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A LLM USAGE DISCLAIMER

We used large language models (ChatGPT and Claude) to assist with manuscript polishing, includ-
ing grammar and clarity improvements, and to verify technical definitions and terminology. All
scientific content, analysis, and conclusions are the original work of the authors.

B DEFINITIONS

Self-attention Attention mechanism is defined as Att(Q,K,V) 4 softmax(QK ")V, where
Q € R™P K € RM*P 'V ¢ RM*P and softmax(-) is the row-wise softmax function|] Typi-
cally, Q, K and 'V are results of linear transformations of given inputs. If all matrices are calculated
based on the same input X, we refer to it as self-attention.

Cross-attention However, if Q is calculated using X, and another input Y is used to obtain K
and V, then we refer to it as cross-attention.

Multi-head attention Attx denotes a multi-head attention with K heads, i.e., a concatenation of
K attention layers.

Multi-head Attention Block (MAB) A multi-head attention block (MAB) is defined as follows
Lee et al.[(2019); Zhang et al. (2022):

MAB(X,Y) Z£(X,Y) + relu(f(X, Y)W), )
SR Y) LXW; + Attye (Q(X), K(Y), V(Y)),

where f(X,Y) g XW 4+ Att (Q(X), K(Y), V(Y)), W and W ; are learnable weight matrices.

Set Attention Block (SAB) Set Attention Block (SAB) is defined as follows [Lee et al.|(2019):
SAB(X) £ MAB(X, X). (10)

Induced Set Attention Block (ISAB) Induced Set Attention Block (ISAB) is defined as follows
Lee et al.|(2019):
ISAB(X) £ MAB (X, MAB(U, X)), (11)

where U € R™*P are inducing points, i.e., a global weight matrix learnable by backpropagation.

Pooling by Multi-Head Attention Pooling by Multi-head Attention (PMA) is defined as follows:
PMA(X) = MAB(S, rFF(X)), (12)

where S € R™*P is a matrix of learnable inducing points (or pseudoinputs), and tFF : RM*DP
RMxD 5 a row-wise linear layer. For fixed inducing points S in PMA, this layer is permutation-
invariant (this is due to applying the attention layer, see Property [3]in Appendix [C).

C PERMUTATION-EQUIVARIANCE AND PERMUTATION-INVARIANCE OF
ATTENTION MECHANISM

The row-wise self-attention function fulfills the following property:

R]\/[XD }M><M

Property 1. For a given matrix X € , and two permutation matrices Py € {0,1
and Pp € {0,1}P*P, the following statements hold true for the row-wise softmax function: (i)
softmax(XPJ,) = softmax(X)P}, (ii) softmax (P X) = P prsoftmax(X).

*We skip scaling QK " by 1 / v/D to avoid unnecessary clutter.
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Property |1 tells us that applying the permutation to the softmax function just reorders its
columns/rows, hence, applying softmax before or after the reordering gives the same vector, merely
shuffled.

Before we move to next properties, we recall that any permutation matrix is orthogonal, hence,
PPT=P'P=1

It is a well-known fact that the (self-)attention mechanism is permutation-equivariant, namely, the
following property holds true:

Property 2. For a given permutation matrix P € {0,1}M*M  the attention mechanism is
permutation-equivariant, i.e., Att (PQ(X), PK(X),PV (X)) = P Att (Q(X), K(X), V(X)).

Proof. First, we notice that: Q(PX) = PXWg = PQ(X), K(PX) = PXW, = PK(X) and
V(PX) = PXWy = PV(X). Next, to avoid unnecessary clutter, let us skip the dependency on
X. Then:

Att (PQ,PK,PV) = softmax(PQ(PK) " )PV
= softmax(PQK ' PT)PV
= P softmax(QK )PPV
= P softmax(QK ")V
=P Att (Q,K, V).
O

The attention mechanism becomes permutation-invariant for Q being a global parameter matrix only
if the following property holds true:

Property 3. For a given permutation matrix P € {0,1}M*M the attention mechanism
with inducing points Q € R™*P is permutation-invariant, i.e., Att(Q,PK(X),PV(X)) =
At (Q, K(X), V(X))

Proof. First, we notice that: K(PX) = PXWx = PK(X) and V(PX) = PXWy, = PV (X).
Next, to avoid unnecessary clutter, let us skip the dependency on X. Then:
Att (Q,PK,PV) = softmax(Q(PK) )PV
= softmax(QK P TPV
= softmax(QK )P PV
= softmax(QK ")V
=Att (Q,K, V).
O

However, for a latent matrix Z € R™*? obtained by transforming X in the permutation-invariant
manner, an embedding matrix E € RV *P the inducing points determined by a set of indices Z,
i.e., Q = E7, is permutation-equivariant if the indices Z are permuted, i.e., a permutation of indices
7(Z) induces the matrix P, thus, PQ = E (7). Then, the following property holds true:

Property 4. For a given permutation of indices I, ©(Z), or, equivalently, a matrix permutation
P ¢ {0,122 and latents Z calculated by a permutation-invariant function f, i.e., Z = f(PX),

the attention mechanism with inducing points Q € RIZIXP s permutation-equivariant, i.e.,
At (PQ.K(f(PX)), V(f(PX))) = PAtt (Q.K(Z), V()

Proof. First, since f is permutation-invariance, we get Z = f(PX) = f(X). Second, we note that
K(PZ) = PZW, = PK(Z) and V(PZ) = PZW = PV(Z). Then:
Att (PQ,K(f(PX)), V(f(PX))) = softmax(PQK(f(PX)) ") V(f(PX))
= P softmax(QK(f(X)) ") V(f(X))
= P softmax(QK(Z) ") V(Z)
=P Att (Q,K(Z), V(Z)).
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D RELATED WORK (EXTENDED)

Modeling a probability distribution over order-agnostic objects like sets is challenging for at least
two reasons. First, a model must be permutation-equivariant, meaning, changing the order of vari-
ables changes the order of parameters as well. Second, the model must also be exchangeable. Addi-
tionally, in the case of gene expression, for various tissues, we get different subsets of genes, thus,
ideally, we would like to learn a single model to transfer hidden dependencies (correlations) among
cells from distinct tissues.

