
EMERGENCE OF EXPLORATION IN POLICY GRADIENT
REINFORCEMENT LEARNING VIA RESETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL), many exploration methods explicitly promote
stochastic policies, e.g., by adding an entropy bonus. We argue that exploration only
matters in RL because the agent repeatedly encounters the same or similar states,
so that it is beneficial to gradually improve the performance over the encounters;
otherwise, the greedy policy would be optimal. Based on this intuition, we propose
ReMax, an objective for RL whereby stochastic exploration arises as an emergent
property, without adding any explicit exploration bonus. In ReMax, an episode
is modified so that the agent can reset to previous states in the trajectory, and the
agent’s goal is to maximize the best return in the trajectory tree. We show that this
ReMax objective can be directly optimized with an unbiased policy gradient method.
Experiments confirm that ReMax leads to the emergence of a stochastic exploration
policy, and improves the performance compared to RL with no exploration bonus.

1 INTRODUCTION

Exploration is widely studied in reinforcement learning (RL) (Sutton & Barto, 2018) (App. A).
Perhaps the most popular method of exploration is to explicitly promote a stochastic policy by
maximizing the entropy in addition to the cumulative reward (Williams, 1992; Ziebart et al., 2008;
Mnih et al., 2016; Haarnoja et al., 2018). We note that it is non-obvious why one should add such an
entropy bonus—the objective of RL is only to maximize the rewards. Such exploration methods are
only retrospectively justified as they improve the performance of the algorithms. In our article, we
propose a method that, paradoxically, promotes exploration by greedily maximizing the rewards.

The motivation of our method is the following: we suppose that exploration is vital in RL because the
agent, intentionally or unintentionally, visits the same (or similar) state repeatedly; exploration allows
the gain of some valuable information for making a better decision on the next visit to the same state.
However, it has no value if the agent would never encounter the same state.

Based on this observation, we propose a new objective function for RL called ReMax that encourages
exploration in a novel way. Briefly, the ReMax objective is computed as follows: while interacting
with the environment, in addition to taking usual actions, the agent may choose to reset to a previously
visited state in the trajectory up to some limited number of times; then, after the interaction, the value
of the ReMax objective is computed as the sum of the rewards along the best trajectory.

The crucial difference between our approach and previous ones is that, while most previous approaches
explicitly set the goal of obtaining a stochastic exploratory policy via an exploration bonus (e.g.,
state-visitation bonus or entropy bonus), in our approach, such an exploratory policy is not the explicit
goal, but the optimization of the ReMax objective naturally results in an exploratory policy.

We note that several previous studies successfully utilized resetting. For example, Go-Explore (Ecof-
fet et al., 2021), which achieved impressive results on the well-known hard-exploration problem
Montezuma’s Revenge, utilized resetting to rarely visited states, but also AlphaGo (Silver et al., 2016)
used Monte-Carlo tree search that can be regarded as a kind of resetting. In practical RL problems,
resetting is often possible, such as when we have access to the environment simulator (like Go). Also,
even if such simulator access is not available, we can use powerful model-based RL (MBRL) methods,
e.g., DreamerV2 (Hafner et al., 2021), and use resetting in simulations with the learned model.
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The main objective of our current article is to confirm that ReMax promotes exploration. To explain
how optimizing the ReMax objective leads to the emergence of an exploratory policy, we perform
three phases of experiments:

• Step 1. We illustrate the main idea of ReMax and demonstrate that optimizing the ReMax objec-
tive causes a stochastic policy in a simple bandit task (Sec. 3). The limitation of this experiment
is that the emergence of stochastic policy relies on the environment partial observability.

• Step 2. To overcome this limitation, we demonstrate that, by optimizing the ReMax objective, a
stochastic policy emerges even in a deterministic maze environment, where optimizing the regular
RL objective causes the policy to become deterministic and the learning to stop (Sec. 5). The
limitation here is that the failure of the regular RL relies on too simple model parameterization.

• Step 3. To make the scenario of the maze experiment more practical, we upgrade the maze to
represent the state by images and use a neural network function approximator (Sec. 6). This
experiment indicates that the failure of the regular RL and the emergence of exploration happen
in a practical deep RL scenario, even in a deterministic environment.

Finally, we also confirmed that with practical modifications, we could enhance the exploration and im-
prove the performance in MinAtar (Young & Tian, 2019), a simplified version of the Arcade Learning
Environment (Bellemare et al., 2013), where we use neural network function approximators (Sec. 8.1).

