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ABSTRACT

We present Meissonic, which elevates non-autoregressive text-to-image Masked
Image Modeling (MIM) to a level comparable with state-of-the-art diffusion mod-
els like SDXL. By incorporating a comprehensive suite of architectural innova-
tions, advanced positional encoding strategies, and optimized sampling condi-
tions, Meissonic substantially improves MIM’s performance and efficiency. Ad-
ditionally, we leverage high-quality training data, integrate micro-conditions in-
formed by human preference scores, and employ feature compression layers to
further enhance image fidelity and resolution. Our model not only matches but
often exceeds the performance of existing methods in generating high-quality,
high-resolution images. Extensive experiments validate Meissonic’s capabilities,
demonstrating its potential as a new standard in text-to-image synthesis. We re-
lease a model checkpoint capable of producing 1024× 1024 resolution images.

1 INTRODUCTION

Diffusion models, such as Stable Diffusion (Rombach et al., 2022a; Podell et al., 2023; per, 2024;
Art, 2023), have rapidly advanced to become the dominant paradigm in visual generation by replac-
ing Generative Adversarial Network (GAN). Recent developments like LlamaGen (Sun et al., 2024)
have ventured into autoregressive image generation using discrete image tokens derived from VQ-
VAE (Yu et al., 2022a). Despite progress, the substantial number of image tokens compared to text
tokens makes autoregressive generation inefficient. For example, tokenizing one 1024 × 1024 im-
age using a 16× downsampled VQVAE yields 4096 tokens, where a sequential generation process
is prohibitively slow.

Masked generative transformers, a class of generative models, have achieved significant results in
the fields of image generation, Specifically, MaskGIT (Chang et al., 2022) introduced a more ef-
ficient, non-autoregressive alternative, where all image tokens are predicted simultaneously in a
parallel, iterative refinement process. Then, MUSE (Chang et al., 2023) extended this technique to
higher resolutions, achieving 512× 512 resolution T2I generation. These non-autoregressive meth-
ods offer around 99% reduction in decoding steps compared to autoregressive methods. However,
despite their efficiency, non-autoregressive transformers remain limited in performance compared to
advancing diffusion or autoregressive models, particularly in high-quality, high-resolution text-to-
image synthesis.

In this work, we address these challenges and introduce two key innovations to make masked image
modeling (MIM) competitive with advanced diffusion models:

Enhanced Transformer Architecture: Previous MIM methods (Chang et al., 2023; 2022) pre-
dominantly utilized naive transformer architectures, potentially limiting their capabilities. We dis-
covered that a combination of multi-modal and single-modal transformer layers can significantly
boost MIM training efficiency and performance. Language and vision representations are inherently
different. The multi-modal transformer can effectively capture cross-modal interactions, extracting
information from unpooled text representations and effectively bridging the gap between these dis-
tinct modalities. This allows the model to harness useful signals from noisy data. Additionally,
subsequent single-modal transformer layers refine the visual representation, improving performance
and training stability. Empirically, a 1 : 2 ratio between these two types of transformer layers yields
optimal performance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Images produced by Meissonic exhibit exceptional image quality. More samples can be
found in Appendix M. Notably, Meissonic can effortlessly produce images with solid-color back-
grounds without requiring any additional modifications.

Advanced Positional Encoding & Masking Rate as Sampling Condition: We incorporate Rotary
Position Embedding (RoPE) (Su et al., 2024) for encoding positional information in queries and
keys, which helps maintain detail in high-resolution images. RoPE effectively addresses the issue
of context disassociation in transformers as the number of tokens increases. Traditional absolute
positional encoding methods lead to distortions and loss of detail at 512× 512 resolutions, whereas
RoPE significantly mitigates these issues. Additionally, we introduce the masking rate as a dynamic
sampling condition throughout the generation process. Previous MIM methods Chang et al. (2023;
2022) have overlooked this aspect, resulting in suboptimal image details. This issue arises because
the number of tokens predicted by the MIM model changes dramatically throughout the sampling
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loop. With the masking rate condition, the model can ascertain the current stage of the sampling
period by leveraging conditional information from the masking rate. Note that merely relying on
attention masks is insufficient to bridge this gap. We achieve effective conditional encoding by
discretizing the continuous masking rate into 1000 levels. This approach enables the model to adapt
to different stages of the sampling process, significantly improving image detail and overall quality.

Beyond these architectural improvements, to achieve comparable performance with SDXL for high-
resolution generation, we adopt effects in three additional aspects:

High-Quality Training Data: The quality of training data is crucial. While LAION (Schuhmann
et al., 2022) offers a diverse visual dataset, its captions can be subpar (Chen et al., 2024). We curated
a high-quality internal dataset with accurate captions, which, combined with our training strategy,
significantly improved the generative capabilities of the base model.

Micro-Conditioning: We identified that incorporating original image resolution, crop coordinates,
and human preference scores (Wu et al., 2023) as micro-conditions greatly enhances model stability
during high-resolution aesthetic training.

Feature Compression Layers: To efficiently generate high-resolution images, we integrated feature
compression layers, maintaining computational efficiency even at 1024× 1024 resolution.

Our contributions culminate in Meissonic, a next-generation T2I model based on masked discrete
image token modeling. Unlike larger diffusion models such as SDXL (Podell et al., 2024) and
DeepFloyd-XL (Liu et al., 2024a), Meissonic, with just 1B parameters, offers comparable or supe-
rior 1024×1024 high-resolution, aesthetically pleasing images while being able to run on consumer-
grade GPUs with only 8GB VRAM without the need for any additional model optimizations. More-
over, Meissonic effortlessly generates images with solid-color backgrounds, a feature that usually
demands model fine-tuning or noise offset adjustments in diffusion models.

Advancement of Meissonic represents a significant stride towards high-resolution, efficient, and ac-
cessible T2I MIM models. We evaluate Meissonic using various qualitative and quantitative metrics,
including HPS, MPS, GenEval benchmarks, and GPT4o assessments, demonstrating its superior
performance and efficiency.

2 METHOD

2.1 MOTIVATION

Recent breakthroughs in text-to-image synthesis have been largely propelled by diffusion models,
such as Stable Diffusion XL, which have set de facto standards for image quality, detail, and con-
ceptual fidelity.

Another approach, non-autoregressive Masked Image Modeling (MIM) techniques, exemplified by
MaskGIT and MUSE, has shown potential for efficient image generation to replace slow autore-
gressive techniques like Llamagen. Yet, despite their promise, MIM approaches face two critical
limitations:

(a) Resolution Constraint. Current MIM methods are limited to generating images at a maximum
resolution of 512 × 512 pixels. This limitation hinders their broader adoption and advancement,
particularly as the text-to-image synthesis community increasingly adopts 1024 × 1024 resolution
as the standard.

(b) Performance Gap. Existing MIM techniques have not yet achieved the level of performance
exhibited by leading diffusion models like SDXL. They notably underperform in key areas such
as image quality, intricate detailing, and conceptual representation, which are critical for practical
applications.

These challenges necessitate the exploration of new approaches. Our objective is to empower MIM
to efficiently generate high-resolution images (e.g., 1024×1024), while narrowing the gap with top-
tier diffusion models, and ensuring computational efficiency suitable for consumer-grade hardware.