Autoregressive Models A varying-size objects are typically modeled by autoregressive models
(ARMs) like transformer-based LLMs for text (Vaswani et al., [2017) or WaveNet for audio (Van
Den Oord et al., [2016). However, ARMs assume a fixed order of variables, otherwise, like in the
case of sets, their performance can drop significantly. Recently, it has been shown that misspecifying
the order in ARMs can result in a huge drop in their performance (Kim et al., 2025)). There are ways
of dealing with the order in ARMs (Pannatier et al.,2024), but they are not well-suited for processing
objects without an explicitly defined order.

Masked Diffusion Models Recently, a masked version of diffusion-based models (Ho et al.,[2020)
are used to generate text quite successfully (Nie et al.| [2025) since they can alleviate the need of
specifying the order of generation. However, as proven in (Kim et al., 2025), masked diffusion-
based models are order-agnostic but at the price of learning an extremely complex task of predicting
a variable value conditioned on a set of unmasked variables in arbitrary positions.

Variational Auto-Encoders Another modeling approach is to define a Variational Auto-Encoder
(Kingma & Welling, 2014; Rezende et al., 2014)) since this framework allows defining its compo-
nents in a flexible manner. In (Kim et al.| 2021), a SetVAE was formulated by introducing two
separate latent variables to deal with varying size of sets, namely, zz of the same dimensionality
as x7 such that z; corresponds to x;, ¢ € Z, and an additional vector of latents ¢ € R% of a
constant size d;. In general, x7 can be generated given zz and each z; is generated given c, i.e.,
p(xz|T,2z) pleze) p(c). where p(xz|T, zr) = [[;2, p(xile) and p(ezle) = p(|Z) T2, p(zile).
Then, the variational posteriors can take the following form: ¢(zz|xz) = 0(|Z]) Hlﬂl q(z;|x;),
where d(-) is Dirac’s delta, and additionally we have ¢(c|xz). In (Kim et al.,[2021)), a few simplifi-
cations were made such that the model fits well modeling point clouds (sets of 3-D points), namely,
forall i = 1,...,|Z], p(z;|c) = p(z;), and ¢(z;|c) = p(z;). Further, the authors of (Kim et al.,
2021)) suggested to define a hierarchical VAE with multiple layers of zz’s and c’s since a single
layer did not result in good performance, and they replaced the conditional likelihood with Chamfer
Distance as a well-suited distance for point clouds. In this paper, we find a great appeal of the VAE
framework and its flexibility; however, we claim using two distinct latents and a hierarchical latent
structure to be unnecessary. Instead, we suggest picking a careful parameterization to be crucial in
obtaining high performance.

Permutation-equivariant/invariant Parameterizations Deep Neural Networks are widely used
as transformations of raw data and parameterizations of probability distributions. It is advocated
(but also observed empirically) that modeling probability distributions requires utilizing symme-
tries in data (Bronstein et al., |2021). For instance, for objects whose dimensions can be shuf-
fled without changing the underlying latent structure, we need either permutation-invariant or
permutation-equivariant transformations. For a given permutation matrix P, a function f : X — Y
is permutation-invariant if f(Px) = y; on the other hand, a function f : X — Y is permutation-
equivariant if f(Px) = Py.

A general blueprint for composing geometric deep neural networks is a composition of permutation-
invariant layers and/pr permutation-equivariant layers, with nonlinearity activation functions in be-
tween (Bronstein et al., |2021). An example of such a blueprint is an architecture called DeepSets
(Zaheer et al., 2017)). It formulates a general permutation-equivariance layer treating all variables
consistently regardless their positions. Then it applies a symmetric aggregation like averaging or
other pooling operators (Kimura et al.| 2024; llse et al., 2018} |Xie & Tong} [2025) to combine these
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equivariant features in a permutation-invariant fashion, ensuring the order of inputs does not af-
fect the output. The drawback of this approach is that all elements are processed separately before
being aggregated with a non-learnable pooling operator. This manner of constructing permutation-
invariant transformations might be highly limiting.

A potential solution to that issue is replacing static pooling with a learned attention mechanism,
allowing utilizing transformer-based architectures to transform all elements jointly in an equivari-
ant and invariant fashion. An example of a fully-transformer-based model is SetTransformer (Lee

et al., 2019) that builds on the following idea. Attention mechanism is defined as Att(Q, K, V) A
softmax(QK ")V, where Q € R™*P K € RM*P VvV ¢ RM*D and softmax(-) is the row-wise
softmax function Typically, Q, K and V are results of linear transformations of some inputs. If
all matrices are calculated based on the same input X, we refer to it as self-attention. However, if
Q is calculated using X, and another input Y is used to obtain K and V, then we refer to it as
cross-attention. Let Atty denote a multi-head attention with K heads, i.e., a concatenation of K
attention layers. SetTransformer introduces a multi-head attention block (MAB) [Lee et al.| (2019);
Zhang et al. (2022)):

MAB(X,Y) Lf(X,Y) + relu(f(X, Y)W), (13)
FX.Y) LXW; + Aty (Q(X), K(Y), V(Y)),

where f(X,Y) g XW; + Attg (Q(X), K(Y), V(Y)), W and W are learnable weight ma-
trices. Given MAB, SetTransformer further defines the following two blocks, namely, the Set At-

tention Block (SAB) and Induced Set Attention Block (ISAB): SAB(X) . MAB(X, X), and