2 PRELIMINARIES

Notation. We consider an episodic Markov decision process (MDP) M, defined as a tuple
(S,A, P, r, ρ0, T ), where the state space S , the action space A are discrete and T is a finite horizon.
The initial state s0 ∈ S follows the distribution ρ0 : S → [0, 1], and the state transition kernel
P : S × A × S → [0, 1] defines the state transition probability from the current state s ∈ S to the
next state s′ ∈ S after the action a ∈ A is taken. The reward function r : S × A → [rmin, rmax]
determines the immediate reward given the state, s, and action, a. At each state, s, the agent can take
a legal action a ∈ A(s) ⊂ A, where A(s) are the legal actions at state s. The agent acts following a
parameterized policy πθ : S ×A → [0, 1] with the goal of maximizing the rewards. The trajectory
τ := (s0, a0, . . . , sT ) is the sequence of state-action pairs from the current episode: τ ∼ ρπ(τ) where
ρπ(τ) := ρ0(s0)

∏T−1
t=0 π(at|st)P (st+1|st, at). Note that sT is the terminal state. The RL objective

is to maximize the expected return JRL(π) := Eτ∼ρπ

[
R(τ)], where R(τ) =

∑T−1
t=0 r(st, at).

Policy gradient methods. In this study, we focus on the policy gradient (PG) method, which
directly optimizes a parameterized policy πθ via gradient ascent. The policy gradient theorem (Sutton
et al., 1999) provides an expression of the PG, ∇θJRL(πθ), amenable for estimation. In particular, we
use REINFORCE (Williams, 1992) as the simplest PG method, whose gradient estimator is given by
ĝ :=

∑T−1
t=0 ∇θ log πθ(at|st)(R(τ)−bt), where bt is a constant baseline for variance reduction. This

estimator is unbiased: ∇θJRL(πθ) = Eτ [ĝ]. One may also average a batch of N gradient estimates
from different trajectories,

∑N
i=1

1
N ĝi. A common baseline is bt =

∑N
i=1

1
NR(τ), the average of

the returns in the batch. Another common method to reduce the variance is using the future return
Rt(τ) :=

∑T−1
h=t r(sh, ah), that only includes the rewards following the action; this maintains the

unbiasedness of the estimator. An important property of PG methods—and part of the reason we
focus on them—is that they remain unbiased even when the system is a POMDP (partially observable
MDP), i.e., unobservable hidden states characterize the state transitions. This important property is
the reason that we are able to construct unbiased estimators for our proposed ReMax objective.

3 STEP 1: BANDIT PROBLEM EXAMPLE

In the first step of our 3-stage experiment, we illustrate the core idea behind our ReMax objective.
Through a simple randomized bandit task, we explain the principle of why a stochastic policy is
optimal under the ReMax objective; thus, leading to the emergence of exploration.

Problem. There are two arms, indexed by 0 and 1. At the beginning of each episode, one arm is
chosen as an unobservable "correct" arm z ∈ {0, 1}. The correct arm z ∈ {0, 1} is randomly chosen
according to a Bernoulli distribution with probability q = 0.75. In each episode, the agent plays
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Figure 1: Bandit problem example. (A) A comparison of two objective functions: RL objective (Left) and
ReMax objective with K = 2 (Right). The black dotted line indicates the optimal policy. (B)
Empirical results of optimizing the policies with the RL objective and the ReMax objective.

only one arm a ∈ {0, 1}. Playing the correct arm (i.e., a = z) gives the return 1 and 0 otherwise:
R(z, a) = Iz=a, where Ie takes 1 if e is true and 0 otherwise. Under the usual RL objective, which
maximizes expected return Ez,a[R(z, a)], the optimal policy is deterministic, taking action a = 1
with probability 1, which yields a maximum expected return 0.75.

ReMax objective. We define our ReMax objective on this bandit problem as:

J
(K)
ReMax(π) := Ez

[
Ea(1),...,a(K)

[
max

k∈{1...,K}
R(z, a(k))

∣∣∣z]]. (1)

In this objective the agent has K chances to choose an arm, and the best of those K returns is defined
as the value to optimize. For the regular RL objective, we saw that a deterministic policy was optimal;
however, for the ReMax objective, a stochastic policy is optimal instead. To understand this intuitively,
consider that pulling the same arm multiple times does not affect the ReMax objective, while pulling
both arms guarantees pulling the correct arm, giving the return max{R(z, 0),R(z, 1)} = 1. We
can analytically compute the expected return in this augmented problem (App. B). The solutions
are in Fig. 1 (A) where we compare the ReMax objective (K = 2) and the RL objective. We can
confirm that π(a = 1) = 0.75 maximizes the ReMax objective (shown as the black dotted line), and
the optimal policy under the ReMax objective is exploratory.