Through our work, Meissonic, we aim to push the boundaries of MIM methods and bring them to
the forefront of text-to-image synthesis.
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Figure 2: The architecture of Meissonic. During the image generation process, discrete tokens are
created randomly according to a predefined schedule. Meissonic then applies masking and performs
predictions over several steps to reconstruct all tokens and decode the resulting image. In the case of
image editing, the original image is converted into discrete tokens, which are masked according to a
specified masking strategy. After a series of processing steps, the masked tokens are reconstructed
and utilized to decode the target image. Text prompts and other conditions are incorporated to
control the synthesis process. R represents the masking rate condition, and C indicates the micro
conditions. More details about Multi-modal Transformer Block can be found in Appendix I.

2.2 MODEL ARCHITECTURE

The Meissonic model is architected to facilitate efficient high-performance text-to-image synthesis
through an integrated framework comprising a CLIP text encoder (Radford et al., 2021), a vector-
quantized (VQ) image encoder and decoder (Esser et al., 2021a), and a Multi-modal Transformer
backbone. Figure 2 illustrates the overall structure of the model.

Vector-quantized Image Encoder and Decoder. We employ a VQ-VAE model (Esser et al., 2021a)
to convert raw image pixels into discrete semantic tokens. This model comprises an encoder, a
decoder, and a quantization layer that maps input images into sequences of discrete tokens using a
learned codebook. For an image of size H×W , the encoded token size is H

f ×W
f , where f represents

the downsampling ratio. In our implementation, we utilize a downsampling ratio of f = 16 and a
codebook size of 8192, allowing a 1024 × 1024 image to be encoded into a sequence of 64 × 64
discrete tokens.

Flexible and Efficient Text Encoder. Instead of using large language model encoders, such as T5-
XXL1 (Raffel et al., 2020) or LLaMa (Touvron et al., 2023), which are prevalent in previous works
(Chen et al., 2024; Esser et al., 2024), we utilize a single text encoder from the state-of-the-art
CLIP model with a latent dimension of 1024, and fine-tune for optimal T2I performance. While this
decision may limit the model’s capacity to fully comprehend lengthy text prompts, our observations
indicate that excluding large-scale text encoders like T5 does not diminish visual quality. Moreover,
this approach significantly reduces GPU memory requirements and computational cost. Notably,
offline extraction of T5 features would entail approximately 11 times more processing time and 6
times more storage than employing the CLIP text encoder, underscoring the efficiency of our design.

Multi-modal Transformer Backbone for Masked Image Modeling. Our transformer architecture
builds upon the Multi-modal Transformer framework (Sauer et al., 2024), incorporating sampling
parameters r to encode sampling parameters and Rotary Position Embeddings (RoPE) (Su et al.,
2024) for spatial information encoding. We introduce feature compression layers to efficiently han-
dle high-resolution generation with numerous discrete tokens. These layers compress embedding
features from 64×64 to 32×32 before processing through the transformer, and followed by feature
decompression layers to 64 × 64, thereby alleviating computational burdens. To enhance training
stability and mitigate the NaN Loss issue, we follow the training strategy from LLaMa Touvron et al.
(2023), implementing gradient clipping and checkpoint reloading during distributed training and in-
tegrating QK-Norm layers into the architecture. We elaborate on the designs of our transformer in
the subsequent section.

Diverse Micro Conditions. To augment generation performance, we incorporate additional con-
ditions such as original image resolution, crop coordinates, aesthetic score, and human preference

1Many works indicate that the T5 text encoder is the key factor in obtaining the ability to synthesize words,
we still show the ability to synthesize letters in Figure 10. We leave this a future improvement.
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score (Wu et al., 2023). These conditions are transformed into sinusoidal embeddings and concate-
nated as additional channels to the final pooled hidden states of the text encoder.

Masking Strategy. Following the approach established in Chang et al. (2023), we employ a variable
masking ratio with cosine scheduling. Specifically, we randomly sample a masking ratio r ∈ [0, 1]
from a truncated arccos distribution characterized by the following density function:

p(r) =
2

π
(1− r2)−

1
2

In contrast to autoregressive models that learn conditional distributions P (xi | x<i) for fixed token
orders, our approach utilizes random masking with variable ratios to enable the model to learn
P (xi | xΛ) for arbitrary subsets of tokens Λ. This flexibility is pivotal for our parallel sampling
strategy and facilitates various zero-shot image editing capabilities, which will be demonstrated in
Section 3.

2.3 MULTI-MODAL TRANSFORMER FOR MASKED IMAGE MODELING

Meissonic employs the Multi-modal Transformer as its foundational architecture and innovatively
customizes the modules to address the distinctive challenges inherent in high-resolution masked
image modeling. We introduce several specialized designs for MIM as follows:

• Rotary Position Embeddings. RoPE (Su et al., 2024) has demonstrated exceptional perfor-
mance within in LLMs (Su et al., 2024; Touvron et al., 2023; Ding et al., 2024; Bai et al.,
2023). Some studies (Lu et al., 2024; Lin et al., 2023; Zhuo et al., 2024) have attempted
to extend 1D RoPE (Su et al., 2024) to 2D or 3D for image diffusion models. Our findings
reveal that, due to the high-quality image tokenizer used for converting images into discrete
tokens, the original 1D RoPE yields promising results. This 1D RoPE facilitates a seam-
less transition from the 256× 256 stage to the 512× 512 stage, simultaneously enhancing
the generative performance of the model. The 2D MIM tokens are categorized into two
types: image tokens and text tokens. Although image tokens are inherently 2D, they can be
reshaped into a 1D sequence, allowing for the concatenation of 1D image tokens and text
tokens using 1D RoPE encoding.

• Deeper Model with Single-modal Transformer. Although the Multi-modal Transformer
block demonstrated commendable performance, our experiments reveal that reducing the
number of multi-modal blocks to a single-modal block configuration offers a more stable
and computationally efficient approach for training T2I models. Therefore, we opt to em-
ploy Multi-modal Transformer blocks in the initial stages of the network, transitioning to
exclusively Single-modal Transformer blocks in the latter half. Our findings suggest an
optimal block ratio of about 1:2.

• Micro Conditions with Human Preference Score. Our experiments reveal that incorporating
three micro-conditions is pivotal for achieving a stable and reliable High-resolution MIM
Model: original image resolution, crop coordinates, and human preference score. The orig-
inal image resolution effectively aids the model in implicitly filtering out low-quality data
and learning the properties of high-quality, high-resolution data, while crop coordinates en-
hance training stability, likely due to improved consistency between image conditions and
semantic conditions during cropped patch coordination. In the final stage, we leverage the
Human Preference Score (Wu et al., 2023) to effectively enhance image quality, using sig-
nals provided by the Human Preference Model to guide the model’s outputs in mimicking
and approximating human preferences.

• Feature Compression Layers. Existing multi-stage approaches, such as MUSE Chang et al.
(2023) and DeepFloyd-XL DeepFloyd (2023), employ cascading multiple subnetworks to
achieve higher-resolution image generation. We argue that such multi-stage training intro-
duces unnecessary complexity and hampers the generation of high-fidelity, high-resolution
images. Instead, we advocate integrating streamlined feature compression layers during
the fine-tuning stage to facilitate efficient high-resolution generation process learning. This
approach functions akin to a lightweight high-resolution adapter Guo et al. (2024), a mod-
ule extensively explored and integrated within Stable Diffusion. By incorporating 2D
convolution-based feature compression layers into the transformer backbone, we compress
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Table 2: HPS v2.0 benchmark. Scores are collected from https://github.com/tgxs002/
HPSv2. We highlight the best.