ISAB(X) 4 \MAB (X,MAB(U, X)), where U € R™*P are inducing points, i.e., a global weight
matrix learnable by backpropagation. ISAB allows to change the size of the input, and similarly
to SAB, it is permutation-equivariant (Lee et al.| [2019). To obtain a permutation-invariant trans-
formation, SetTransformer proposes to use another layer called Pooling by Multi-head Attention
(PMA):

PMA(X) = MAB(S, rFF (X)), (14)
where S € R™*P is a matrix of learnable inducing points (or pseudoinputs), and tFF : RM*DP
RMxD s a row-wise linear layer. For fixed inducing points S in PMA, this layer is permutation-
invariant (this is due to applying the attention layer, see Property [3|in Appendix [C). These building
blocks can be used to formulate a deep neural network for parameterizing a probabilistic model.
However, we advocate for a different parameterization that applies a single multi-head attention
layer in a transformer block to obtain a fixed-size output, and then a series of transformer blocks.

Latent Diffusion Models Latent Diffusion Models (LDMs) perform diffusion processes in learned
latent spaces rather than directly in high-dimensional data spaces. Stable Diffusion (Rombach et al.|
2022) pioneered this approach for text-to-image synthesis by training diffusion models in the latent
space of a pre-trained VAE, dramatically reducing computational costs while maintaining genera-
tion quality. This paradigm has proven effective across diverse scientific domains: all-atom diffu-
sion transformers (Joshi et al., 2025) generate molecules and materials with atomic-level precision,
similary LaM-SLidE (Sestak et al., [2025)) utilizes transformer-based LMD for molecular dynamics
(among others), while La-proteina (Geffner et al.,[2025) employs transformer-based partially latent
flow matching for atomistic protein generation. These advances demonstrate the versatility of latent
diffusion approaches for complex, high-dimensional scientific data across multiple modalities. Here,
we extend this framework to single-cell transcriptomics by proposing a transformer-based LDM for
this biological data type.

Generative Models for scRNA-seq In the context of single-cell genomics, numerous generative
models have been developed for (conditional) sampling of gene expression profiles. scVI (Lopez
et al., 2018) represents an early VAE-based generative model, while more recent approaches include
GAN-based and diffusion-based architectures such as scGAN (Marouf et al., 2020a) and scDiffu-
sion (Luo et al.; [2024). These models operate in continuous space and therefore transform dis-
crete gene expression data into log-normalized counts. Recently, latent diffusion frameworks have
emerged with models like SCLD (Wang et al.| 2023)) and CFGen (Palma et al., 2025a), which lever-
age latent diffusion frameworks. Additionally, application-specific generative models have been

SWe skip scaling QK " by 1 / v/D to avoid unnecessary clutter.
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developed for perturbational single-cell genomics, including CPA |Lotfollahi et al. (2023a), SquiD-
iff (He et al.l 2024}, CellFlow (Klein et al., [2025)), and CellOT (Bunne et al., |2023), which are
tailored to capture the effects of genetic and chemical perturbations on cellular states. Our approach
is similar in vein to CFGen and SCLD, but leverages transformer-based architectures for both our
newly proposed VAE as well as the latent diffusion model.

E OUR APPROACH: ADDITIONAL INFORMATION

E.1 GENE EXPRESSION DATA EMBEDDING: REPLACING dropouts

We present a method for processing sparse gene expression data that focuses computational re-
sources on biologically relevant signals. Given a set of D genes with their corresponding expression
counts, our approach addresses the inherent sparsity in single-cell RNA sequencing data, where
typically 70% or more of gene-cell entries are zero.

Let Z = {1,2,..., D} denote the complete set of gene IDs represented as integers, and let x =
(z1,x2,...,xp) represent the corresponding gene expression counts for a given cell, where x; € Ny
is the count for gene g;, then an n-th single cell is defined as a tuple (xz,,Z,,).

Our method proceeds as follows:
1. Context length constraint: We define a maximum context length d < D to limit the
computational complexity of downstream processing.
2. Expression-based filtering: For each cell, we identify the set of expressed genes:
E={ieZ: x>0} (15)
with corresponding expression values xg = {x; : i € £}.

3. Context construction: We construct a fixed-length input representation of dimension d.
When |€| < d (which is typically the case due to high sparsity), we pad the input with
artificial tokens to maintain consistent dimensionality:

{(zi,1)}ice U{(0,PAD)}*" 1 if €] < d
{(zi, 1) biee if|€]=d

where PAD is a special token for zero expression count.

Input = { (16)

This approach offers both computational and biological advantages. By excluding zero-expression
genes (dropouts) from the input representation, we enable the model to focus exclusively on ex-
pressed genes, which carry the meaningful biological signal. The padding tokens serve purely as
placeholders for implementation consistency and do not introduce spurious biological information,
as they are explicitly marked with zero counts. This design choice aligns with the biological un-
derstanding that in single-cell data, the absence of detected expression often represents technical
dropouts rather than meaningful biological zeros, making it advantageous to direct the model’s at-
tention solely to the detected expression events.

E.2 CONDITIONAL LIKELIHOOD: THE PARAMETERIZATION OF NEGATIVE BINOMIAL

We model the gene expression counts using a Negative Binomial distribution, which effectively
captures the overdispersion commonly observed in single-cell RNA-seq data. The conditional like-
lihood for our model is specified as follows.

