a proxy
of hMNW

g (·) that is defined on continuous values bg ∈ R:

ĥMNW
g (bg) := hMNW

g (⌊bg⌋)
+ (bg − ⌊bg⌋) · (hMNW

g (⌈bg⌉)− hMNW
g (⌊bg⌋))

Observe that ĥMNW
g (bg) = hMNW

g (bg) for bg ∈ Z, and
on non-integer valued bg the function ĥMNW

g (·) is a linear
extrapolation based on nearest integer points. Additionally,
ĥMNW
g (·) is piecewise linear. We now prove a result on the

concavity of ĥMNW
g (·).

Theorem 1. Assume V∆(bg) := Vg(bg + 1)− Vg(bg) is a
decreasing function of bg for each group g. For any group
g ∈ |G|, ĥMNW

g (·) is concave.

To give an example, we consider a setting with two groups
G = {g1, g2}. Since the total budget is B, it suffices to
choose bg1 and bg2 = B−bg1 can be easily calculated. From
Theorem 1, we have that ĥMNW

g1 () is concave, implying that
any local optima is a global optima. Thus, it suffices to start
from any feasible integer values of bg1 and then iteratively
move bg1 in steepest descent direction by one unit until
convergence. Since bg1 ∈ [B] has at most B + 1 possible
choices, following gradient updates (line 4, Algorithm 3),
our procedure will terminate in finite amount of iterations.

Complexity. Algorithm 3 evaluates gradients separately for
each group g ∈ G and each evaluation has complexity O(N)
[Luise et al., 2018], and thus the total cost is O(N |G|). In
contrast, Algorithm 1 has complexity O(N log(N)|G|BH),
where H is the length of the trajectory used to compute
J(sg, bg). Specifically, the factor |G|B is due to that we start
with computing J(sg, bg) for each group and then greedily
allocate one budget at a time. The factor N log(N)H is the
cost of computing J(sg, bg) [Killian et al., 2023].

4.3 DIFFERENT FAIRNESS OBJECTIVES

While the first approach uses Algorithm 1 that heavily relies
on the special properties of MNW and is not compatible with



other fairness objectives, our differentiable pipeline using
Algorithm 3 accommodates various fairness objectives.

The MNW objective is a product (Equation 4), which is
differentiable with respect to group value functions. The
Maximin Reward (MMR) objective employs a minimum
operator, which is not differentiable. To address that, we
approximate the minimum operator with the Hölder mean:

fp(x1, ..., xk) :=

(
1

k

∑
i

xp
i

) 1
p

, for p→ −∞

It is well-known that

lim
p→−∞

fp(x1, ..., xk) = min(x1, ..., xk).

Thus, replacing MNW in Algorithm 2 and 3 with fp(·) ap-
plied on group values V (sg, bg), we obtain a differentiable
pipeline for MMR objective. Next, we analyze the optimiza-
tion landscape for MMR, and argue a proxy of it that extends
to non-integer values, is concave. Although the results are
similar to that in MNW, the analysis tailored to MMR re-
quires different arguments. We define under a fixed budget
bg of a given group g:

hMMR
g (bg) := max

{bg′}g′∈G\g

min
g′∈G

Vg(sg, bg) s.t.
∑
g′∈G

= B,

and its proxy on continuous values bg ∈ R:

ĥMMR
g (bg) := hMMR

g (⌊bg⌋)
+ (bg − ⌊bg⌋) · (hMMR

g (⌈bg⌉)− hMMR
g (⌊bg⌋))

We have the following result:

Theorem 2. Assume V∆(bg) := Vg(bg + 1)− Vg(bg) is a
decreasing function of bg for each group g. For any group
g ∈ |G|, ĥMMR

g (·) is concave.

We conduct experiments on MNW and MMR. Note our
pipeline is compatible with any objective that satisfies As-
sumption 1, including Gini Index (see Appendix A).

5 EXPERIMENTS

We consider the following baselines. The parameters to
learn are the transition probabilities of the RMAB problem.
The Decision-focused-learning methods (DF) learn tran-
sition probabilities by maximizing the decision objective.
The objective evaluated using importance sampling (see
Appendix A), varies for distinct methods.

1. Killian et al. [2023] (Two Stage Learning + Greedy
Budget Allocation): Transition probabilities are
learned by maximizing the predictive accuracy. Group
budgets are computed greedily (Algorithm 1) where
the Whittle index policy is applied for every group.