HPS v2.0
Model Animation Concept-art Painting Photo Averaged

DALL·E 2 (Ramesh et al., 2022) 27.34 26.54 26.68 27.24 26.95
Stable Diffusion v1.4 (Rombach et al., 2022a) 27.26 26.61 26.66 27.27 26.95
Stable Diffusion v2.0 (Rombach et al., 2022a) 27.48 26.89 26.86 27.46 27.17
SDXL Base 0.9 (Podell et al., 2024) 28.42 27.63 27.60 27.29 27.73
Realistic Vision (rea, 2024) 28.22 27.53 27.56 27.75 27.77
SDXL Refiner 0.9 (Podell et al., 2024) 28.45 27.66 27.67 27.46 27.80
SDXL Base 1.0 (Podell et al., 2024) 28.88 27.88 27.92 28.31 28.25
SDXL Refiner 1.0 (Podell et al., 2024) 28.93 27.89 27.90 28.38 28.27

Meissonic-512 28.90 28.15 28.22 28.04 28.33
Meissonic 29.57 28.58 28.72 28.45 28.83

the feature maps prior to the transformer layers and subsequently decompress them after
the transformer layers, effectively addressing the challenges of efficiency and resolution
transition. Specifically, the compression layer before the transformer employs 2D convo-
lution with a kernel size of 2 × 2 and stride of 2, while the decompression layer after the
transformer utilizes 2D transposed convolution with the same kernel size of 2×2 and stride
of 2.

2.4 TRAINING DETAILS Table 1: Comparison of training data and time for various models.

Model Params
(B)

Training
Images (M)

8×A100 GPU
Daysa

Würstchen (Pernias et al., 2024) 1.0 1420 128.1
SD-1.5 (Rombach et al., 2022b) 0.9 4800 781.2
SD-2.1 (Rombach et al., 2022b) 0.9 3900 1041.6
Imagen (Saharia et al., 2022) 3.0 860 891.5
Dall-E 2 (Ramesh et al., 2022) 6.5 650 5208.3
GigaGAN (Kang et al., 2023) 0.9 980 597.8
SDXL (Podell et al., 2024) 2.6 unknown unknown

Meissonic 1.0 210 30.3b

a Data collected from Sehwag et al. (2024).
b FP16 Tensor Core of A100 is 312 TFLOPS and H100 is 756.5 TFLOPS.

GPU hours are adjusted based on this rate.

Meissonic is constructed using a
CLIP-ViT-H-142 text encoder (Il-
harco et al., 2021), a pre-trained VQ
image encoder and decoder (Patil
et al., 2024), and a customized
Transformer-based (Esser et al.,
2024) backbone. We employ
classifier-free guidance (CFG) (Ho
& Salimans, 2022) and cross-entropy
loss to train Meissonic. Training
occurs across three resolution stages,
leveraging both public datasets and our curated data. First, we train Meissonic-256 with a batch
size of 2,048 for 100,000 steps. Second, we continue training Meissonic-512 with a batch size of
512 for an additional 100,000 steps. Third, we continue training Meissonic with a batch size of
256 for 42,000 steps with a resolution of 1024 × 1024. The performance results of Meissonic-512
and Meissonic are reported in Table 2. All experiments are carried out with a fixed learning rate of
1× 10−4. Further details are elaborated in Sec. 2.5. All inferences in this paper are performed with
CFG = 9 and 48 steps.

It’s crucial to highlight the resource efficiency of our training process. Our training is considerably
more resource-efficient compared to Stable Diffusion (Podell et al., 2023). Meissonic is trained in
approximately 100 H100 GPU days, demonstrating that a production-ready image synthesis foun-
dation model can be developed with considerably reduced computational costs. Additional details
on this comparison can be found in Table 1.

2.5 PROGRESSIVE AND EFFICIENT TRAINING STAGE DECOMPOSITION

Our approach systematically decomposes the training process into four carefully designed stages,
allowing us to progressively build and refine the model’s generative capabilities. These stages,
combined with precise enhancements to specific components, contribute to continual improvements
in synthesis quality. Given that SDXL has not disclosed details regarding its training data, our
experience is particularly valuable for guiding the community in constructing SDXL-level text-to-
image models. We present images generated by Meissonic at each of the four training stages in
Figure 3 to support our claims. More examples can be found in Appendix K.

2We utilize “laion/CLIP-ViT-H-14-laion2B-s32B-b79K” from OpenCLIP as our initial weights.
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A black and white line drawing of a rhinoceros head.

An image of a Pikachu wearing a birthday hat and playing guitar

Stage 1 Stage 2 Stage 3 Stage 4

Figure 3: Images generated using the same prompt across Meissonic’s four training stages. The
resolutions for stages 1 and 2 are 2562 and 5122, respectively, while stages 3 and 4 are 10242. For
clarity and comparison, all images are displayed in a consistent layout.

A Pokemon that resembles a phone booth is gaining popularity on Artstation and Unreal Engine.

A graphic poster depicting the fiery end of the world with detailed botanical illustrations and artistic influences.

Deliberate SDXL 1.0 MeissonicSD 2.1SD 1.5 DeepFloyd-XL 

Low poly John Travolta in Golden Eye 64.

Figure 4: Qualitative Comparisons with SD 1.5, SD 2.1, DeepFloyd-XL, Deliberate, and SDXL.

Stage 1: Understanding Fundamental Concepts from Extensive Data. Previous studies (Chen
et al., 2024; Yu et al., 2024) indicate that raw captions from LAION are insufficient for training text-
to-image models, often requiring the caption refinement provided by MLLMs such as LLaVA (Liu
et al., 2024b). However, this solution is computationally demanding and time-intensive. While some
studies (Chen et al., 2024; Sehwag et al., 2024) utilize the extensively annotated SA-10M (Kirillov
et al., 2023) dataset, our findings reveal that SA-10M does not comprehensively cover fundamental
concepts, particularly regarding human faces. Thus, we carefully curated the deduplicated LAION-
2B dataset by filtering out images with aesthetic scores below 4.5, watermark probabilities exceeding
50%, and other criteria outlined in Kolors (2024). This meticulous selection resulted in approxi-
mately 200 million images, which were employed for training at a resolution of 256 × 256 in this
initial stage.
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Table 3: GenEval benchmark. We highlight the best
result.

Model Overall Objects Counting Colors Position Attribution
Single Two

DALL-E mini 0.23 0.73 0.11 0.12 0.37 0.02 0.01
SD v1.5 0.43 0.97 0.38 0.35 0.76 0.04 0.06
SD v2.1 0.50 0.98 0.51 0.44 0.85 0.07 0.17
DALL-E 2 0.52 0.94 0.66 0.49 0.77 0.10 0.19
SD XL 0.55 0.98 0.74 0.39 0.85 0.15 0.23
Meissonic 0.54 0.99 0.66 0.42 0.86 0.10 0.22

Table 4: MPS scores on RealUser-800
Prompts. We highlight the best result.