Let h(Z) € RP denote the output of our neural network for a given cell embeddibg Z, where D is
the number of genes. We apply a softmax transformation to obtain normalized ratios:

exp(hy(Z))
SF  exp(hy(Z))

pi(Z) = (17)
where ¢ = 1,2,...,D,andzi’;1pi =1.
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To obtain the expected expression counts, we scale these probabilities by the cell-specific library

size L, namely:

ni(Z) = L - pi(Z) (18)
where p; represents the mean parameter for gene ¢ in the Negative Binomial distribution.
The gene expression count x; for gene ¢ is then modeled as:

where NB denotes the Negative Binomial distribution parameterized by mean p; and dispersion ;.
The probability mass function is given by:

s ) = F(mi+ai—1) ai_l a; ﬂ x;
() o) = o () (M) e

We consider two parameterizations for the dispersion:

1. Shared dispersion: A single parameter « is used for all genes, i.e., o; = « for all
i € {1,2,...,D}. This reduces the number of parameters and assumes homogeneous
overdispersion across genes.

2. Gene-specific dispersion: Each gene has its own dispersion parameter, resulting in a vec-
tor &« = (a1,qs,...,ap). This allows for heterogeneous overdispersion patterns across
genes, providing greater flexibility at the cost of additional parameters.

This formulation ensures that the predicted expression values respect the constraint that total counts
sum to the observed library size, while the Negative Binomial distribution appropriately models
the count nature and overdispersion of the data. The softmax transformation guarantees that the
neural network learns a proper distribution over genes, making the model interpretable as learning
the relative expression probabilities for each cell.

F DATASETS

General In our experiments, we used the following datasets: Dentate gyrus, Tabula Muris, Human
Lung Census Atlas (HLCA), Parse]1M and Replogle-Nadig; see Table [6]for details.

Experiment 1: Cell generation (benchmarks) In the cell generation experiment, we used three
widely used datasets, namely, Dentate gyrus, Tabula Muris, and HLCA. Dentate gyrus is the smallest
dataset (only 18k cell and 17k genes). Tabula Muris is a small dataset with over 245k cells and almost
20k genes. Human Lung Cell Atlas (HLCA) is the largest, having about 585k cells and almost 28k
genes.

Experiment 2: ParselM & Replogle In the second experiment, we used a curated subset of 10
Million Human PBMC dataset. We carried out experiments on 2k highly variable genes (HVGs). In
this data, we focused on a single donor who had 18 cell types undergone 90 cytokine perturbations
as well as a control treatment.

Next, we used the well-known Replogle-Nadig dataset which consists of four cell lines and 2024
gene-edits. We carried out experiments on 2k highly variable genes (HVGs). All 2024 gene-edits in
three cell-lines (’jurkat’, ’k562’, °rpel’), along with a subset of edits from the "hepg2’ cell line were
used for taining. The remaining "hepg2’ gene-edits were held out for testing.

Experiment 3: COVID-19 and Tabula Sapiens 2.0 In the fourth experiment, we used two
datasets for embedding evaluation. First, we used the scRNA-seq experimental dataset of four
healthy donors’ lung sections infected with SARS-CoV-2 (Wu et al.|[2024)). Data were downloaded
from CZ CELLxGENEﬁ Second, we used the Tabula Sapiens 2.0 dataset (Consortium & Quake,
2025)), a comprehensive single-cell atlas of human tissues. We focused on 6 tissues: blood, spleen,
lymph node, small intestine, thymus, and liver. We filtered out cell types with fewer than 100 cells
to ensure robust classification performance and used the resulting filtered dataset for multinomial
logistic regression-based cell type prediction tasks.

®https://cellxgene.cziscience.com/collections/2a%al17¢c9-1£61-4877-b384-b8cd5ffa4085
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Table 6: Summary of datasets used in the experiments.

Experiment Dataset name No. of cells No. of genes  No. of cell types/lines
1 Dentate gyrus 18,213 17,002 14 cell types

1 Tabula Muris 245,389 19,734 123 cell types

1 HLCA 584,944 27,997 50 cell types

2 ParselM 1,267,690 2,000 (HVGs) 18 cell types

2 Replogle-Nadig 624,158 2,000 (HVGs) 4 cell lines

3 COVID-19 354,026 27,998 55 cell types

3 Tabula Sapiens 2.0 1,482,026 ~ 25k 22 cell types

G BASELINES

scVI Single-cell Variational Inference (scVI) (Lopez et al.,[2018]) is VAE-based generative models
designed for single-cell discrete data. Following the standard VAE framework, this model learns
a Gaussian latent space that is subsequently decoded into the parameters of a discrete conditional
likelihood model.

scDiffusion A version of a latent diffusion model for single-cell gene expression data is scDiffu-
sion (Luo et al.,|2024). The scDiffusion model consists of three modules. The first module is an
auto-encoderthat transforms gene expression patterns into a compact representation space, allowing
dimensionality reduction and identification of complex cellular measurements. In the latent space, a
denoising network is trained to reverse a diffusion process applied to the latent embeddings, turning
noise into meaningful biological signal encoded in the latent space. To ensure guided generation, a
third model is trained, a classifier, for incorporating cell type or other biological attributes.

CFGen CFGen is a current state-of-the-art latent diffusion model that builds upon scVI, training a
latent flow matching model in the VAE’s latent space (Palma et al.,2025a)). Similar to our approach,
CFGen employs a two-stage training strategy: first training the autoencoder, then training the flow
matching model on the VAE-generated embeddings. While CFGen introduces additive steering
through classifier-free guidance, we utilize joint attribute control (see Table[I4). Additionally, CF-
Gen models library size within the diffusion framework and samples from the mean and standard
deviation of the library size distribution for conditional generation. We adapted this approach for
sampling library size in our Negative Binomial conditional likelihood; however, unlike CFGen, we
do not condition our Diffusion Transformer model on library size.