2. DF-NoFair (DFL+No Fairness): The decision objec-
tive here is total utility. Group budgets are not com-
puted and the Whittle Index policy is applied to the
entire population. This method is equivalent to that
described in Wang et al. [2023].

3. DF-PropB (DFL+Proportional Budget): DFL deci-
sion objective here is total utility. We set group budgets
proportional to group sizes and then apply the Whittle
index policy for every group.

4. DF-GreedyB (DFL+Greedy Budget Allocation):
DFL decision objective here is a fairness metric. Group
budgets are computed greedily (Algorithm 1) then ap-
ply Whittle index policy for every group.

5. DF-LearnB (DFL+Learnable Budget Allocation):
This is our differentiable pipeline. DFL decision objec-
tive here is a fairness metric. Group budgets are learned
using Algorithm 3. The Whittle index policy is applied
to every group.

We conduct experiments on both synthetic and real-world
large-scale datasets, which we describe below.

Synthetic The synthetic dataset models an RMAB problem
with 2 states {0, 1} for N arms, B budget, time horizon
T = 10, and a reward discount rate of γ = 0.99. For
each arm and time step, we collect a unit reward at state
1 and 0 reward otherwise. We consider two settings with
different group characteristics. i) Two Groups: one group is
severely disadvantaged and there is a [50%, 50%] split be-
tween groups. ii) Three groups : The first group is severely
disadvantaged and the second group is moderately disad-
vantaged. There is a [33%, 33%, 34%] split between groups.
Compared to arms in the advantaged group, arms in dis-
advantaged groups obtain lower reward when not pulled
but also obtain a lower increase in reward when pulled.
Transition probabilities are randomly generated while en-
forcing that pulling is always strictly better than not pulling
as well as the group characteristics. Having sampled the
transition probabilities, we map them to features in R16

using a randomly initialized neural network. We study an
offline problem with historical data collected by running a
random behavioral policy.

Real-world data The dataset is collected by ARMMAN
[ARMMAN, 2019], an NGO in India working on improv-
ing health awareness for expectant and new mothers. The
program has enrolled over one million mothers, and health
workers periodically make service calls to boost mothers’
engagement in ARMMAN’s health information program.
Allocating limited service calls has been modeled as an
RMAB problem with two actions (a health worker initi-
ates a service call to the mother or not) and two states (en-
gaging or not) [Mate et al., 2022, Verma et al., 2023b].
Each beneficiary is modeled as a Markov Decision Process,
with unknown transition dynamics that can be inferred from
known features. Each week, mothers are in the engaging



state if they listen to a health information voice message sent
by ARMMAN for more than 30 seconds. Using a service
quality improvement study of 44K mothers conducted by
ARMMAN in January 2022 (see Appendix B.3.2 for data
usage and consent), we compute mothers’ empirical transi-
tion probabilities. In discussion with ARMMAN, we define
4 groups based on mothers’ education, income, and phone
ownership status (see Table 3 in Appendix B.3.3). These
groups are in proportions [26%, 38%, 29%, 7%], and Group
C and D need more resources. Instead of giving service calls
to mothers who respond better to service calls, ARMMAN
aims to not leave out groups who do not respond as well.
Finally, using mothers’ empirical transition probabilities
and group mapping, we run a simulated RMAB experiment
for a subpopulation with N = 10000 and B = 300.

5.1 EXPERIMENTAL RESULTS

We consider two Fairness objectives: Max Nash-Welfare
(MNW) and Maximin Reward (MMR). We report the respec-
tive Fairness Objective and the Utility, which is the total sum
of rewards of all arms. We report the fairness metrics across
20 different seeds. For each seed, we generate 10 instances
of RMAB problems for each setting and split the instances
into 70% training, 10% validation, and 20% testing sets.
Since every seed value results in different best and worst
results, we use a popular min-max normalization Henderi
et al. [2021], Gajera et al. [2016]

