
Under review as a conference paper at ICLR 2024

MERINO: ENTROPY-DRIVEN DESIGN FOR MOBILE-
FRIENDLY GENERATIVE LANGUAGE MODELS - AP-
PENDIX

Anonymous authors
Paper under double-blind review

APPENDIX

In the appendix, we provide preliminary knowledge of autoregressive transformers (Appendix A),
detailed one-shot learning results (Appendix B), design details of MeRino (Appendix C), including
search space configurations of our entropy-driven design, structural details of MeRino, and detailed
Evolutionary Algorithm (EA) and Mutation algorithm, and limitations (Appendix D).

A PRELIMINARIES

Autoregressive Transformers Decoder-only, or autoregressive transformers, operate by predict-
ing the next element in a sequence based on the preceding elements. A standard autoregressive
transformer comprises an embedding layer to project sequences of tokens to hidden dimensions and
stacks of transformer layers to capture long-term dependencies between input tokens using the self-
attention mechanism. A transformer layer includes two main components: a multi-head attention
(MHA) module and a position-wise feed-forward network (FFN). The MHA module facilitates cap-
turing contextual information by attending to different positions within the input sequence, while the
FFN performs element-wise transformations to introduce non-linearity and improve representational
capacity.

Multi-Head Attention (MHA) Multi-head attention (MHA) is a crucial component within the
transformer architecture that enables the model to selectively attend to different segments of the
input sequence. This mechanism involves projecting the input sequence into multiple attention
heads, each of which calculates an independent attention distribution. In MHA computation, there
are specifically four main matrices involved: attention matrices WQ,WK ,WV ∈ Rdin×din/h and
output project matrix WO ∈ Rdin×dout . Given the output of previous layers X ∈ Rn×din as input,
the attention function is formulated as:

Q,K, V = XWQ, XWK , XWV (1)

Attn(Q,K, V ) = softmax(
QKT√
din/h

)(V ) (2)

where Q, K, and V represent queries, keys, and values, respectively.

MHA is defined by concatenating h attention heads and producing outputs as follows:

MHA(X) = Concat(Attni, ...,Attnh)WO (3)

In addition, the transformer layer adopts residual connection and layer normalization on top of MHA
to compute the final outputs.

XMHA = LayerNorm(X + MHA(X)) (4)

Position-wise Feed-forward Network (FFN) In addition to the MHA, each transformer layer
includes a feed-forward network (FFN). The FFN applies two point-wise fully connected layers fol-
lowed by a non-linear activation function, such as ReLU. Operations within FFN can be formulated
as follows:

XFFN = ReLU(XMHAW FFN1 + b1)W
FFN2 + b2 (5)

1



Under review as a conference paper at ICLR 2024

Similarly, the FFN also incorporates residual connections and layer normalization to compute the
final outputs:

XFFN = LayerNorm(XMHA +XFFN) (6)

B ONE-SHOT LEARNING RESULTS

We report additional one-shot comparison results in Table 1. We can see that our designed models
still achieve competitive performance against state-of-the-art LLMs with reduced parameters and
computation.

Table 1: Detailed one-shot downstream task results for MeRino and publicly available pretrained
LLMs.

MeRino OPT Pythia Cerebras-GPT GPT-2

Params (↓) 52 M 61 M 64 M 125 M 350 M 70 M 162 M 111 M 124 M
FLOPs (↓) 60 G 110 G 160 G 210 G 720 G 100 G 270 G 260 G 290 G

HellaSwag 0.262 0.260 0.270 0.264 0.279 0.266 0.296 0.265 0.308
WinoGrande 0.517 0.486 0.495 0.504 0.519 0.522 0.506 0.494 0.500
ARC-Easy 0.339 0.351 0.353 0.396 0.413 0.344 0.387 0.348 0.399

ARC-Challenge 0.214 0.208 0.237 0.229 0.238 0.208 0.225 0.218 0.235
OpenBookQA 0.234 0.240 0.262 0.232 0.258 0.238 0.266 0.262 0.266