Model MPS
Latent Diffusion [Rombach et al. (2022b)] 10.56
Stable Diffusion v1.4 [Rombach et al. (2022a)] 13.89
Stable Diffusion v2.0 [Rombach et al. (2022a)] 14.39
DeepFloyd-XL [DeepFloyd (2023)] 15.22
SDXL Base 0.9 [Podell et al. (2024)] 16.37
SDXL Refiner 0.9 [Podell et al. (2024)] 16.64
SDXL Base 1.0 [Podell et al. (2024)] 16.46
SDXL Refiner 1.0 [Podell et al. (2024)] 16.56

Meissonic 17.34

Stage 2: Aligning Text and Images with Long Prompts. In the second stage, we focus on im-
proving the model’s capability to interpret long, descriptive prompts. We filtered the initial LAION
set more rigorously, retaining only images with aesthetic scores above 8, and other criteria out-
lined in Kolors (2024). Additionally, we incorporate 1.2 million synthetic image-text pairs with
refined captions exceeding 50 words, primarily derived from publicly available high-quality syn-
thetic datasets, complemented by additional high-quality images from our internal 6 million dataset.
This aggregation results in around 10 million image-text pairs. Notably, we maintain the model
architecture while increasing the training resolution to 512 × 512, enabling the model to capture
more intricate image details. We observed a significant boost in the model’s ability to capture ab-
stract concepts and respond accurately to complex prompts, including diverse styles and fantasy
characters.

Stage 3: Mastering Feature Compression for Higher-resolution Generation. High-resolution
generation remains an unexplored area within MIM (Chang et al., 2023; 2022; Patil et al., 2024).
Unlike methods such as MUSE(Chang et al., 2023) or DeepFloyd-XL (DeepFloyd, 2023), which
rely on external super-resolution (SR) modules, we demonstrate that efficient 1024×1024 generation
is feasible through feature compression for MIM. By introducing feature compression layers, we
achieve a seamless transition from 512×512 to 1024×1024 generation with minimal computational
cost. In this stage, we further refine the dataset by filtering based on resolution and aesthetic score,
selecting approximately 100K high-quality, high-resolution image-text pairs from the LAION subset
utilized in Stage 2. This, combined with the remaining high-quality data, results in approximately 6
million samples for training at 1024 resolution.

Stage 4: Refining High-Resolution Aesthetic Image Generation. In the final stage, we fine-
tune the model using a small learning rate, without freezing the text encoder, and incorporate
aesthetic score as a micro condition. This can significantly enhance the model’s performance in
high-resolution image generation. This targeted adjustment significantly enhances the model’s per-
formance in generating high-resolution images, while also improving diversity. The training data
remains the same as in Stage 3.

3 RESULTS

3.1 QUANTATIVE COMPARISON

Classic evaluation metrics for image generation models, such as FID and CLIP Score, have lim-
ited relevance to visual aesthetics, as highlighted by Podell et al. (2024); Chen et al. (2024); Kolors
(2024); Sehwag et al. (2024). Therefore, we report our model’s performances using Human Pref-
erence Score v2 (HPSv2) (Wu et al., 2023), GenEval (Ghosh et al., 2024), and Multi-Dimensional
Human Preference Score (MPS)3 (Zhang et al., 2024b), as illustrated in Table 2,3,4.

Table 5: Comparison of 1 step (50 steps) inference time (s)
for Different Models and Batch Sizes.

Model Batch Size
1 2 4 8

SDXL Base 1.0 0.36 (5.38) 0.75 (10.06) 1.41 (19.69) 2.79 (38.58)

Meissonic-256 0.09 (3.11) 0.10 (3.14) 0.11 (3.22) 0.16 (4.70)
Meissonic-512 0.13 (3.24) 0.17 (4.24) 0.28 (7.74) 0.51 (14.51)
Meissonic-1024 0.24 (3.48) 0.35 (4.62) 0.62 (8.52) 1.17( 16.46)

In our pursuit of making Meissonic
accessible to the broader community,
we optimized our model to 1 billion
parameters, ensuring that it runs effi-
ciently on 8GB VRAM, making in-
ference and fine-tuning both conve-
nient. Figure 5 provides a compar-
ative analysis of GPU memory con-

3Given that the KolorsPrompts benchmark was unavailable, we curated a diverse prompt dataset consisting
of 800 real user-generated prompts spanning various concepts and themes for the MPS evaluation.
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Figure 6: Evaluating the ability to generate diverse styles. Prompt: A garden full of [Y] illustrated
in [X] style.

sumption4 across different inference
batch sizes against SDXL. Additionally, Table 5 details the inference time per step5.

3.2 QUALITATIVE COMPARISON
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Figure 5: GPU Memory Cost vs Inference Batch
Size for Different Models.

We also present qualitative comparisons of im-
age quality and text-image alignment in Figure 4,
with additional comparisons provided in the Ap-
pendix. Furthermore, Figure 6 illustrates Meis-
sonic’s proficiency in generating text-driven style
art image.

To complement these analyses, we conduct GPT-
4o to evaluate the performance between Meis-
sonic and other models in Figure 9.

All Figures and Tables demonstrate that Meis-
sonic achieves competitive performance in human performance and text alignment compared to
DALL-E 2 and SDXL, as well as showcasing its efficiency.

3.3 ZERO-SHOT IMAGE-TO-IMAGE EDITING
Model CLIP-I↑ CLIP-T↑ DINO↑
InstructPix2Pix (Brooks et al., 2023) 0.834 0.219 0.762
MagicBrush (Zhang et al., 2024a) 0.838 0.222 0.776
PnP (Tumanyan et al., 2023) 0.521 0.089 0.153
Null-Text Inv. (Mokady et al., 2023) 0.761 0.236 0.678
EMU-Edit (Sheynin et al., 2024) 0.859 0.231 0.819
Meissonic 0.871 0.266 0.760

Table 6: Results on the EMU-Edit Sheynin et al.
(2024) test set. As a foundational text-to-image genera-
tion framework, Meissonic demonstrates image editing
capabilities comparable to leading proprietary systems.

For image editing tasks, we benchmarked
Meissonic against state-of-the-art models using
the EMU-Edit dataset (Sheynin et al., 2024),
with results presented in Table 6. Addition-
ally, examples from our internal image editing
dataset6, including mask-guided editing in Fig-
ure 7 and mask-free editing in Figure 8, further
showcase Meissonic’s versatility. Remarkably,
Meissonic achieved this performance without any training or fine-tuning on image editing-specific
data or instruction dataset. More comparisons for zero-shot image editing ability can be found in
Appendix F.

4GPU memory usage was gauged using torch.cuda.memory reserved(). While this method might
yield higher values, all models are measured under identical settings to maintain fairness.

5Inference time is assessed using an A100 GPU with fp16 models. Notably, the reported times contributions
from the VAE and text encoder, meaning that multi-step inferences do not scale linearly.

6This dataset will be released in a separate work.
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A stylish dog wearing 
sunglasses 

A woman grasp a cloth  
in her left hand

There is a fashionable 
girl standing among the 
green grass

A woman wearing a 
white suspender skirt 
is sitting

The steak is served on 
the plate and there is a 
fork next to it

A woman with short 
hair wore a silver gas 
mask

Figure 7: Examples of image editing with mask on internal Image Editing Dataset
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Figure 8: Examples of image inpainting, out-
painting, and mask-free image editing on our in-
ternal Image Editing Dataset
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Figure 9: GPT4o Preference Evaluation of Meis-
sonic against current open Text-to-image Mod-
els.