CPA Compositional Perturbation Autoencoder (CPA) (Lotfollahi et al.,|[2023b) is a deep genera-
tive model developed to predict gene expression changes under perturbations and their combinations.
CPA disentangles latent representations of basal cellular state, perturbation effects, and additional
covariates such as cell type. By recombining these factors through its decoder, CPA can recon-
struct observed expression profiles and generalize to unseen perturbation—covariate combinations.
This compositional structure enables CPA to extrapolate beyond training data, making it particularly
well-suited for evaluating out-of-distribution generalization in perturbational single-cell datasets.

H IMPLEMENTATION DETAILS

In this paper, we carried out model selection for various values of hyperparameters. In the following
paragraphs, we provide further details for reproducibility.

VAE Table[7|summarizes the hyperparameter configurations used for the VAE encoder architec-
tures in our experiments.

Table [8| summarizes the hyperparameter configurations used for the VAE decoder architectures in
our experiments.

Flow Matching Table [9 summarizes the hyperparameter configurations used for the LDM archi-
tectures in our experiments.
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Table 7: Hyperparameter values of VAE Encoders considered in this paper.

VAE Encoder

Embedding layer

Embedding size | 256
Cross-Attention Block
Number of Heads 1
No. pseudoinputs | {64, 256}

Embedding size 256
Transformer Blocks
Number of Blocks {2,4}
Number of Heads 1

Embedding size 256

Gaussian Stochastic Layer
Latents per token ‘ {8, 16}

Table 8: Hyperparameter values of VAE Decoders considered in this paper.

VAE Decoder
Transformer Blocks
Number of Blocks 4
Number of Heads 8
Embedding size 256
Normalization LayerNorm
Cross-Attention Block
Shared embedding layer True
Number of Heads 1
Embedding size 256
NegativeBinomial Stochastic Layer
Shared 6 False

Table 9: Hyperparameter values of LDMs considered in this paper.

LDM - Flow Matching

Denoising Transformer

Number of Blocks 8
Number of Heads 8
Embedding size 256
Normalization LayerNorm
Adaptive Normalization True
Hyperparams
o) le
v 0
Transport linear
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Training details For training, we swept over various configurations of hyperparameters, see Table

Ia

Table 10: Hyperparameter values of training procedures considered in this paper.

Training
KL-weight {0,1e7°}
Optimizer Adamw
Mini-batch size 256
Learning rate le~3
(B, B2) (0.9,0.95)
Weight Decay le™7
Learning scheduler | cosine

I EVALUATION

I.1 MAXIMUM MEAN DISCREPANCY (MMD)

We propose to use the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). MMD is a non-
parametric distance measure between probability distributions based on the notion of embedding
distributions into a reproducing kernel Hilbert space (RKHS) 7. Given two distributions P and @
over a domain X', the MMD is defined as:

MMD[F, P,Q] = sup (Eanp[f(2)] = Eynlf (9)]) (21)

where F is a class of functions. When F is the unit ball in an RKHS A with kernel k£, the MMD
can be expressed as:

MMD?(H, P, Q] = By wrmplk(z,2)] + By yoglk(y,¥)] — 2B py~olk(z, y)]- (22)

In practice, given finite samples X = {z1,...,,,} drawn from P and Y = {y1,...,y,} drawn
from @, we use the unbiased empirical estimate:

m n

1\T1\-/IT)2[)(7 Y} = m Zk(mt,xJ)—l—m Z k(yi,yj)— % Z Z k(a:l,yJ) (23)

i ij i=1 j=1

The choice of kernel k£ determines the richness of the function class F. Common choices include
the Gaussian RBF kernel k(z,y) = exp(—|lz — y||*/20?) with bandwidth parameter 0. The MMD
is zero if and only if P = () when using a characteristic kernel, making it a powerful tool for
two-sample testing and distribution matching applications.

1.2 2-WASSERSTEIN DISTANCE (W2)

The 2-Wasserstein distance provides an alternative metric for comparing probability distributions
based on optimal transport theory. For distributions P and () on R?, the 2-Wasserstein distance is
defined as:

1/2
Q) = ([ eslPaen) o4

vEL'(P,Q)

where I'(P, Q) denotes the set of all joint distributions with marginals P and ). For empirical
distributions with equal sample sizes n, given samples X = {x;,...,x,}andY = {y1,...,y¥n}
the discrete 2-Wasserstein distance simplifies to:
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1 n
2 _ L o 12
W2 (X,Y)=_ min 2—1 i = y(i) 17 (25)
where II,, is the set of all permutations of {1,...,n}. This optimization problem can be solved

efficiently using the Hungarian algorithm or entropic regularization approaches.

When both distributions are Gaussian with means pp, g and covariances Xp, ¥, the 2-
Wasserstein distance has a closed-form expression:

WE(P,Q) = |ur — poll® +tr (Sp + Bg — 2y *Bemy*)?) | (26)
which coincides with the Frechét Distance.

Unlike MMD, the Wasserstein distance directly captures the geometry of the underlying space and
provides interpretable transport plans between distributions.

1.3 FRECHET DISTANCE FOR GENE EXPRESSION PROFILE EVALUATION

We adapt the Fréchet Inception Distance (FID) framework to evaluate the quality of synthetic gene
expression profiles by replacing the Inception network’s feature extraction with Principal Compo-
nent Analysis (PCA). This approach provides a computationally efficient and interpretable metric
for comparing distributions of real and synthetic gene expression data.

1.3.1 PRINCIPAL COMPONENTS CALCULATION

Let X, = {x],x5,...,x],} denote the set of real gene expression profiles and X, =
(x3,%3,...,x5,} denote the synthetic profiles, where each x; € RP represents the expression
levels of D genes.

