Supplementary Material for
Recurrent Video Restoration Transformer with
Guided Deformable Attention

In this supplementary material, we first give more details on training and testing datasets, as well as
evaluation metrics. Then, we provide more visual comparisons of different methods.

1 More Details on Datasets and Evaluation Metrics

Training and testing datasets. For video super-resolution, we train the model on two different
training datasets for scale factor 4. First, we generate low-resolution images by the MATLAB
imresize function (i.e., bicubic degradation) and train the model on REDS [8]]. REDS4 [l17] (i.e.,
clip 000, 011, 015, 020) is used as the test set. Second, we train the model on Vimeo-90K [18] with
two different degradations: bicubic and blur downsampling (Gaussian blur with o = 1.6 followed
by subsampling). The testing datasets include Vimeo-90K-T [18]], Vid4 [7] and UDMI10 [19]]. On
8 Nvidia A100 GPUs, it takes about 17 days. For video deblurring, we train the model on two
different datasets DVD [12]] and GoPro [9]. The training time is about 10 days. We test it on their
corresponding testing sets. For video denoising, we train the model on the DAVIS [4] and test it
on the corresponding testing set and Set8 [14]]. The training time is similar to deblurring. We train
all models on 8 Nvidia A100 GPUs. It takes about 16.6 days for video SR and 9.7 days for video
deblurring and denoising. For training memory cost, it consumes about 39GB and 29GB for video
SR and other two tasks, respectively.

REDS [8] REDS is a newly-proposed high-quality (1280 x 720) video dataset for video restoration.
It has 270 clips for training and validation. Following [17], we use REDS4 (4 selected representative
clips, i.e., 000, 011, 015 and 020) for evaluation and the rest 266 clips for training. This dataset is
used for training bicubic video SR.

Vimeo-90K [18]] Vimeo-90K is a widely-used middle-quality (448 x 256) dataset for video restoration.
For video SR benchmarking, it uses 64,612 clips for training and 7,824 clips for testing (denoted as
Vimeo-90K-T). This dataset is used for training bicubic and blur-downsampling video SR.

Vid4 [7] Vid4 is a classical testing dataset for video restoration. It contains 4 video clips (i.e., calendar,
city, foliage and walk). Each clip has at least 34 frames (720 x 480).

UDM10 [19] UDM10 is a recent proposed testing dataset for video super-resolution. It contains 4
video clips of various scenes, each of which has 32 frames (1272 x 720).

DVD [12] DVD is a widely-used high-quality (1280 x 720) dataset for video deblurring. Blurred
images are generated from high fps videos. It has 61 videos (5,708 frames in total) for training and
10 videos (1,000 frames in total) for testing.

GoPro [9] GoPro is a popular high-quality (1280 x 720) for image and video deblurring. Similar to
DVD [[12], blurred images are synthesized based on high fps videos. It is consisted of 22 training
clips (2,103 frames in total) and 11 testing clips (1,111 frames in total).

DAVIS [4] DAVIS-2017 is a popular middle-quality (854 x 480) dataset for video denoising. It
consists of 90 videos for training and 30 videos for testing.

Set8 [15] Set8 consists of 8 middle quality (960 x 540) videos (i.e., tractor, touchdown, park_joy,
sunflower, hypersmooth, motorbike, rafting and snowboard). It is often used as a testing dataset in
video denoising. Following [[14H16]], we only use the first 85 frames of each video.
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Evaluation metrics. Following [[17, 2, 5, 13} [14]], we calculate the metrics on RGB channel for
REDS4 [[177]], DVD testing set [12], GoPro testing set [9], DAVIS testing set [4] as well as Set8 [14]],
and on the Y channel for Vimeo-90K-T [18]], Vid4 [7] and UDM10 [19]].

2 More Visual Comparison

As shown in Fig.[T] Fig.[2]and Fig.[3] we provide more visual results to show the effectiveness of the
proposed RVRT on video super-resolution, video deblurring and video denoising. RVRT generates
visually pleasing frames with fine details and sharp edges.
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Figure 1: More visual comparison of video super-resolution (x4) methods.
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Figure 2: More visual comparison of video deblurring methods on DVD [[12] and GoPro [9].
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Figure 3: More visual comparison of video denoising (o = 50) methods on DAVIS [4]] and Set8 [T3]].
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