4 CONCLUSION AND IMPACT

In this work, we have significantly advanced masked image modeling (MIM) for text-to-image (T2I)
synthesis by introducing several key innovations: a transformer architecture blends multi-modal and
single-modal layers, advanced positional encoding strategies, and an adaptive masking rate as the
sampling condition. These innovations, coupled with high-quality curated training data, progressive
and efficient training stage decomposition, micro-conditions, and feature compression layers, have
culminated in Meissonic, a 1B parameter model that outperforms larger diffusion models in high-
resolution, aesthetically pleasing image generation while remaining accessible on consumer-grade
GPUs. Our evaluations demonstrate Meissonic’s superior performance and efficiency, marking a
significant step towards accessible and efficient high-resolution non-autoregressive T2I MIM mod-
els.

Broader Impact. Recently, offline text-to-image applications on mobile devices have emerged,
such as Pixel Studio from Google Pixel 9 and Image Playground from Apple iPhone. These in-
novations reflect a growing trend toward enhancing user experience and privacy. As a pioneering
resource-efficient foundation model, Meissonic represents a significant advancement in this field,
delivering state-of-the-art image synthesis capabilities with a strong emphasis on user privacy and
offline functionality. This development not only empowers users with creative tools but also ensures
the security of sensitive data, marking a notable leap forward in mobile imaging technology. We
will continue developing Meissonic II.
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Ethics Statement. This research does not raise any ethical concerns, as it exclusively utilizes pub-
licly available datasets and does not involve subjective human evaluations. All work presented in
this paper strictly adheres to the ethical guidelines outlined in the ICLR Code of Ethics.

Reproducibility Statement. We have followed standard baseline settings as employed by com-
parable evaluation benchmarks. Comprehensive implementation details of our methodology are
provided in Section 2.4 and 2.5. To promote transparency and facilitate reproducibility, we are
committed to releasing both the checkpoint and the inference code under an open-access license,
accompanied by thorough documentation and step-by-step instructions. These materials will en-
able the accurate replication of the primary experimental results reported in this work. Additionally,
our research strictly complies with the reproducibility guidelines established by the ICLR Repro-
ducibility Requirements, ensuring that all aspects of the study are reproducible and verifiable by the
community.
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A MODEL NAME ORIGIN

The name “Meissonic” is derived from a combination of the renowned French painter Ernest Meis-
sonier and the term “sonic”. Ernest Meissonier is celebrated for his meticulous attention to detail
and his ability to capture dynamic moments in art. The addition of “sonic” evokes a sense of speed
and modernity, highlighting the model’s capabilities in efficient image synthesis and transformation.

B RELATED WORK

Diffusion-based Image Generation. Diffusion models have achieved remarkable advances in im-
age generation, with notable contributions like Stable Diffusion (Rombach et al., 2022b), and the
more recent SDXL (Podell et al., 2024), often driven by large-scale datasets. These models move
beyond pixel-level operations by working within compressed latent spaces, forming what we now
recognize as latent diffusion models (Luo et al., 2023; Podell et al., 2024). SDXL represents a sig-
nificant leap in this domain, introducing micro-conditions and multi-aspect training to gain greater
control over image generation, which has inspired a wide range of derivative models in the commu-
nity, such as Deliberate (per, 2024) and RealVisXL (rea, 2024).

The integration of transformer architectures has also become more prevalent, with models like
DiT (Peebles & Xie, 2023) and U-ViT (Bao et al., 2023) demonstrating the potential of diffusion
transformers in this field. SD3 (Esser et al., 2024), which combines diffusion transformers with
flow matching at an impressive scale of 8B parameters, underscores the scalability and potential
of the multimodal transformer-based diffusion backbone. Despite these advances, diffusion models
still face challenges, particularly their reliance on acceleration techniques (Sauer et al., 2023; Luo
et al., 2023; Yin et al., 2024) to speed up inference, making them cumbersome for real-time ap-
plications. Additionally, the quantization of diffusion transformers has proven less straightforward
than with large language models (Li et al., 2023). The research community continues to explore
better paradigms for image generation. Addressing these limitations, our work aims to contribute an
efficient, high-quality alternative in the form of Meissonic.

Token-based Image Generation. Token-based autoregressive transformers (Lee et al., 2022; Chen
et al., 2018; Yu et al., 2022b), first validated by VQ-GAN (Esser et al., 2021b), have shown con-
siderable promise for image generation. However, these methods are inherently computationally
demanding, requiring the prediction of hundreds to thousands of tokens to form a single image. As
a pioneering work, MaskGIT (Chang et al., 2022) challenged this paradigm by introducing a masked
image modeling (MIM) approach, achieving competitive fidelity and diversity in class-conditional
image generation. Building on this, MUSE (Chang et al., 2023) extended MIM to text-to-image
synthesis, scaling up to 3B parameters and achieving remarkable performance.

MUSE demonstrates the viability of non-autoregressive token-based models, but it encountered limi-
tations in generating high-resolution images, capping at 512×512, and lagging behind SDXL (Podell
et al., 2023) in terms of fidelity and text-image alignment. Meissonic advances the performance of
token-based models beyond what latent diffusion methods have achieved, effectively pushing the
envelope in terms of both quality and resolution in the text-to-image synthesis landscape with the
MIM method.

Figure 10: Zero-shot generation of stylized letters. Meissonic can synthesize individual letters to
form the word “MEISSONIC.” Prompt: A post featuring a [COLOR] ’[LETTER]’ painted on top.

C APPLICATIONS

We present the letter synthesis capability of Meissonic in Figure 10.
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Figure 11: Memes generated by Meissonic.

Figure 12: Cartoon Stickers generated by Meissonic.

We present the combination capability of complex concepts of Meissonic in Figure 1.

We present meme generation in Figure 11.

We present cartoon sticker generation in Figure 12.

D PERFORMANCE COMPARISONS FOR COMPLEX VERSUS SIMPLE PROMPTS

We present performance comparisons for complex prompts versus simple prompts in Figure 13.

E PERFORMANCE COMPARISONS WITH DIFFERENT NUMBERS OF
INFERENCE STEPS AND CLASSIFIER FREE GUIDANCE (CFG)

We present performance comparisons with different numbers of inference steps and Classifier Free
Guidance (CFG) in Figure 14,15,16,17,18,19.
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A white table with a vase of flowers and a cup 
of coffee on top of it, accompanied by a plate 
of buttery croissants, a folded linen napkin, 
and a faint ray of sunlight streaming through 
a nearby window in a cozy dining room.

A white table with a vase of 
flowers and a cup of coffee on 
top of it.

Table flowers.

A busy train station with people hurrying along the 
platforms, some carrying luggage, while a sleek 
modern train is arriving, its headlights cutting 
through the slight morning haze, under a vast 
glass roof with beams of sunlight streaming in.

A busy train station with people 
hurrying along the platforms.

Train station.

A cozy wooden cabin covered in a blanket of snow, 
with smoke rising from its chimney, surrounded by 
tall pine trees, as soft snowflakes fall from the 
gray sky, and a warm yellow glow from the windows 
invites you in.