We first apply PCA to the combined dataset to obtain a projection matrix W € R¥**? containing
the top k principal components (e.g., k = 30). The feature representations are computed as:
z; = WTXZT, z; = Wij 27)

where z;, z} € R* are the projected representations in the principal component space.
1.3.2 FRECHET DISTANCE CALCULATION

Assuming the feature representations follow multivariate Gaussian distributions:

¢ Real data: N (., 2r);
* Synthetic data: N (s, Xs).

We estimate the parameters:

1 - ‘s 1 - T T
o=, Be= 3 (2 = p)(2 — )T (28)
ni= n—1 i=1
7lizs % -1 m(ZS* ) (25— ps) " (29)
/‘s*m]‘ZI T s*m_ljZI 5 T Bs)\Z5 — s

The Fréchet Distance between these distributions is then computed as:

FD = ||u — ﬂs”% + Tr(3, + X — Q(ZTZS)UQ) (30)

1/2

where Tr(-) denotes the matrix trace and (3, 3,)'/# is the matrix square root of X,.3;.
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1.3.3 INTERPRETATION

This metric captures both the difference in means (first term) and the difference in covariance struc-
ture (second term) between real and synthetic gene expression profiles in the reduced PCA space.
Lower values indicate better agreement between the distributions, suggesting higher quality syn-
thetic data. The use of PCA ensures that the comparison focuses on the most significant sources
of variation in the gene expression data while reducing computational complexity from O(d?) to
O(k?) where typically k < d.

1.4 PEARSON CORRELATION COEFFICIENT (PCC)

While MMD and Wasserstein distances measure distributional differences, the Pearson correlation
coefficient quantifies linear relationships between paired observations. For two random variables X
and Y, the population Pearson correlation coefficient is defined as:

Dy = Cov(X,Y) _ E[(X — px)(Y — py)] 31)
: oxoy  E[X — uxIVEY — )]

where px,py are the means and ox,oy are the standard deviations. Given paired samples
{(zi,v:)}4, the sample correlation coefficient is:

_ i (@ = ) (yi — )
VI (@ = )2/ (i — )%

where 2 = L 3" z;and y = 23" | ;. The coefficient 7 € [—1,1], with || = 1 indicating
perfect linear relationship and » = 0 suggesting no linear correlation. For multivariate data X €
R"*4 and Y € R™*4, one can compute the average correlation across dimensions or construct a
correlation matrix. While Pearson correlation captures only linear dependencies and is sensitive to
outliers, it remains widely used due to its computational efficiency and interpretability in assessing
feature-wise relationships between datasets.

r (32)

1.5 METRICS USED IN EXPERIMENTS

Reconstruction Metrics In our experiments, we use the reconstruction error for the Negative
Binomial distribution, PCC and Mean Squared Errors (MSE) as reconstruction metrics.

Generation Metrics For evaluating generation capabilities of models, we use the MMD with
the RBF kernel, the Wasserstein Distance, and the Frechet Distance, all calculated to 30 principal
components. We compute the PCA on the true data, and project generated data using the loadings.
All evaluations were run using 3 generation seeds.

J ABLATION ON TYPE OF CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance with Multiple Conditioning Variables. In our setting, as described in
section [4.2] the diffusion model is conditioned on multiple attributes simultaneously (e.g., cell type
and perturbation). We explore two alternative strategies for applying classifier-free guidance (CFG):

(Type I: Joint conditioning). A single conditioning token is assigned to each unique combination
of attributes. The model output under this strategy is given by

6t,e(za y) = Ut,é(z; Nuu) tw [Ut,e(z; y) - Ut,e(z; Nuu)] ’ (33)
where y encodes the full joint condition (e.g., “CD4 Naive + IL-9” or “HepG2 + PPP6C”).

(Type II: Additive conditioning). Instead of encoding combinations directly, we treat each condi-
tioning variable independently. For M attributes with labels {y(")}}2 | the guided output is

M
e (Z AV ) = vee(ZeNull) + 7w, [ (Ziy?) = v (ZeNul) |, (34

j=1
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where each attribute contributes an additive adjustment relative to the unconditional prediction.

Empirical Comparison. We evaluate both approaches on Parse 1M (conditioning on cell type
+ cytokine perturbation) and Replogle (conditioning on cell type + gene knockout). As shown in
Table|14] the joint conditioning strategy (Type I) consistently outperforms the additive conditioning
strategy (Type II) across metrics, indicating that learning a single joint embedding for each com-
bination of attributes is more effective in capturing complex context—perturbation interactions than
treating them independently.

In all experiments, we set guidance weight w to 1, and we did not tune this parameter.

K ADDITIONAL RESULTS

K.1 EXPERIMENT 1

In Table |11| we report an ablation study on encoding gene expression following our approach of
zero padding the non-expressed genes (see Appendix [E.T), or utilizing the full context as input, as
typically done in scVI. Our approach is superior in terms of reconstruction performance, as well as
more computationally efficient.

Table 11: Reconstruction performance comparison of our scLDM using the zero padding strategy
for encoding, or using all genes as input.

Dataset Model RE| PCC1T MSE|
full context 5458.6  0.097 0.252
zero padding  5325.3  0.125 0.242

Dentate Gyrus

In Table[I2] we present the model comparison on benchmark datasets, but on all genes. Please note
that in this comparison, scdiffusion performs better, and it is drastically better than on the highly
variable genes. The reason for that is that the data is extremely sparse, and the model synthesizes
data consisting mostly of zeros. As a result, the match becomes better. This is a clear indication of
deficiencies of the currently used evaluation metrics for generative models, which is a long-standing
issue in the field (Theis et al., 2016).

In Figure[d] [5]and [6] we present a visualization of gene-wise variance for true and generated data on
Dentate Gyrus, Tabula Muris, and HLCA, respectively. CFGen and scLDM properly recover true
variance, with a slight tendency of scLDM to overestimate, while scDiffusion completely fails and
underestimates the true Variance.