In Figure 1, we show results on synthetic data with different
numbers of groups and fairness objectives while in Figure 2,
we show results from real-world health information data
experiments. Across all problem scenarios, we observe that
DF-LearnB outperforms baselines in terms of fairness met-
ric, achieving 20-40% gains (see Tables 1 and 2 in Appendix
for more detailed comparison). This demonstrates the ad-
vantage of differentiating through the budget allocation in
network updates, and the need for our fully differentiable
pipeline. When optimizing for MNW, DF-LearnB achieves
utility comparable to DF baselines, including a state-of-the-
art DF algorithm [Wang et al., 2023] that purely optimizes
utility. When optimizing for MMR, we see a much higher
gain in fairness but at the expense of a noticeable drop in
Utility (see Figure 1(c-d,g-h)). This suggests that different
fairness metrics have varying levels of fairness-utility trade-
offs. While DF-LearnB can effectively optimize for the de-
sired objective, the utility cost depends on the objective and
so the choice of the objective can be application-dependent.
In Appendix B, we present additional results showing sim-
ilar trends across different values of N ∈ {100, 200, 500}
and B ∈ {0.2N, 0.4N, 0.6N}.

Learning Budget Allocation To further analyze how DF-
LearnB produces high fairness objective values, we show-
case the allocation of budget across training epochs. Fig-
ure 3 illustrates results on Synthetic with MNW objective

(see Appendix B.2 Figure 8 for results on MMR). While
DF-LearnB slowly adds up the budget to the disadvantaged
group alongside simultaneous learning of transition prob-
abilities, DF-GreedyB has unstable updates and fails to
allocate sufficient resources to the disadvantaged group.
This demonstrates the importance of a fully differentiable
pipeline. The budget allocation of Killian et al. [2023] is
completely separated from the learning of transition prob-
abilities, which thus leads to suboptimal budget allocation.
Finally, the proportional group allocation is a fixed strat-
egy allocating 50% of the budget to disadvantaged group
while the DF-NoFair strategy completely starves the dis-
advantaged group of all resources. We make similar ob-
servations on real-world ARMMAN data. In Figure 4,
we show the budget distribution when the MMR objective
is used (see Appendix B.3.4 Figure 8 for corresponding
results on MNW). Notice group sizes are unequal in this
real-world dataset, as reflected in DF-PropB. Due to the na-
ture of MMR objective, ideal budget allocations should be
fully oriented towards groups that are worst off and improve
their situation as much as possible. Here Group C and D
needs more resources. Notice our DF-LearnB method prior-
itizes these groups more in need, while other DF baselines
fail to provide sufficient resources to these groups.

Decision Focused Evaluation To evaluate how close a
method is to an optimal top-k selection, we analyze the
rank correlation between Whittle indices computed from
ground truth transition probabilities and these computed
from learned probabilities. Since the top-k selection is per-
formed for every group, we compute rank correlations at a
group level and report the Average Group Rank Correlation
(AGRC) over all groups and states.

AGRC =
1

|G||S|
∑

s∈S,g∈G

Spearmanr(W g
s , Ŵ

g
s ) (8)

where W g
s and Ŵ g

s are respectively the true and predicted
Whittle index lists for group g in state s. Spearmanr is the
Spearman’s rank coefficient.

We find that for synthetic data experiment optimizing MNW
metric with |G| = 2, AGRC is 0.114 for Killian et al. [2023]
and is 0.307 for our DF-LearnB. The low correlation values
indicate that it is a hard problem to retrieve true transition
probabilities and thus true Whittle index ordering for all
arms within a group. However, a larger AGRC value for
DF-LearnB clearly shows that DF-LearnB learns a better or-
dering of arms as compared to Killian et al. [2023], resulting
in decisions that yield higher fairness objective values.

Runtime In Figure 5a we demonstrate that our DF-LearnB
has runtime substantially smaller than Killian et al. [2023]
and comparable to baselines that ignore fairness. Specifi-
cally, DF-LearnB runtime is linear in the number of arms.
In Figure 5b, we show DFL approaches that incorporate
fairness have runtime linear in the number of groups, which
aligns with our theoretical analysis (see Section 4.2).



(a) MNW metric, |G| = 2 (b) MNW metric, |G| = 3 (c) MMR metric, |G| = 2 (d) MMR metric, |G| = 3

(e) Utility when maximizing
MNW objective, |G| = 2

(f) Utility when maximizing
MNW objective, |G| = 3

(g) Utility when maximizing
MMR objective, |G| = 2

(h) Utility when maximizing
MMR objective, |G| = 3

Figure 1: We report the min-max normalized Henderi et al. [2021] fair objective metric (a-d) and Utility (e-h) across 20
different seeds in synthetic data experiments. Here N = 200, B = 80 (see Appendix B.2 for more comprehensive results).