A cozy wooden cabin covered in 
a blanket of snow.

Snow cabin.

A vibrant city at night with skyscrapers 
illuminated by neon lights, busy streets 
filled with cars and people, and a towering 
billboard flashing colorful advertisements, 
while a clear night sky reveals the faint 
twinkle of distant stars.

A vibrant city at night with 
skyscrapers illuminated by neon 
lights.

Night city.

Figure 13: Performance Comparisons for Complex versus Simple Prompts
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Figure 14: Performance Comparisons with Different Numbers of Inference Steps and Classifier Free
Guidance (CFG). Prompt: A statue of a man with a crown on his head.
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Figure 15: Performance Comparisons with Different Numbers of Inference Steps and Classifier
Free Guidance (CFG). Prompt: Studio photo portrait of Lain Iwakura from Serial Experiments Lain
wearing floral garlands over her traditional dress.
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Figure 16: Performance Comparisons with Different Numbers of Inference Steps and Classifier
Free Guidance (CFG). Prompt: A girl gazes at a city from a mountain at night in a colored manga
illustration by Diego Facio.
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Figure 17: Performance Comparisons with Different Numbers of Inference Steps and Classifier Free
Guidance (CFG). Prompt: A tranquil lake surrounded by snow-capped mountains under a clear sky.
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Figure 18: Performance Comparisons with Different Numbers of Inference Steps and Classifier Free
Guidance (CFG). Prompt: A futuristic cityscape with hovering vehicles and towering structures.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

St
ep

s:
 1

CFG: 1 CFG: 2 CFG: 3 CFG: 4 CFG: 5 CFG: 6 CFG: 7 CFG: 8 CFG: 9 CFG: 10
St

ep
s:

 3
St

ep
s:

 5
St

ep
s:

 7
St

ep
s:

 9
St

ep
s:

 1
1

St
ep

s:
 1

2
St

ep
s:

 1
3

St
ep

s:
 1

5
St

ep
s:

 2
0

St
ep

s:
 3

0
St

ep
s:

 4
0

St
ep

s:
 4

8
St

ep
s:

 5
0

St
ep

s:
 6

0

Figure 19: Performance Comparisons with Different Numbers of Inference Steps and Classifier Free
Guidance (CFG). Prompt: A massive starship docked in a glowing nebula.
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F MORE COMPARISONS FOR ZERO-SHOT IMAGE EDITING ABILITY

To ensure fair evaluations of zero-shot capabilities with SD1.5 and SDXL, we utilize Null-Text
Inversion (Mokady et al., 2023) for zero-shot editing with our method, taking into account that other
methods have been extensively trained on editing datasets. The configurations used for Null-Text
Inversion, along with any undocumented parameters, align with those provided in the official code
repository. The primary parameters are outlined as follows:

• cross replace steps.default = 0.8

• self replace steps = 0.5

• blend words = None

• equilizer params = None

For consistency, we used the recommended 512 × 512 resolution for editing and ran tests using
torch.float32, which is the official setting for Null-Text Inversion.On A6000 GPUs (48 GB),
the execution of MagicBrush (Zhang et al., 2024a) took approximately 36 hours for SD1.5 and 60
hours for SDXL. The runtime for Emu-Edit was significantly longer. Given the extensive computa-
tion, we randomly sampled 500 examples per benchmark for testing.

We present more comparisons for zero-shot image editing ability on EMU-Edit in Table 7.

CLIP-I↑ CLIP-T↑ DINO↑ L1↓ CLIPdir↑
SD 1.5 + Null-Text Inv. 0.780 0.240 0.637 0.159 0.096
SDXL + Null-Text Inv. 0.787 0.238 0.653 0.146 0.085
Meissonic-512 (Ours) 0.791 0.244 0.689 0.128 0.102

Table 7: EMU-Edit Results

We present more comparisons for zero-shot image editing ability on MagicBrush in Table 8.

CLIP-I↑ CLIP-T↑ DINO↑ L1↓ CLIPdir↑
SD 1.5 + Null-Text Inv. 0.824 0.228 0.647 0.121 0.106
SDXL + Null-Text Inv. 0.840 0.241 0.665 0.122 0.111
Meissonic-512 (Ours) 0.835 0.248 0.689 0.115 0.120

Table 8: MagicBrush Results

Our findings indicate that due to the inherent characteristics of MIM, Meissonic exhibits faster zero-
shot editing capabilities. Performance was evaluated with batch size = 1 and inference
step = 50 (compared to Null-Text Inv., which requires 500 backpropagation steps). Tests were
conducted on an A6000 GPU with 48 GB VRAM.

Besides, we present inference time comparision in Table 9.

SD 1.5 + Null-Text Inv. SDXL + Null-Text Inv. Meissonic-512 (Ours)
Time (s/10 pairs) 1040 + 100 1850 + 120 108
GPU (GB) 13.4 26.8 5.9

Table 9: Inference Time Comparison

These results demonstrate the substantial potential for reduced processing time with Meissonic.

We also present qualitative comparisons on zero-shot image editing ability in Figure 20.

G MORE COMPARISONS WITH SDXL FOR IMAGE GENERATION ABILITY

We present more comparisons with SDXL for image generation ability in Figure 21,22,23.
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Edit Prompt: A wooden bear

SDXLSD 1.5 Meissonic-512 

Edit Prompt: Mountains with a river flowing between them

Edit Prompt: A cat wearing hat

Figure 20: Qualitative comparisons on zero-shot image editing ability.

Meissonic SDXL

Figure 21: Qualitative comparisons with SDXL for image generation ability. Prompt: A breath-
taking photo of a serene mountain lake at sunrise, crystal-clear water reflecting the surrounding
snow-capped peaks, with a soft mist floating above the surface.

H ABLATION STUDY

Detailed roadmap to build Meissonic. We present ablation studies during training Meissonic-512
in Table. 24. The HPS v2.1 (Wu et al., 2023) scores are calculated for verifying the effectiveness of
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Meissonic SDXL

Figure 22: Qualitative comparisons with SDXL for image generation ability. Prompt: A professional
studio photograph of a fresh bouquet of wildflowers in a glass vase, water droplets visible on the
petals and leaves, placed on a clean white background.

Meissonic SDXL

Figure 23: Qualitative comparisons with SDXL for image generation ability. Prompt: A sharp photo
of a modern skyscraper during blue hour, its glass facade reflecting the city lights and the deep indigo
sky in the background.

each compoment. Our ablations are based on training stage 2, ensuring consistency with the training
dataset scale, model scale, and other training configurations.

I OUR MULTIMODAL TRANSFORMER BLOCK

We present a detailed structure of our Multi-modal Transformer Block for MIM in Figure 25. Specif-
ically, x denotes image embedding inputs, c denotes text embedding inputs, and y denotes conditions
inputs.
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Transformer baseline

add micro_conds

finetune text enc

finetune vqvae

more inference steps

add RoPE

reduce training data

add masking_rate conds

Meissonic-512

26.36
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28.19

28.14
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30.17

29.32

30.77

30.94

Figure 24: HPS v2.1 Score on internal 1000 prompts
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Figure 25: Multi-modal Transformer For MIM.

J WORD CLOUD OF OUR REALUSER800 BENCHMARK

We present a word cloud image that illustrates the diverse concepts, styles, and themes encompassed
within our RealUser-800 prompts benchmark in Figure 26.