In Figure [7| we present a visualization of true and generated data for all models and all datasets in
UMAP coordinates. In Figure ?? we present the conditional generation results in UMAP coordinates
colored by the conditional class employed.

cfgen scdiffusion scldm

2.0

True Variance
[

True Variance

True Variance

0.5 " 0.5 ~

0.0 0.5 1.0 15 2.0 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Generated Variance Generated Variance Generated Variance

Figure 4: Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on Dentate Gyrus.
The error bars represent the standard errors over 3 seeds.
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Table 12: Model performance comparison on unconditional and conditional cell generation bench-
marks on all genes. W2, MMD? RBF and FD metrics calculated on 30 principal components are
reported (lower is better).

Setting  Model w2 MMD? RBF | FD |
Dentate Gyrus
scDiffusion  8.545 4+ 0.061 0.021 £0.000 16.303 £ 0.265
Uncond CFGen 11.396 £ 0.025 0.027 £0.001  24.942 4+ 0.456
Ours 9.489 + 0.054 0.027 £0.000  28.307 £ 0.357
scDiffusion  8.906 + 0.041 0.093 £0.001 28.829 +1.612
Cond CFGen 10.580 £ 0.022  0.082 £+ 0.001  40.298 4+ 0.472
Ours 9.147 + 0.024 0.108 £0.004 31.045 + 0.884
Tabula Muris
scDiffusion  8.616 4+ 0.215 0.002 £ 0.000 6.881 4+ 0.565
Uncond CFGen 11.331 £0.081 0.009 £0.000 31.788 +£1.073
Ours 10.573 £0.092 0.005 4 0.000 17.641 4+ 0.337
scDiffusion  11.459 +£0.081 0.035 4+ 0.001  43.456 + 1.678
Cond CFGen 9.420 4+ 0.041 0.026 £0.001  22.045 £ 0.389
Ours 8.530 + 0.110 0.019 £0.001  15.547 £ 0.557
HLCA

scDiffusion  9.234 + 0.008 0.002 £ 0.000 5.585 4+ 0.180
Uncond CFGen 12.651 £0.025 0.008 £0.000 24.038 4 0.492
Ours 10.816 £ 0.089  0.010 £0.000 24.126 £+ 0.473
scDiffusion  9.998 + 0.048 0.094 £ 0.002  40.093 + 3.103
Cond CFGen 10.715 £ 0.039  0.087 £0.005 36.178 £ 0.961
Ours 9.350 4 0.046 0.084 +£0.005 28.398 + 1.358
cfgen scdiffusion scldm

True Variance
True Variance
True Variance

1.0 1.5 2.0 o0 0.5 1.0 1.5 2.0
Generated Variance Generated Variance

0.0 0.5 1.0 1.5 2.0
Generated Variance

Figure 5: Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on Tabula Muris. The
error bars represent the standard errors over 3 seeds.

cfgen scdiffusion scldm

True Variance
True Variance
True Variance

0.0 05 1.0 15 2.0 25 "0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Generated Variance Generated Variance Generated Variance

Figure 6: Visualization of the gene-wise variance for true and generated data for CFGen (left),
scDiffusion (middle) our model (right), for the conditional generation settings on HLCA. The error
bars represent the standard errors over 3 seeds.
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(a) scLDM - unconditional (b) CFGen - it ©

Dentate Gyrus

Tabula Muris

HLCA

(d) scLDM - conditional (6) CFGen - conditional

() CFGen - conditional

Figure 7: Visualization of the generation results for all datasets and models for conditional and
unconditional generations. True and Generated gene expression is embedded in UMAP coordinates
jointly, upon normalization, following standard Scanpy pipeline.

(@) scLDM - conditional (b) CFGen - conditional

(c) scdiffusion - conditional
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Figure 8: Visualization of the conditional generation results for the dentate gyrus dataset and all

models, colored by the conditional label (clusters).
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K.2 EXPERIMENT 2: RECONTRUCTION CAPABILITIES

The results presented in Table[I3]demonstrate that our proposed approach significantly outperforms
the scVI baseline across all evaluated metrics on the Parsel1M dataset. Most notably, our method
achieves a substantially lower reconstruction error (RE) of about 310 nats compared to scVI’s 432
nats, indicating better reconstructive capabilities. Furthermore, our approach yields a remarkable
improvement in Pearson correlation coefficient (PCC), achieving 0.887 versus scVI’s mediocre
0.351, which suggests that our model captures the underlying biological relationships much more
effectively. The mean squared error (MSE) is also greatly reduced from 0.701 to 0.188, represent-
ing an approximately 73% reduction in reconstruction error. These consistent improvements across
multiple evaluation criteria provide strong evidence that our method offers substantial advantages
over scVI and indicates its great potential in analyzing biological data.

Table 13: Model performance comparison on cell reconstruction task.

Dataset  Model RE | PCC?T MSE |
Parse 1M scVI 432.41 +0.08 0.351 £0.000  0.701 £ 0.001
scLDM  149.70+0.22 0.874+0.003 0.165 4+ 0.002
scVI 2144.86 +0.35 0.166 +0.000  0.703 £ 0.001
Replogle

scLDM  1590.51 £0.38 0.713 £0.004 0.285 £ 0.002

K.3 EXPERIMENT 2: A COMPARISON BETWEEN additive AND joint CONDITIONING IN
CLASSIFIER-FREE GUIDANCE

Table[T4]compares the performance of our scLDM model using two different classifier-free guidance
approaches for conditional cell generation: the additive steering method proposed by [Palma et al.
(2025a) and our joint attribute control method. Across all metrics (Wasserstein-2 distance, MMD?
RBF, and Fréchet Distance) and both datasets (Parse 1M and Replogle), the joint approach con-
sistently outperforms the additive approach, demonstrating substantial improvements in generation
quality.