(a) MMR metric (b) Utility

Figure 2: Fair objective metric and Utility metric when opti-
mizing for MMR objective in real-world data experiments.
For all experiments, we have N=10000, B=300 (see Ap-
pendix B.3.4 Figure 9 for corresponding results on MNW)

Figure 3: Budget allocation to disadvantaged group, across
training epochs in synthetic data experiment with |G| = 2.

6 CONCLUSION

We provide a novel decision-focused-learning pipeline for
equitable RMABs, to prevent disparity between groups. Our

Figure 4: Budget allocation to different risk groups (see
Appendix Table 3) in real-world health information data
experiment.

(a) Runtime per epoch with
changing number of arms

(b) Runtime per epoch with changing
number of groups

Figure 5: Runtime comparison of different algorithms

algorithm simultaneously learns transition probabilities and
per-group budget allocation. We propose a novel differen-
tiable budget allocation method and provide theoretical re-
sults that shed light on the feasibility and effectiveness of
this method. Notably, our techniques including the budget al-
location method and the differentiable pipeline can be used



to incorporate various fairness notions such as Max Nash
Welfare, Maximin, and Gini Index. Our empirical results
on both synthetic and real-world large-scale RMAB prob-
lems demonstrate that our method significantly improves
performance as measured in an equitable objective, with
little sacrifice in utility.
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A ADDITIONAL ALGORITHM DETAILS

Figure 6 provides an overview of the pipeline, illustrating the difference between two-stage training and decision-focused-
learning.

Figure 6: This figure illustrates different methods to train the predictive model fw(·). Two-stage training uses the predictive
loss to perform gradient updates. In contrast, equitable decision-focused-learning backpropagates through the entire pipeline
of computing equitable budget allocation and formulating an equitable policy.

A.1 GRADIENTS WITH RESPECT TO WHITTLE INDICES

We define the value function for an arm i ∈ [N ] as

V λ
i (s) = max

a∈{0,1}
Qi(s, ai, λ). (9)

The value function captures the discounted cumulative reward an arm could receive, assuming all future actions are taken
optimally. Recall the Whittle index associated to the state si is:

Wi(si) := inf
m
{Qi(si, ai = 0,m) = Qi(si, ai = 1,m)} .

. We obtain for each arm i ∈ [N ] that

V λ
i (s) ≥

{
λ+R(s) + β

∑
s′∈S Pi (s, a = 0, s′)V λ

i (s′)
R(s) + β

∑
s′∈S Pi (s, a = 1, s′)V λ

i (s′)
(10)

*Equation Contribution
*Equation Contribution
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The above system of inequalities can be rewritten in matrix form [Wang et al., 2023]. Picking only rows where equality
holds, we obtain

A

[
1M βPi(S, a = 0,S)− IM
0M βPi(S, a = 1,S)− IM

] [
λ
V λ
i

]
= −A

[
r(S)
r(S)

]
(11)

where the binary matrix A ∈ {0, 1}(M+1)×2M has row sums all equal to one. The above system of equations is full-rank
and its solution is the Whittle index [Wang et al., 2021]. Thus, equation 11 allows us to compute dW

dP , the gradient of Whittle
indices with respect to transition probability predictions.

A.2 IMPORTANCE SAMPLING

In offline learning, importance sampling is commonly used to evaluate a target policy distinct from a behavioral policy (or a
mixture of behavioral policies) that generates the offline dataset Horvitz and Thompson [1952], Tokdar and Kass [2010].
Specifically, the inverse propensity scores are defined as

I{ai = a}
µ(ai|si)

, (12)

where µ(ai|si) denotes the probability we choose action ai on state si, following the behavioral policy.

More generally, given a target policy π(·, ·), one may use the following version of inverse propensity score:

π(ai|si)
µ(ai|si)

, (13)

Let R̂ (si, a) denote the reward estimates obtained using inverse propensity scores. Let A denote the action space. Notably,
R̂ (si, a) is unbiased:

E
[
R̂ (si, a) | si, a

]
=
∑
a′∈A

µ (a′ | si)E
[
R̂ (ai, a) | si, a, ai = a′

]
=
∑
a′∈A

µ (a′ | si) r (si, a′)
1 (a′ = a)

µ (a′ | si)
= r (si, a) .