K IMAGES GENERATED DURING DIFFERENT TRAINING STAGES

We present images generated using the same prompt across Meissonic’s four training stages in Fig-
ure 27.

L MORE EXAMPLES OF QUALITATIVE COMPARISONS

We present more examples of qualitative comparisons in Figure 28.
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Figure 26: Word cloud image of our RealUser-800 prompts benchmark.

M MORE IMAGES PRODUCED BY MEISSONIC

We present additional images generated by Meissonic using CC3M (Sharma et al., 2018) items,
with detailed captions provided by VILA-1.5 (Lin et al., 2023) and Morph (Pan et al., 2024). These
images can be found in Figure 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47.

We present additional images generated by Meissonic using HPS (Wu et al., 2023) benchmark
prompts. These images can be found in Figure 48,49,50,51,52,53.

N MORE IMAGES PRODUCED BY MEISSONIC AT DIVERSE RESOLUTIONS

We present additional images generated by Meissonic at diverse resolutions. These images can be
found in Figure 54,55.
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A sculpture of a Greek woman head with a headband and a head of hair.

A black and white line drawing of a rhinoceros head.

A white sports car is driving down a desert road.

A leopard is sitting on a tree branch in a forest with its front paws resting on the trunk.

An image of a Pikachu wearing a birthday hat and playing guitar

Stage 1 Stage 2 Stage 3 Stage 4

Figure 27: Images generated using the same prompt across Meissonic’s four training stages. The
resolutions for stages 1 and 2 are 2562 and 5122, respectively, while stages 3 and 4 are 10242. For
clarity and comparison, all images are displayed in a consistent layout.
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Exploded view diagram of a xenomorph.

Architecture render with pleasing aesthetics.

The image depicts a God smashing mirrors, while a detailed unicom-dragon is present in the scene.

A samurai in space.

Deliberate SDXL 1.0 MeissonicSD 2.1SD 1.5 DeepFloyd-XL 

The image features Breton monks resembling Rasputin from The Lorax, with cinematic lighting and a shallow 
depth of field.

A digital painting of a Pokémon named Faerow in a concept art style.

Spiderman as Wolverine with detailed muscular features and a full face, trending on multiple art platforms, 
created with hyperdetailed Unreal Engine, and optimized for high resolution viewing.

Figure 28: Qualitative Comparisons with SD 1.5, SD 2.1, DeepFloyd-XL, Deliberate, and SDXL.
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The wizard chants a spell over the 
apple

Pumpkin head wearing black wizard 
hat

Two women in black dresses with 
feathers on their heads.

A bedroom with a canopy bed and a 
wooden floor

A sled sits in a field with a sunset in 
the background.

A blue and white drawing of a sea 
dragon.

Figure 29: High Quality Samples Produced by Meissonic.
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A body of water with a cliff in the 
background

A collection of statues of Asian men 
and women.

A man with blonde hair and glasses is 
looking at the camera.

A table with a parrot on it and a map 
on it.

A beautiful sunset with a reflection 
of the Marina Bay Sands hotel.

Two snowmen are standing next to a 
snowman with a blank sign.

Figure 30: High Quality Samples Produced by Meissonic.
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1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Two people walking in the snow with a 
sled.

A tiger is swimming in a body of 
water.

A man with a crown and a blue robe 
is holding a glass.

A seal is sitting in the snow with its 
mouth open.

A small bird is perched on a wooden 
post.

An old man with a blue turban and a 
blue shirt is standing in front of a 
wooden wall.

Figure 31: High Quality Samples Produced by Meissonic.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

A small cute white dog is sitting on a 
bed.

A woman is laying on a couch and 
smiling.

A cloudy sky over a body of water. A fat man is holding a large black and 
white dog in a black-white figure 
style.

A white car with a silver rim and a 
headlight.

A young girl is holding a bouquet of 
flowers.

Figure 32: High Quality Samples Produced by Meissonic.
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1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

A man in a black leather suit sits in a 
red chair.

A bed with a red and white quilt on it.

A dog with a blue collar is looking at 
the camera.

A woman in a white dress is looking 
at her phone.

A statue of a man in front of a 
building.

A seal is wearing a Santa hat and is 
on a snowy hill with the words Happy 
New Year written below it.

Figure 33: High Quality Samples Produced by Meissonic.
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1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A plush toy of a girl with red eyes 
and a pink shirt.

A woman with a flower crown on her 
head.

A doll wearing a blue and white dress 
and a tan shawl.

A metal sculpture of a deer with 
antlers.

A penguin walks in the snow with a 
red hat on.

A man in a red jersey holding a 
basketball.

Figure 34: High Quality Samples Produced by Meissonic.
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1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A cat is looking at a butterfly A woman in a white wedding dress 
stands in a courtyard.

Two firefighters standing in front of 
a smoky background.

A model walks down a runway in a 
black dress.

A man wearing an orange hat and 
scarf is screaming

A black and white drawing of a dog's 
head in a circle.

Figure 35: High Quality Samples Produced by Meissonic.
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1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

A statue of a woman surrounded by 
flowers

A chess board with a row of chess 
pieces.

A bronze statue of an owl with its 
wings spread.

A woman in a pink shirt is sitting on a 
bed.

A group of women in red uniforms 
pose for a picture.

A gold mask with a gold strap is on a 
black surface.

Figure 36: High Quality Samples Produced by Meissonic.
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2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

A white goat with horns is standing 
in the snow.

A map of Africa with a blue 
background.

A woman stands on a dock in the fog. A woman is standing next to a 
picture of another woman.

A man wearing a virtual reality 
headset.

A white table with a vase of flowers 
and a cup of coffee on top of it.

Figure 37: High Quality Samples Produced by Meissonic.
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2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

A white and blue coffee mug with a 
picture of a man on it.

A statue of a man with a crown on 
his head.

A woman in a black wetsuit sits on a 
bench gazing at the sea on the beach.

Four bottles of maple syrup in 
different colors.

A soccer player in a blue and white 
uniform runs with the ball.

A man in a yellow wet suit is holding a 
big black dog in the water.

Figure 38: High Quality Samples Produced by Meissonic.
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2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

A pillow with a picture of a man on it. An Indian woman is wearing a white 
saree and standing in front of a pink 
wall.

A large ship is in the water with a 
foggy background.

A woman holding a baby.

An ancient Egyptian carved stone 
wall with three figures and 
hieroglyphics.

A snowy owl is sitting in the snow.

Figure 39: High Quality Samples Produced by Meissonic.
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2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

A woman is sitting on a boat and 
looking at a boat in the water.

A woman drinking from a cup with a 
blurry background.

A puffin is sitting on a rock and 
looking off into the distance.

A large body of water with a rock in 
the middle and mountains in the 
background.

A lynx is standing in the snow. Two actors are posing for a picture 
with one wearing a black and white 
face paint.

Figure 40: High Quality Samples Produced by Meissonic.
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2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

A statue of Jesus Christ is holding a 
feather in his hand in a purple style.

A dog is laying on the floor.

A black boat is tied to a dock on a 
calm lake.

A narrow stone pathway is enveloped 
by lush greenery and a veil of mist.

A white and black motorcycle with a 
headlight on it.

A woman with short red hair is 
looking off into the distance.