BoolQ 0.536 0.539 0.570 0.547 0.583 0.521 0.560 0.605 0.526
WIC 0.467 0.489 0.472 0.483 0.506 0.464 0.467 0.475 0.464
CB 0.411 0.482 0.482 0.464 0.429 0.464 0.482 0.464 0.482

WSC 0.423 0.413 0.365 0.365 0.365 0.365 0.365 0.365 0.365
RTE 0.574 0.542 0.549 0.484 0.523 0.538 0.520 0.552 0.549

PubmedQA 0.404 0.466 0.513 0.444 0.462 0.478 0.521 0.463 0.425
LogiQA 0.264 0.256 0.269 0.246 0.252 0.284 0.258 0.255 0.250

Average 0.387 0.394 0.403 0.388 0.402 0.391 0.404 0.397 0.397

C DESIGN DETAILS OF MERINO

C.1 SEARCH SPACE

Table 2 presents details of the search space defined for our entropy-driven design method. In ad-
dition, we set the embedding projection dimension as 768 and the maximum position embedding
dimension as 2048. Our search space encapsulates over 216k different autoregressive transformer
architectures.

Table 2: Search space hyperparameters for MeRino.

Embedding Dimension - Ei [64, 128, 256, 384, 512, 640, 768, 896, 1024]
FFN Ratio - Ri [1, 1.5, 2, 2.5, 3, 3.5, 4]

Number of Layers Per Block - Li [1, 2, 3, 4]

C.2 EVOLUTIONARY ALGORITHM

We give a detailed description of the Evolutionary Algorithm (EA) and Mutation algorithm in Al-
gorithm 1 and Algorithm 2, respectively.

2



Under review as a conference paper at ICLR 2024

Algorithm 1 Evolutionary Algorithm

Require: Search space D, number of iterations T , computation budget constraint C, population size
M , parent size K

Ensure: Optimal architecture A∗

Initialize population P
while i ≤ T do

while len(P) < M do
Random select Ai ∈ P as parent.
Mutate Âi = MUTATE(Ai,D)

if ComputeCost(Âi) ≤ C then
Calculate entropy Z = H(Âi)

Add Âi to P
else

Do nothing
end if

end while
Remove (M −K) networks with smallest entropy scores

end while
Return A∗, the architecture with highest entropy in P

Algorithm 2 MUTATE

Require: Search space D, architecture Ai.
Ensure: Mutated architecture Âi

Randomly select a block in Ai

Randomly alternate block depth, embedding dimension, and FFN ratio within a certain range
Return the mutated architecture Âi

C.3 DETAIL STRUCTURE OF MERINO

The searched network structures of MeRino are listed in Tables 3. We use four blocks for our
entropy-driven design. Ei denotes the embedding dimension for each transformer block, Ri denotes
the FFN ratio, and Li denotes the number of layers (depth) of each transformer block.

Table 3: Structure Configuration of MeRino.

Model Ei Ri Li Params FLOPs

MeRino
[512, 512, 640, 896] [1, 1, 1, 1] [2, 3, 2, 1] 52 M 60 G

[640, 768, 896, 1024] [1, 1.5, 1, 1] [2, 2, 2, 2] 61 M 110 G
[640, 896, 1024, 1024] [1.5, 1.5, 1, 1] [3, 3, 2, 3] 64 M 160 G

D LIMITATIONS

As no research is perfect, MeRino has several limitations as well. First, the design of MeRino ex-
plores entropy only from parameter subspace due to its straightforwardness. Further exploration of
entropy in the feature space could provide a better theoretical understanding of transformer archi-
tecture and potentially lead to improved model designs. Second, our design only focuses on the
”macro-structure” of the LLMs (channels/depths/heads). Other key components, such as residual
connections, layer normalization, and nonlinear activations, are also essential to achieve good per-
formance. However, the theoretical foundation for these components is not well-studied, especially
from an information theory perspective. How to integrate these components in our entropy-based
framework remains an open question and we would leav it for our future research.

3


	Preliminaries
	One-Shot Learning Results
	Design Details of MeRino
	Search Space
	Evolutionary Algorithm
	Detail Structure of MeRino

	Limitations