Experiments. We also experimentally confirmed that, when trained to maximize the ReMax
objective, a direct policy search algorithm converges to the stochastic policy rather than a deterministic
one. We trained a policy with only one parameter θ ∈ R. The probability of selecting action 1 is
defined as πθ(a = 1) = σ(θ), where σ is the sigmoid function. We initialized θ so that πθ distributes
uniformly over [0, 1]. We used K = 2 in this experiment. Given a sample (z, a(1), a(2)), we updated
θ using ∆θ = −α

(∑2
k=1 ∇θ log πθ(a

(k))
)(
maxk′∈{1,2}{R(z, a(k

′))}
)
, where α = 0.01 is the step-

size parameter. Fig. 1 (B) shows the results of this training procedure. Each line shows an average
performance of 10 runs, and the shaded area indicates the standard error. We can see that the policy
converges to the deterministic one under the standard RL objective, whereas the policy converges to
the optimal stochastic policy under the ReMax objective as expected.

Discussion. The key insight from this bandit problem example is that if the agent can repeat the
decision-making, seeking the best result in the same state, the optimal policy may be stochastic. One
may think that the hidden state z, on which the emergence of the stochastic policy relies, is artificial
and has nothing to do with typical MDPs. However, interestingly, we will show that a stochastic
policy emerges even in a fully observable deterministic MDP (Sec. 5), due to function approximation.

4 REMAX WITH RESETTING IN MDPS

In preparation of stages 2 and 3 of our experiments (Secs. 5, 6), we lay the foundations of using
ReMax in MDPs. In the bandit example (Sec. 3), the agent had K chances to play at the given state.
However, in RL, it is not practical to act K times at each state, especially when the environment is
large. To optimize the ReMax objective in a practical way, we utilize resetting and define a resettable
MDP (ReMDP), where the agent has a special action to “jump” back to previously visited states in
the episode, and the trajectory tree, a tree constructed by the state-action pairs in a ReMDP episode.
Fig. 2 shows the idea of resetting and the trajectory tree. We define our ReMax objective over the
ReMDP (Sec. 4.1) and also describe a PG method that optimizes the objective (Sec. 4.2).
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4.1 REMAX OBJECTIVE IN MDPS

Resettable MDP. We define a ReMDP MRe = (S,ARe, PRe, r, ρ0, T ) by extending the action
space and state transition kernel of the original MDP M = (S,A, P, r, ρ0, T ) as follows: the action
u ∈ ARe is an element of ARe := A

⋃
X , where x ∈ X indicates a reset action to the target state

sRe(x) ∈ S. If a reset action is chosen (u ∈ X ), the state immediately transitions to sRe(u):

PRe(s
′|s, u) :=

{
Is′=sRe(u) if u ∈ X
P(s′|s, a) if u = a ∈ A .

However, as our motivation was to repeat decisions in the same state, the target states of resetting are
limited to previously visited states in the episode: the legal actions at st are ARe(st) := A(st)

⋃
X (st)

such that for any x ∈ X (st), sRe(x) ∈ {s0, . . . , st−1} holds.

Reset

Figure 2: Trajectory tree example.

Trajectory tree. Now, we can sample T := (s0, u0, . . . , sT ),
a trajectory on the ReMDP, MRe. We call T a trajectory tree
because we can construct a tree, whose nodes correspond to the
states s ∈ S, and edges correspond to the actions u = a ∈ A.
See Fig. 2 for an example trajectory tree, (s0, u0, . . . , s7). The
initial state s0 is the root node, while the states where a reset
happened and the terminal states are the leaf nodes.

ReMax return. Given a trajectory tree T , we define our ReMax return RReMax(T ). Here, we
assume that the trajectory tree T has K leaf nodes. For k ∈ {1, . . . ,K}, we define the trajectory path
τ (k) as the subsequence of T consisting of the states and actions in the path from the root node to the
k-th leaf. For example, the trajectory tree in Fig. 2 has two trajectory paths τ (1) = (s0, u0, . . . , s4)
and τ (2) = (s0, u0, . . . , s2 = s5, u5, . . . , s7). We define the ReMax return on the trajectory tree by

RReMax(T ) := max
k∈{1,...,K}

R
(
τ (k)

)
, (2)

where, R(τ (k)) is the return along the path τ (k) defined as in conventional RL.