For simplicity, in the above derivations we used the simpler notion of inverse propensity scores (12), and we assume that
reward observations r(si, a) are without noise. Similar results of unbiasedness can be obtained for the more general notion
(13) Tokdar and Kass [2010]. When there is noise in reward observations, one may substitute r(·, ·) above by the expected
reward and obtain a similar result.

A.3 THE GINI INDEX OBJECTIVE

One could replace MaxNashWelfare (MNW) objective in Algorithm 2 and 3 with the Gini Index objective∑N
i=1

∑N
j=1 |xi − xj |
2N2x̄

,

where x̄ = 1
N

∑
i xi. In implementation, the absolute value can be replaced by max{xi − xj , xj − xi}. For equity in

RMABs, we apply the objective on group values V (sg, bg).

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 IMPLEMENTATION AND HYPERPARAMETERS

When implementing the gradient computations described in Proposition 1 proof, we used the Python optimal transport
library [Flamary et al., 2021]. For soft top-k selection, we use ϵ = 0.01. We consider a feature dimension of 16 which are
correlated with the transition probabilities. For learning the mapping between features and transition probabilities, we use a
3 layer fully connected neural network and add dropouts to prevent overfitting. We use learning rate lr = 0.001 for updating
the weights of the neural network. We run all experiments with time horizon H = 10 and discount factor γ = 0.99. We run
synthetic experiments for 20 epochs and ARMMAN experiments for 30 epochs.



Table 1: A comparison of MaxNashWelfare objective for different methods, under different number of arms N , budget G.
The results illustrate that our DF-LearnB algorithm consistently outperforms baselines, often achieving 20-40% gains in
performance.

N |G| B DF-GreedyB DF-LearnB DF-NoFair DF-PropB Killian et al. (2023)

100

2

20 1844.4395±26.58 2075.7222±14.98 1855.7535±19.28 1964.265±13.66 1509.0015±27.26

40 3099.4233±31.0 3201.858±32.83 2848.6445±35.56 2967.8445±24.53 2554.0105±22.52

60 4331.004±70.77 4899.134±35.32 4543.9746±79.88 4311.2197±41.29 3781.4805±30.23

3

20 9772.077±180.51 10345.396±113.55 9554.029±136.11 9294.717±70.64 7410.884±262.82

40 18594.375±332.59 20877.344±350.93 20877.727±322.38 17690.48±244.01 14015.834±291.23

60 30537.754±518.93 33922.445±639.43 34160.22±628.87 30166.115±487.45 24601.406±494.18

200

2

40 7598.952±94.18 8109.785±56.59 7457.035±73.44 7907.203±56.18 6322.539±94.12

80 6121.2±982.21 6416.3003±1029.48 4779.436±939.67 6033.884±967.59 5080.54±815.24

120 17639.025±133.53 19646.81±176.58 18649.248±219.88 17160.963±119.82 15324.928±141.23

3

40 76300.6±1025.35 82425.66±818.74 77052.31±885.67 77905.2±841.42 59414.332±675.85

80 73718.67±11895.45 85024.91±13699.44 61591.492±12132.29 71157.48±11506.2 56691.207±9164.64

120 241364.95±4926.81 284413.8±4135.75 255120.45±4803.43 243100.05±2427.86 195661.33±1573.02

500

2

100 47710.535±335.0 51242.055±146.56 46619.305±271.52 49934.93±210.22 39057.38±267.54

200 79310.58±571.92 81587.65±462.29 73139.51±731.59 76560.4±609.23 63439.438±293.03

300 111593.96±824.02 122485.984±634.14 111663.516±1183.26 107888.336±606.95 94599.58±286.63

3

100 1185198.8±9542.08 1283090.5±7886.83 1173831.1±7249.73 1235366.4±9119.11 919897.7±14505.66

200 2316630.8±22941.54 2569942.0±28927.02 2473116.5±17234.65 2297424.5±25828.66 1742517.0±12990.4

300 3892794.8±41722.41 4434235.0±40364.05 4183696.0±50922.18 3855896.0±20056.38 3067652.0±17616.07

B.2 SYNTHETIC DATASET

Here we provide a more comprehensive set of results, and we report the mean and the standard deviation of fairness
objectives for all methods in Tables 1 and 2. We observe that our proposed method DF-LearnB substantially outperforms
baselines, including both two-stage methods and decision-focused-learning methods.