Figure 41: High Quality Samples Produced by Meissonic.
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2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

A statue of a lion stands in front of 
a building.

A bathroom with a modern design 
and a classic design.

A frozen river with ice on the 
surface.

Benjamin Franklin appears among a 
pile of US dollars

Pope Francis is talking to black 
priests.

Cherry blossoms bloom under the 
Eiffel Tower.

Figure 42: High Quality Samples Produced by Meissonic.
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2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

A young girl is holding a bowling ball. A pair of bride and groom figurines 
are positioned atop a white, two-
tiered cake.

A ship is sailing in the ocean with 
mountains in the background.

A woman in a gold dress poses for a 
photo.

A woman wearing a headband hat and a 
white dress is walking down a runway.

A squirrel is holding a gift bag with 
mouse open in the snow.

Figure 43: High Quality Samples Produced by Meissonic.
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2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

A man with long hair and a beard 
stands in a room, with a portrait of 
himself positioned behind him.

A gorilla is looking at the camera 
with a serious expression.

A sunset over a body of water with a 
tree in a small island.

A man with a hoodie on is looking at 
the camera.

The collage consists of photos 
featuring the bride and groom. The 
bride occupies half of the collage. The 
groom appears in two photos, one in a 
white suit and the other in a black suit.

A black and white photo of a cross in 
a field.

Figure 44: High Quality Samples Produced by Meissonic.
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2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

A woman with short hair and earrings 
is smiling.

A man dressed in Viking attire is 
seated among the crowd.

A dog is sitting in the snow in front 
of a mountain.

Two gloden statues of lions standing 
in a field.

A race car is driving on a track. A guitar is sitting on a wooden floor 
in front of a purple wall.

Figure 45: High Quality Samples Produced by Meissonic.
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2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

A man with a shaved head and a 
tattoo on his back.

A deer is drawn in a geometric style.

A woman is standing on a staircase,
back to the camera with three chains 
hanging from the ceiling.

A baby is sitting on a white blanket 
holding a white rose.

A woman wearing a crown and a 
necklace is smiling.

A surreal mental landscape, in which 
elements of nature and a house emerge 
from the back of a woman's head.

Figure 46: High Quality Samples Produced by Meissonic.
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2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

A forest with trees and fog. A cloudy sky over a green field.

A man wearing a large blue and gold 
feathered headdress.

An image depicting a minimalist 
design featuring a pool situated in 
front of a white building with palm 
trees.

A lion's head is shown in a grayscale 
image.

Three origami dogs, one of which is  purple, 
while the others are yellow.

Figure 47: High Quality Samples Produced by Meissonic.
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2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

A blind monk wearing an orange robe stares 
out the window of a spaceship in a dramatic 
lighting as depicted in a matte painting.

A racoon wearing a suit smoking a 
cigar in the style of James Gurney.

Classical romantic painting of 
Hatsune Miku with blue hair.

An astronaut floats amidst planets against 
a cosmic backdrop in a highly detailed, 
refreshing digital painting by James Jean.

Close-up hyperrealistic oil painting portrait 
of a nun fashion model looking up against a 
black background, with classicism and 80s 
sci-fi Japanese book art influences.

A digital painting of a hairless, 
inside-out cat with intricate details 
and a horror theme.

Figure 48: High Quality Samples Produced by Meissonic.
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2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

A raccoon in formal attire, carrying a 
bag and cane, depicted in a 
Rembrandt-style oil painting.

A cinematic fashion portrait of a 
Hindu goddess standing in a beautiful 
garden.

A Landrover crosses a forest path in the 
rain in a highly-detailed digital painting 
by artists Greg Rutkowski and Artgerm.

A portrait of Mario and Luigi from Mario 
Bros with a detailed face and a city 
background, painted by Bouguereau.

Image of Albert Einstein created by 
Park Jun Seong.

A painting depicting a wuxia 
character standing on a roof under a 
moonlit night.

Figure 49: High Quality Samples Produced by Meissonic.
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2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Steve Buscemi portrays the Joker. The image depicts stormtroopers in a hyper realistic style, with 
intricate and hyper detailed design, characterized by ambient and 
volumetric lighting, reminiscent of Star Wars concept art by 
George Lucas and Ralph McQuarrie, with a style similar to GTA V.

Image depicting a person's face 
composed entirely of fruits and 
vegetables.

A space man sat on a beach chair on 
the moon, pixel art.

A cyberpunk-style Batman in a dark 
city, depicted in an extremely 
detailed piece of artwork by Chris 
Labrooy.

The image is a trippy cheeseburger with 
warm colors, depicted in highly detailed 
illustration and rendered in octane, 
created by the award winning studio 4.

Figure 50: High Quality Samples Produced by Meissonic.
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2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

A Salem black cat girl in anime style 
with a simple background.

A cute anthropomorphic fox knight 
wearing a cape and crown in pale blue 
armor.

Blond-haired girl depicted in anime 
style.

A cute anime-style female cat girl 
with large eyes is pictured 
underwater with a simple background.

A girl peers over the edge of a 
mountain at a giant city in the dark of 
night, depicted in a manga illustration 
by Kentaro Miura and Hiromu Arakawa.

Illustration of an anime maid with a 
pretty face and eyes, shown in a full-
body upper shot.

Figure 51: High Quality Samples Produced by Meissonic.
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2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

A full-body shot of an anime maid 
with rich detail, featuring a pretty 
face and eyes.

A minimalist tattoo inspired by the 
Studio Ghibli films

A puppy driving a car in a film still. The Little Prince talking to the fox 
in an animation shot by Tim Burton's 
art.

Anime portrait of an Asian schoolgirl 
with her pet sugar glider.

Luke Skywalker with Muppets.

Figure 52: High Quality Samples Produced by Meissonic.
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2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Medium shot black and white manga 
pencil drawing with a highly detailed 
face of Alita by Yukito Kishiro.

Studio photo portrait of Lain Iwakura 
from Serial Experiments Lain wearing 
floral garlands over her traditional dress.

Frontal portrait of anime girl with 
pink hair wearing white t-shirt and 
smiling.

Anime oil painting of Rem from Re 
Zero.

Anime-style fighter pilot in cockpit 
engaged in a night air battle with 
explosions.

A girl gazes at a city from a 
mountain at night in a colored manga 
illustration by Diego Facio.

Figure 53: High Quality Samples Produced by Meissonic.
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2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

960 x 1280, A dense jungle with sunlight 
filtering through the canopy.

960 x 1280, A massive starship docked in 
a glowing nebula.

960 x 1280, A mystical temple hidden deep 
within a cloud-covered mountain.

1280 x 960, A large body of 
water with a rock in the 
middle and mountains in the 
background.

1280 x 1024, A white table with 
a vase of flowers and a cup of 
coffee on top of it.

Figure 54: More Images Produced by Meissonic at Diverse Resolutions.
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3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

960 x 1280, A quiet meadow bathed in 
soft morning dew.

1280 x 960, A frozen lake 
surrounded by snow-covered 
trees under a pale winter sun.

1024 x 1280, A stormy sea with crashing 
waves and lightning illuminating the clouds.

1024 x 2048, A frozen lake surrounded by snow-covered trees under a pale winter sun.

Figure 55: More Images Produced by Meissonic at Diverse Resolutions.
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