ReMax objective. Our proposed objective is to maximize the expected ReMax return:

JReMax(π) := ET
[
RReMax(T )

]
. (3)

Note that if no resetting occurs, JReMax reduces to JRL. It is worth mentioning that if the MDP
is deterministic, there exists a deterministic policy π∗ : S → A that maximizes both JRL and
JReMax. This is obvious as an optimal policy for JRL also maximizes JReMax because resetting
cannot increase the ReMax return if all of the chosen actions were optimal. Interestingly, while there
exists a common deterministic optimal policy, optimizing the ReMax objective enhances exploration
during training in a deterministic environment. We describe this phenomenon in Sec. 5.

4.2 REMAX POLICY GRADIENT METHOD

We propose to optimize the ReMax objective using policy gradients. As the simplest realization of the
ReMax PG method, we consider REINFORCE. Given a trajectory tree T , our gradient estimator is

ĝReMax :=

T−1∑
t=0

∇ϕ log πϕ(ut|st)
(
RReMax(T )− bt

)
, (4)

where πϕ : S × ARe → [0, 1] is the parameterized policy to optimize, and bt is a baseline for
variance reduction (Sec. 2). This estimator is unbiased: ET [ĝReMax] = ∇ϕJReMax(πϕ).

Policies in this study. In ReMDPs, agents must select actions from the extended action space
ARe = A

⋃
X . In this study, we decompose the policy πRe : S×ARe → [0, 1] into three independent

components: the policy of the original MDP πA : S × A → [0, 1], the policy of where to reset to
πX (u|s) : S × X → [0, 1], and the policy of whether to reset y ∼ η(y|s), where y ∈ {0, 1} is a
binary variable: 1 means to reset, and 0 means to act in the MDP. Using these components, we have

πRe(u|s, y) = (1− y)πA(a|s) + y πX (x|s). (5)
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As our main focus in this study is the emergence of exploration from our ReMax objective, we
only employ simple deterministic rule-based policies for πX and η. We show that, even with such
deterministic reset policies, the policy for the original MDP πA becomes stochastic. Each realization
of πX and η is described in the corresponding experimental setup section. We parameterize πA as πθ.
As the reset policy πX is non-parameterized, we can rewrite Eq. 4 as

ĝReMax =
∑

t|ut=at∈A

∇θ log πθ(at|st)
(
RReMax(T )− bt

)
, (6)

where t|ut = at ∈ A is an abbreviation of t ∈ {t|ut = at ∈ A} and πθ is the parameterized
policy for the original MDP. One may use more sophisticated reset policies with search algorithms or
trainable models for better performance. We leave such improved reset policies for future work.

Reset Policy Gradient Theorem. Finally, recall that in standard PG methods, one only needs
to consider the rewards following an action in the PG, while ignoring the rewards obtained before
the current time-step, as the action has no effect on what happened in the past. This is not the
case in the reset PG method—the state may be reset to the past, cancelling out previously received
rewards. Thus, we may have to consider the full return over the trajectory tree at each time-step.
One wonders whether a similar PG theorem could be derived for the case with resets; whether some
of the rewards in the return could be deleted while still guaranteeing unbiasedness. A sufficient
condition for unbiasedness is formalized in the theorem below. Note that we provide this theorem
for completeness and for a few justifications, but do not incorporate it in our algorithms.
Theorem 1 (Reset Policy Gradient Theorem). Denote τ∗ is the optimal trajectory in the tree, T ,
so that RReMax (T ) = R(τ∗) =

∑
(s,a)∈τ∗ r(s, a). Moreover, denote τfixed(st) is a subsequence

τfixed(st) ∈ τ∗, starting at s0 and ending at sh, h < t, s.t. for all possible trajectories with k ≥ t,
and all s ∈ τfixed(st) we have s /∈ X (sk), where X (sk) is the set of admissible states to reset to in
state sk. In other words, τfixed(st) is the set of states in the optimal trajectory to which it is impossible
to reset to when starting at state st, at any point following time-step, t. Then we have

∇θE [RReMax (T )] = E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
RReMax(T )−R (τfixed(st))− bt

) (7)

Proof. See App. D.

5 STEP 2: REMAX ON A DETERMINISTIC TABULAR MDP

In the bandit task (Sec. 3), the emergence of exploration relied on the uncertainty of the environment.
To resolve this limitation, in step two of our experiments, we show that exploration also emerges in a
deterministic MDP. We consider a tabular maze environment that we call the biased maze (Fig. 3).
Though this maze has no explicit uncertainty or hidden state like the bandit task, we argue that function
approximation and generalization leads to an implicit uncertainty, and we show that optimizing the
ReMax objective promotes a stochastic exploratory policy even in deterministic MDPs.

S

Figure 3: Biased maze example.