In synthetic experiments, we set up a disadvantaged group such that the benefit from pulling over not pulling an arm is
strictly lower for the disadvantaged group as compared to the advantaged group, and if we do not act on any arms, then
the disadvantaged group obtains much lower reward than the advantaged group. Hence in this setting, a method purely
maximizing utility would favor arms from the advantaged group because they have higher whittle indices. However, this
would induce a high fairness-penalty because not giving interventions to disadvantaged group creates high inequality across
groups.



Table 2: A comparison of Maximin Reward objective for different methods, under different number of arms N , budget G.
The results illustrate that our DF-LearnB algorithm consistently outperforms baselines, often achieving 20-40% gains in
performance.

N |G| K DF-GreedyB DF-LearnB DF-NoFair DF-PropB Killian et al. (2023)

100

2

20 94.25±2.14 102.5±0.76 66.92±0.56 88.17±0.85 74.33±1.45

40 103.67±4.17 145.17±1.15 96.0±2.32 108.25±0.55 108.17±0.79

60 137.75±4.24 171.58±1.02 164.75±1.72 139.25±1.73 133.75±1.43

3

20 55.61±1.15 78.78±1.05 51.22±0.86 61.78±0.61 61.39±1.26

40 84.33±2.82 102.72±1.18 65.17±1.07 78.94±0.95 73.89±1.91

60 94.72±2.72 114.06±1.24 107.61±0.94 96.5±1.53 87.0±2.1

200

2

40 191.83±1.39 205.17±2.36 140.17±1.82 177.33±1.5 156.83±2.52

80 237.12±5.51 294.42±2.37 197.96±5.0 221.38±1.8 218.19±2.59

120 297.67±5.23 350.67±3.19 336.83±3.07 287.33±3.57 279.83±2.6

3

40 112.67±1.33 156.56±1.68 96.44±1.04 120.89±1.57 120.44±1.32

80 162.62±4.27 214.69±1.71 134.95±6.53 153.31±2.01 151.49±2.65

120 209.56±3.5 236.89±3.18 228.44±2.5 189.44±2.56 176.0±2.19

500

2

100 495.83±2.05 527.08±2.04 340.83±2.57 445.0±2.09 395.0±3.5

200 647.08±7.77 740.0±1.73 476.25±13.8 550.83±3.27 550.83±4.63

300 749.58±3.96 863.75±3.06 830.0±2.89 712.92±2.82 657.08±3.23

3

100 327.5±4.22 406.67±3.18 239.44±1.87 303.06±3.03 307.78±3.14

200 418.89±11.0 548.33±3.18 303.61±2.01 381.39±1.71 384.72±2.19

300 525.0±5.39 596.67±2.04 579.44±2.31 488.61±2.99 438.61±3.13



B.3 REAL-WORLD ARMMAN DATASET

B.3.1 Secondary Analysis

Our experiment falls into the category of secondary analysis of the data shared by ARMMAN. This paper does not involve
the deployment of the proposed algorithm or any other baselines to the service call program. As noted earlier, the experiments
are secondary analysis with approval from the ARMMAN ethics board.

B.3.2 Consent and Data Usage

Consent is obtained from every beneficiary enrolling in the NGO’s mobile health program. The data collected through the
program is owned by the NGO and only the NGO is allowed to share data. In our experiments, we use anonymized call
listenership logs to calculate empirical transition probabilities. No personally identifiable information (PII) is available to us.
The data exchange and usage were regulated by clearly defined exchange protocols including anonymization, read-access
only to researchers, restricted use of the data for research purposes only, and approval by ARMMAN’s ethics review
committee.

B.3.3 Risk Attributes

Table 3 shows the risk attributes in the real-world ARMMAN dataset. We also show the percentile distribution of the Whittle
Index for every group in Figure 7.

Risk Attribute Definition Population
Proportion

Low Income Monthly Family Income <INR
15,000 (180 USD approx)

55.5%

Low Education Highest Education Level matricu-
lation or below

37.2%

Phone Owner Phone not owned by beneficiary 23.1%

Table 3: Risk attributes, their definitions, and their prevalence in the real-world data. Each risk attribute contributes to the
risk score by 1 resulting in a risk score value between 0 and 3

Group A has mothers who do not have any of the risk attributes. Group B has mothers with 1 risk attribute, Group C with 2
risk attributes, and Group D with all 3 risk attributes.