Table 14: Model performance comparison on conditional cell generation on Parse1M and Replogle.
For these results scLDM was trained using the classifier-free guidance approach proposed in [Palma
et al.|(2025a) (additive) and ours (joint).

Dataset  Model w2 | MMD? RBF | FD |

Parse 1M scLDM (additive) 15.850 £0.073 0.129 +0.004 109.196 + 2.933
scLDM (joint) 12.455 £ 0.001  0.027 + 0.000 18.145 + 0.068

Replogle scLDM (additive) 18.538 £0.058 0.451 +0.003  255.510 + 2.163

scLDM (joint) 11.288 + 0.011  0.200 £ 0.001  53.555 4+ 0.210

K.4 EXPERIMENT 3

For the last experiment, trained three VAEs for our approach (scLDM-VAE): with 20M param-
eters, 70M parameters, and 270M parameters. Further, we evaluated the resulting models using
embeddings on a downstream task (classification) for two out-of-distribution datasets (COVID-19
and Tabula Sapiens 2.0).

First, we evaluated these three versions of our model using reconstruction metrics on the dataset they
were trained on, namely, Human Census Data from Celleen Looking at Table we can see a
clear relationship between model size and reconstruction performance for the scLDM-VAE models
on the CellxGene dataset. As the number of parameters increases from 20M to 270M, all three
metrics show substantial improvement: reconstruction error (RE) decreases, Pearson correlation co-
efficient (PCC) increases from, and mean squared error (MSE) drops. These results demonstrate that
scaling up the scLDM-VAE architecture yields consistent performance gains across all reconstruc-
tion metrics, with the 270M parameter model achieving approximately 17% lower reconstruction
error and 18% higher correlation compared to the smallest 20M model.

"nttps://cellxgene.cziscience.com/
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Table 15: Reconstruction performance comparison of our scLDM-VAEs with varying number of
parameters: 20M, 70M, and 270M.

Dataset Model RE] PCCtT MSE\|
scLDM-VAE (20M) 1742.7  0.661 0.137

CellxGene Census scLDM-VAE (70M) 1552.7  0.739 0.106
scLDM-VAE (270M) 1441.7 0.783 0.091

Table 6] presents a comprehensive performance comparison of various models on the COVID-19
dataset, averaged across all donors. Our scLDM model with 270M parameters achieves the best
performance across all metrics (ROC AUC, PR AUC, F1 Score, Recall, and Precision), demon-
strating consistent improvements over both transformer-based baselines (TranscriptFormer, scGPT,
Geneformer, UCE) and traditional VAE approaches (scVI, AIDO.Cell).

Table 16: COVID-19 Model Performance Summary (Averaged Across All Donors). Bold indicates
the best performing model.

Model ROC AUC PR AUC F1 Score Recall Precision

scLDM (270M) 0.909+ 6e-04 0.877+0.001  0.820+= 0.001  0.836+ 0.001  0.806+ 0.001
TranscriptFormer  0.905+4 4e-04  0.874+ 9e-04  0.8144+0.002  0.829+ 0.003  0.8014 0.001
scLDM (70M) 0.9054 5e-04 0.872+0.001 0.8154+0.001 0.83+0.002 0.801 & 0.001
scLDM (20M) 0.9024 5e-04 0.869 +0.001 0.811 +£0.001 0.827 £0.001 0.797 4 0.002
UCE 0.876+ 5e-04  0.83440.002 0.7754 8e-04  0.781+0.001  0.7714 0.002
scGPT 0.876+£ 4e-04 0.831+£0.001  0.7794 9e-04  0.7934+0.002  0.7664 0.001
Geneformer 0.866=+ 6e-04 0.815+ 0.001 0.768+ 0.001 0.7814+0.003  0.757=4 0.001
AIDO.Cell 0.8214 7e-04 0.7534+9e-04  0.717+ 8e-04  0.7294 0.002  0.708=+ 0.001
scVI 0.8004 7e-04  0.7094 0.001  0.67540.001  0.6804 0.002  0.680=+ 0.001

Figure@visualizes the receiver operating characteristic (ROC) and precision-recall (PR) curves for
all models on the COVID-19 classification task. The curves further illustrate the superior discrimi-
native performance of scLDM variants, with the 270M parameter model achieving the highest area
under both curves, consistent with the quantitative results in Table @
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Figure 11: Precision-recall and reciver operator curves for COVID-19 data.

Table 17| summarizes model performance on the Tabula Sapiens 2.0 dataset, averaged across all tis-
sues. Notably, the smallest scLDM variant (20M parameters) achieves the highest F1 score (0.804),
slightly outperforming both larger scLDM models and all baseline methods, suggesting that model
scale may have diminishing returns on this particular cell type classification task.
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Table 17: Tabula Sapiens 2.0 model performance summary (averaged across all tissues)

Model F1 Score Recall Precision

scLDM-20M 0.804 £0.002 0.805 +0.002 0.812 £ 0.002
scLDM-270M 0.802 £0.002 0.803 £0.002 0.811 £0.002
scLDM-70M 0.802 £0.002 0.802 +0.002 0.810%0.002
scGPT 0.800 £0.002 0.802 +0.002 0.806 % 0.002
scVI 0.799 £0.002 0.794 +£0.002 0.814 +0.003
TranscriptFormer  0.799 + 0.002 0.800 £0.002 0.802 + 0.002
UCE 0.796 £0.002 0.797 £0.001 0.801 £0.003
Geneformer 0.777 £0.002 0.776 £0.002 0.786 + 0.003
AIDO.Cell 0.724 £0.002 0.715+0.002 0.748 +£0.003
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