Problem. The maze is a deterministic MDP with ad-
missible actions 0 or 1 in each state. The agent receives
a reward of 1 for each step forward. There is only one
correct path in the maze (the red line in Fig. 3), and as long
as the agent chooses the correct action, it can continue to
move forward up to a maximum sufficient fixed length.
Once the agent chooses the wrong action, the maze will terminate after one or two steps, depending on
whether the following action is also wrong (or not). We designed the maze such that the correct action
is 1 in 75% of the states. In this sense, the maze is biased as action 1 tends to lead a higher return.

Setup. We train a policy π(a = 1|si) = σ(wi + c), where i indicates the state index, each state i
has a corresponding local parameter wi, and c is a global scalar bias term shared by all states. We
expect wi to extract the local information at the i-th state and c to learn the global information over
the states. We compared training the policy with the standard REINFORCE and with the ReMax
version. In this experiment, the resets happen when the agent reaches a terminal state (η(y = 1|s) = 1
if s is terminal and 0 otherwise), and the agent always resets back by m = 2 steps. We used the SGD
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Figure 4: Biased maze results. (A) Evaluation return and average probability of selecting action 1 at a new
(unseen) state with different K. The evaluation return is computed without resetting, even if K > 1.
The shaded area indicates the standard error. (B) Evaluation return for different learning rates at 10M
steps. The bar indicates the standard error.

optimizer. We estimate the gradient from a batch of 16 trajectory tree samples, and the baseline bt
is calculated from the batch mean. For a fair comparison of the two algorithms, separate from the
training episodes, we include evaluation episodes that are not used for training the policy. In the
evaluation episodes, we use greedy action selection, as commonly done in previous work (Haarnoja
et al., 2018; Hafner et al., 2021). We emphasize that no resetting is used in the evaluation episodes.

Hypothesis. Biased maze is a fully observable deterministic MDP. However, we claim that, during
training, there exists uncertainty when the agent reaches a previously unseen new state. At each new
state, the agent does not know whether action 1 or 0 is correct. Moreover, based on the structure of the
maze, action 1 is preferable as it has a higher probability of being correct. As our agent can control
the “prior” policy at unseen states using the bias parameter c, we hypothesize that ReMax should
promote exploration even in such a deterministic MDP.1 We note that such “implicit” uncertainty in
fully observable MDPs has been previously studied in relation to generalization (Ghosh et al., 2021).

Results. Fig. 4 (A) shows the results with the learning rate 0.003. The standard REINFORCE
algorithm (K = 1), quickly converged to a suboptimal policy that deterministically chooses action 1
at an unseen state, and the evaluation return stopped increasing. On the other hand, ReMax (K > 1)
promoted more exploratory policies. We also see that larger K lead to more exploration and higher
evaluation returns. These trends were consistent with other reasonable learning rates. Moreover, the
regular REINFORCE cannot be greatly improved even when tuning the learning rate (Fig. 4 B).

Discussion. Here, we showed that ReMax promotes exploration even in a deterministic MDP; how-
ever, this phenomenon relied on a shared parameter c. One may wonder whether this setup is realistic.
In step three of our experiments (Sec. 6), we show that c can be replaced with typical parameterized
function approximator policies in RL, and demonstrate the consistency of the phenomenon.

6 STEP 3: REMAX ON A DETERMINISTIC MDP WITH VISUAL INPUTS

S

Flipped

Figure 5: MNIST maze example.

In the previous biased maze experiment, the model was too sim-
ple and it remained unclear whether exploration would emerge
in a more practical scenario. In the third step of our experiments,
we demonstrate that optimizing the ReMax objective promotes
exploration even in a practical scenario with neural network func-
tion approximators, which have been proven successful in visual
input environments (Mnih et al., 2015; Silver et al., 2016). For
this purpose, we introduce the MNIST maze environment.

Problem. Inspired by Elfwing et al. (2016) we consider an MNIST maze, a modified version of the
biased maze (Fig. 5). This maze is also a deterministic MDP but has visual inputs. In the maze, the
agent can observe an MNIST image (LeCun et al., 1998) as a hint in addition to the state index. Each
MNIST image is zero or one, indicating the correct action at the state. Unlike the biased maze there
are an equal number of ones and zeros; however, the MNIST image hints are wrong with probability
0.25. Note that this flip does not change between the different episodes. The agent may solve the
maze efficiently by generalizing the information in the images. However, if the agent blindly trusts
the hints, it will fall into a suboptimal policy that deterministically follows the hints.