(a) Whittle Index for intervening in Non-
Engaging State

(b) Whittle Index for intervening in En-
gaging State

Figure 7: Whittle Index for different risk groups over top-k percentile



B.3.4 Group Sizes

In the main paper, we presented results on ARMMAN with unequal group sizes. The group sizes are unequal since the
proportion of people in distinct groups in the real-world are different. It is known that Max Nash Welfare favors groups of
smaller sizes and may not be blinded used on equal group size settings [Killian et al., 2023]. Thus, for results on MNW
objective, we sample a subset of the population such that the group sizes are equal. We present results on equal group sizes
in Figure 8 and 9.

When MNW objective is used, we observe that DF-NoFair allocates nearly all budgets to Group-D, whose mothers have
much higher Whittle indices (see Figure 7). Killian et al. [2023] and DF-GreedyB allocate budgets close to proportional
budgets. While baselines give extreme budget allocations (either all to group-D or simply equal allocations), our DF-LearnB
balances fairness and utility and prioritizes groups more in need.

Similar to our observations in the main paper, in fairness objectives, our DF-LearnB outperforms baselines by a wide margin
(see Figure 9). Notice our DF-LearnB greatly improves fairness objective values while achieving utility close to that of a
State-of-the-Art algorithm purely maximizing utility (DF-NoFair) [Wang et al., 2023].

Note our pipeline can be used with objectives such as Maximin, which naturally accommodates unequal group sizes. Even
for MNW, our methods could be extended to accommodate unequal group sizes by adapting existing techniques, such as
resampling arms, to balance group sizes [Killian et al., 2023].

(a) MNW objective (b) MMR objective

Figure 8: Budget allocation to different risk groups in real-world ARMMAN data experiment with equal group sizes.



(a) MNW metric (b) MMR metric

(c) Utility when maximizing MNW objective (d) Utility when maximizing MMR objective

Figure 9: Fair objective metric (a-b) and Utility metric (c-d) for different methods in real-world data experiments. For all
experiments, we have N=10000, B=300



C PROOF OF THEOREM 1

Proof. When there are only two groups g1, g2, from the budget constraint we have bg1 = B− bg2 . If we can show ĥMNW
g1 (·)

is concave, then by symmetry, the same argument can be applied to g2 to show that ĥMNW
g2 (·) is concave.

When there are three or more groups, we can view ĝ = G \ g1 as one artificial group. By the assumption that Vg(bg) has
diminishing returns in bg for any g ∈ G, we have that Vĝ(bĝ) has diminishing returns. Consequently, the same argument in
the two group case applies. By symmetry, the same argument can be applied to any group other than g1.

Thus, it suffices to show ĥMNW
g1 (·) is concave in the two group case.

Since the initial states s are given and fixed, for ease of notation, we drop the dependence of Vg(sg, bg) on sg and write as
Vg(bg).

We will prove by contradiction. Suppose to the contrary that ĥMNW
g1 (·) is non-concave. By definition of concave functions,

there must exist values 0 ≤ x1 < x2 ≤ B and α ∈ [0, 1] such that

α · ĥMNW
g1 (x1) + (1− α) · ĥMNW

g1 (x2) > ĥMNW
g1 (αx1 + (1− α)x2).

Since ĥMNW
g1 (·) is a piecewise linear function and is a linear extrapolation based on nearest integer points, there must exist

an integer k ∈ {1, ..., B − 1} such that

1

2
hMNW
g1 (k − 1) +

1

2
hMNW
g1 (k + 1) > hMNW

g1 (k). (14)

Figure 10 illustrates the landscape.

Figure 10: Illustration of a non-concave function in bg1

Multiplying both sides of Equation 14 by 2 and rearranging terms, we obtain:

hMNW
g1 (k − 1)− hMNW

g1 (k) > hMNW
g1 (k)− hMNW

g1 (k + 1) (15)

We consider two cases : (a) hMNW
g1 (k − 1)− hMNW

g1 (k) ≥ 0; (b) hMNW
g1 (k − 1)− hMNW

g1 (k) < 0.

case (a)

Since hMNW
g1 (k − 1)− hMNW

g1 (k) ≥ 0, we have ϵ := hMNW
g1 (k − 1)− hMNW

g1 (k) ≥ 0. By definition of MNW, we can
write hMNW

g1 (bg1) = log Vg1(bg1) + log Vg2(B − bg1). Thus,

log Vg1(k − 1) + log Vg2(B − k + 1) + ϵ

= log Vg1(k) + log Vg2(B −K)