1Note that without the bias parameter c, the agent cannot control the “prior” at unseen states. See App. C for
the results without the bias term.
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Setup. We use the same setup as the biased maze experiment unless stated otherwise. Our neural
network is a multilayer perceptron (MLP) with one hidden layer with 128 units, followed by a
sigmoid activation function. We denote this MLP as fϕ, where ϕ are the parameters of the MLP. The
MLP takes the image, imgi, at state i as an input and produces the output yi = fϕ(imgi) ∈ R. The
policy is π(a = 1|si) = σ(wi + dyi), where the d hyperparameter controls the contribution from
the MLP. We trained both the state-wise parameter w and MLP parameters ϕ simultaneously. We
tuned the learning rate and d hyperparameters in a different environment setting, where the hint flip
probability was zero. The chosen learning rate and d are 0.003 and 0.01, respectively. See App. E for
the validation experiments regarding the hyperparameters.
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Figure 6: MNIST maze results.

Results and discussion. Fig. 6 shows the results. Like in the
biased maze results, when K = 1, the policy quickly became deter-
ministic, trusting the MNIST image hints too much in new states,
and the learning stopped. On the other hand, ReMax (K > 1) pro-
moted exploration and showed better performance. Thus, we have
demonstrated that exploration emerges even in practical scenarios
that utilize neural network function approximators. Finally, we will
add implementation tricks, and demonstrate the feasibility of using
ReMax to promote exploration in modern PG algorithms (Sec. 8).

7 SUMMARY OF THE 3-PHASED EXPERIMENTS AND FURTHER ANALYSIS

In the three phases of our experiments, we examined our hypothesis step by step: First, we verified
that, by optimizing the ReMax objective, a stochastic policy emerges as the optimal policy in a
simple bandit problem (Sec. 3). Secondly, we confirmed that stochastic exploration emerges even in a
deterministic MDP (Sec. 5). Finally, we demonstrated that this result is consistent in realistic scenarios
with neural network function approximation (Sec. 6). In this section, we complement our experiments
by showing ablation studies on two components of ReMax: maximization and resetting. Also, we
address the overestimation problem in stochastic environments and propose a method to relieve it.

ReMax objective ablation study. To demonstrate that not only the resetting but also the max-
imization in the ReMax return is important for the emergence of a stochastic policy, we change the
maximum operator in the objective to the average operator and compare the performance in the biased
maze problem (Fig. 7 A). We see that when we use the average, the policy becomes deterministic
faster and results in poor performance. See App. C.2 for ablation studies with other return definitions.
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Figure 7: Ablation study in biased maze. (A) Comparison with the average variant of ReMax (K = 2).
(B) ReMax performance with different reset policies (Left) and performance of REINFORCE with
an entropy bonus (Right). The K and β are the hyperparameters for exploration. Black dashed lines
indicate the performance of the standard REINFORCE without resetting or an entropy bonus.

Reset policy ablation study. We also examined the effect of the reset policy on the performance
in the biased maze task. As the reset policy used in the previous experiments is well-tuned using the
information of the maze structure, we prepared two other reset policies that utilize no environment
information: random reset and heuristic reset. The random reset simply chooses where to reset
randomly from the preceding states in the trajectory. The heuristic reset returns to the state s where
πθ(a|s) is the smallest among the previously visited states in the preceding trajectory when the agent
reaches the terminal state. Note that these two reset policies have only one hyperparameter K and are
not tuned using the information of the maze environment. Fig. 7 (B) shows the performance of ReMax
REINFORCE with these reset policies. Also, the results of REINFORCE using an entropy bonus
are shown for comparison. The tuned reset is the same reset policy as in the previous experiments
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(m-step reset with m = 2). We found that the choice of reset policy is critical: tuned reset performed
the best and heuristic reset achieved significantly better performance than random reset. However,
we also found that even with a poor reset policy like the random reset, it achieves a comparable
performance to that of the entropy bonus. The performance gap between the heuristic reset and the
tuned reset may be filled by a sophisticated reset policy, which we leave for future work.

0.0 0.5 1.0
Prob(a= 1)

0

1

2

3
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w/o seed-fixing w/ seed-fixing

Figure 8: Overestimation example.

Overestimation in a stochastic environment. The maze
environments we studied are deterministic. Here we discuss a
problem that may arise when optimizing the ReMax objective in
stochastic environments. We consider another two-armed bandit
problem: Taking a = 0 gives a reward r0 = 1 deterministically,
and a = 1 gives a random reward r1, which follows the uniform
distribution on [−10, 10]. In this bandit problem, the optimal
policy in the RL objective is deterministically choosing a = 0
as r0 = 1 > 0 = Er1 [r1]. However, the optimal policy in ReMax is a = 1. The blue line in Fig. 8
shows JReMax with K = 2. In this example, the ReMax objective overestimates the action with a
high-variance reward because it may randomly achieve a higher reward when playing an arm a second
time. To relieve this problem, we propose a simple seed-fixing trick: inside an episode, the random
seed is frozen. Thus, taking the same actions in the same state would always result in the same state
transition. This simple trick can prevent the agent from repeating the action with a high-variance
reward as it always gives the same result inside each episode. The orange line in Fig. 8 shows JReMax

with this trick. Now the greedy action with the optimal policy in ReMax is a = 0. Note that the
bandit example described in Sec. 3 can be regarded as a problem to which this trick is applied.

8 PRACTICAL ALGORITHM: REMAX A2C

We saw that ReMax promotes exploration in the classical REINFORCE algorithm. Here, we
demonstrate the feasibility of applying ReMax to promote exploration in modern PG methods.
Especially, we apply ReMax to A2C, a synchronous version of the A3C algorithm (Mnih et al., 2016).

Truncated rollouts with resetting. Instead of performing actions for a full episode of T time-steps,
then updating the policy, A2C updates the policy many times during an episode, using truncated
rollouts of length H < T . A2C estimates the PG on a batch of such fixed-length truncated trajectories.
Using truncated rollouts improves the speed of learning by increasing the frequency of updates, and
by reducing the PG variance. ReMax A2C analogously uses a batch of truncated trajectory trees with
fixed tree sizes. We describe the detailed rollout procedure in App. F.

Advantage estimation. Given a truncated rollout trajectory τ , A2C uses an advantage estimator
Ât(τ) :=

∑H−1
h=t γh−trh + Vθ(sH) − Vθ(st) composed of the n-step future return and a value

function baseline, where γ is a discount factor, H is the truncated last time-step in τ , and Vθ is a
parameterized value function. Note that if sH happens to be a terminal state, Vθ(sH) is set to zero.
As an analogy of Ât, given a truncated trajectory tree T by Algorithm 1, we define ÂReMax

t using the
best n-step future return and a value function baseline:

ÂReMax
t (T ) := max

k∈{k|st∈τ(k)}

{ Ik−1∑
i=ik,t

γi−ik,tr
(k)
i + Vθ(s

(k)
Ik

)

}
− Vθ(st), (8)

where s
(k)
i indicates the i-th node on the k-th trajectory path (from the root node to the leaf node),

Ik is the time-step index of the leaf node, and ik,t is the time-step index of state st on the k-th path
satisfying s

(k)
ik,t

= st for k ∈ {k|st ∈ τ (k)}. Note that this estimator ignores the rewards before the
state st, while they should be included if we wish to guarantee unbiasedness. However, based on
Thm. 1 we can ignore all rewards received before the truncated rollout, and empirically we found that
ignoring the rewards from the start of the truncated rollout performed well. In the next section, we
empirically verify that ReMax A2C, a PG method with this estimator, also promotes exploration.

8.1 EVALUATION ON MINATAR ENVIRONMENTS

Finally, we evaluate our ReMax A2C in the MinAtar environments (Young & Tian, 2019), which
include five simplified versions of ALE games with image observations (Bellemare et al., 2013):
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Figure 9: MinAtar results. (A) Average evaluation return for 10 runs. (B) Average probability of the selected
action during the evaluation. The shaded area indicates the standard error.

Asterix, Breakout, Freeway, Seaquest, and SpaceInvaders. Ceron & Castro (2021) reported that
algorithmic improvements on MinAtar transferred to the full Atari, thus allowing for more inclusive
RL research as it becomes possible to test new methods using fewer computational resources. We
compared the performance of our ReMax A2C and the standard A2C (without entropy bonus). We
also report the performance of standard A2C (with entropy bonus) for comparison.

Setup. We employed the same convolutional neural network architecture as Young & Tian (2019).
There are 64 parallel rollout workers, and the rollout length is limited to 32 for all algorithms. We
used the Adam optimizer (Kingma & Ba, 2015). The reset policy πX was the heuristic reset described
in Sec. 7. Hyperparameters were grid-searched using five validation runs, which use different random
seeds from test runs. See App. G for the details of network architecture and hyperparameter selection.

Results and discussion. The experiments confirm that ReMax promoted more exploratory policies
than A2C (w/o entropy bonus) and lead to better performance in all games (Fig. 9), despite not
including any explicit exploration bonus. We note that in the Freeway environment, the episodes
always continue for 2500 steps without any early termination by reaching a terminal state, yet our
proposal of randomly resetting in non-terminal states with a small probability was sufficient to
promote exploration. These results confirm that it is not intractable to construct reset policies that
allow taking advantage of ReMax to promote exploration in modern PG algorithms, and even simple
heuristics may be sufficient. Comparing A2C (w/ entropy bonus) to ReMax A2C, there was no clear
winner. Our main objective in this work is to propose ReMax as a competing or complimentary
approach to promote stochastic exploration. As entropy bonuses have been researched for a long
time, we believe it is promising that our new method, ReMax, shows competitive performance.