Rearranging terms, we have

log Vg1(k)− log Vg1(k − 1) + ϵ

= log Vg2(B − k + 1)− log Vg2(B − k),

Together with the assumption that each group’s value function Vg(bg) has diminishing returns in bg , we have

log Vg1(k + 1)− log Vg1(k) + ϵ

≤ log Vg1(k)− log Vg1(k − 1) + ϵ

= log Vg2(B − k + 1)− log Vg2(B − k)

≤ log Vg2(B − k)− log Vg2(B − k − 1)

Taking the first and the last line above and rearranging terms, we obtain

log Vg1(k + 1) + log Vg2(B − k − 1) + ϵ

≤ log Vg1(k) + log Vg2(B − k).

Thus, hMNW
g1 (k + 1) + ϵ ≤ hMNW

g1 (k). Consequently, hMNW
g1 (k)− hMNW

g1 (k + 1) ≥ ϵ = hMNW
g1 (k − 1)− hMNW

g1 (k),
contradicting Equation 15.

case (b)

By Equation 15 and that hMNW
g1 (k − 1)− hMNW

g1 (k) < 0, we have

hMNW
g1 (k)− hMNW

g1 (k + 1) < hMNW
g1 (k − 1)− hMNW

g1 (k) < 0.

Let ϵ := hMNW
g1 (k+1)−hMNW

g1 (k) > 0. By definition of MNW, we can write hMNW
g1 (bg1) = log Vg1(bg1)+log Vg2(B−

bg1). Thus,

log Vg1(k + 1) + log Vg2(B − k − 1)

= log Vg1(k) + log Vg2(B − k) + ϵ

Rearranging terms, we have

log Vg1(k + 1)− log Vg1(k)

= log Vg2(B − k)− log Vg2(B − k − 1) + ϵ,

Together with the assumption that each group’s value function Vg(bg) has diminishing returns in bg , we have

log Vg1(k)− log Vg1(k − 1)

≥ log Vg1(k + 1)− log Vg1(k)

= log Vg2(B − k)− log Vg2(B − k − 1) + ϵ

≥ log Vg2(B − k + 1)− log Vg2(B − k) + ϵ

Taking the first and the last line above and rearranging terms, we obtain

log Vg1(k) + log Vg2(B − k)

≥ log Vg1(k − 1) + log Vg2(B − k + 1) + ϵ.

Thus, hMNW
g1 (k) ≥ hMNW

g1 (k − 1) + ϵ. Consequently, hMNW
g1 (k)− hMNW

g1 (k − 1) ≥ ϵ = hMNW
g1 (k + 1)− hMNW

g1 (k),
contradicting Equation 15.

Thus, in either case (a) and case (b), we have shown there is a contradiction. We conclude that ĥMNW
g (·) is concave for any

group g ∈ G.



D PROOF OF THEOREM 2

Proof. We start with defining linear extrapolations of group value functions:

V̂g(bg) := Vg(⌊bg⌋) + (bg − ⌊bg⌋) · (Vg(⌈bg⌉)− Vg(⌊bg⌋)), ∀g

Observe that V̂g(bg) = Vg(bg) for bg ∈ Z and on non-integer valued bg the function V̂g(bg) is a linear extrapolation based
on nearest integer points. By the assumption that Vg(bg) has diminishing returns in bg for any g ∈ G, we have that V̂g(bg) is
concave in bg .

When there are only two groups, bg1 = B− bg2 . Since V̂g2(·) is concave, we have that V̂g2(B− bg1) is a concave function of
bg1 . Since the minimum of concave functions is concave, we have that min(V̂g1(bg1), V̂g2(B− bg1)) is a concave function of
bg1 . Thus, ĥMMR

g1 (·) is concave. By symmetry, the same argument can be applied to bg2 to show that ĥMMR
g2 (·) is concave.

Thus, we proved the statement in the two groups case.

When there are three or more groups, we can view ĝ = G \ g1 as one artificial group. By the assumption that Vg(bg) has
diminishing returns in bg for any g ∈ G, we have that Vĝ(bĝ) has diminishing returns. Consequently, the same argument in
the two group case applies.
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