9 CONCLUSION, LIMITATIONS AND FUTURE WORK

We studied our hypothesis that optimizing the ReMax objective may result in an exploratory policy
without an explicit exploration bonus. We empirically verified our hypothesis with the 3-phased
experiments: randomized bandit (Sec. 3), the deterministic biased maze (Sec. 5), and the maze
with visual inputs (Sec.6): Even in a fully-observable deterministic environment, a stochastic policy
emerged as a result of the ReMax objective optimization, without any explicit exploration bonus. We
also extended our ReMax PG to ReMax A2C, an analogy of the popular A2C algorithm, and showed
that ReMax A2C could enhance exploration and result in better performance in MinAtar.

The emerged exploration is a stochastic exploration like the entropy bonus. Thus, it has the same
limitations as the competing stochastic exploration methods: For example, dense reward signals may
be required. Also, as we focused on testing our hypothesis, we only considered simple rule-based
resetting at the terminal states. However, let us emphasize that our focus in this study is not on
proposing a new powerful exploration method but on testing our hypothesis. The application to hard
exploration problems (e.g., large action space or sparse rewards) is future work.

One promising future work direction is to build more practical reset policies: When combined with
powerful search algorithms such as MCTS, it may be possible to enhance the efficient exploration
further. In addition, we may also train the reset policy by optimizing the RL (or probably the ReMax)
objective to discover more efficient search methods depending on the task. We believe that new
directions of exploration study in RL could also emerge from the ReMax objective.

9



REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking Fast and Slow with Deep Learning and
Tree Search. In Advances in Neural Information Processing Systems, 2017. A

Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Policy Gra-
dient Search: Online Planning and Expert Iteration without Search Trees. CoRR, abs/1904.03646,
2019. A

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Reinforce-
ment Learning. In International Conference on Machine Learning, 2017. A

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never Give Up: Learning Directed Exploration Strategies. In International Conference
on Learning Representations, 2020. A

Nir Baram, Guy Tennenholtz, and Shie Mannor. Action Redundancy in Reinforcement Learning. In
Conference on Uncertainty in Artificial Intelligence, 2021. A

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying Count-Based Exploration and Intrinsic Motivation. In Advances in Neural Information
Processing Systems, 2016. A

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47(1):
253–279, May 2013. 1, 8.1

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. A

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful
and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, 2021. 8.1

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Interna-
tional Conference on Computers and Games, 2006. A

Christoph Dann and Emma Brunskill. Sample Complexity of Episodic Fixed-Horizon Reinforcement
Learning. In Advances in Neural Information Processing Systems, 2015. A

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nature, 590 7847:580–586, 2021. 1, A

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. From free energy to expected energy: Improving
energy-based value function approximation in reinforcement learning. Neural Networks, 84:17–27,
2016. 6

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018. G

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. In Interna-
tional Conference on Machine Learning, 2018. A

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
Curriculum Generation for Reinforcement Learning. In Conference on Robot Learning, 2017. A

Lior Fox, Leshem Choshen, and Yonatan Loewenstein. DORA The Explorer: Directed Outreaching
Reinforcement Action-Selection. In International Conference on Learning Representations, 2018.
A

Justin Fu, John Co-Reyes, and Sergey Levine. EX2: Exploration with Exemplar Models for Deep
Reinforcement Learning. In Advances in Neural Information Processing Systems, 2017. A

10



Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
Neural Information Processing Systems, 2021. 5

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International
Conference on Machine Learning, 2018. 1, 5, A

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. 2021. 1, 5

Ionel-Alexandru Hosu and Traian Rebedea. Playing Atari Games with Deep Reinforcement Learning
and Human Checkpoint Replay. In Evaluating General-Purpose AI, 2016. A

Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
VIME: Variational Information Maximizing Exploration. In Advances in Neural Information
Processing Systems, 2016. A

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-Optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research, 11, 2010. A

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-Learning Provably
Efficient? In Advances in Neural Information Processing Systems, 2018. A

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002. A

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015. 8.1

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In European Conference
on Machine Learning, 2006. A

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 6

Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the Rubik’s
Cube with Approximate Policy Iteration. In International Conference on Learning Representations,
2019. A

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, February 2015. 6

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In International Conference on Machine Learning, 2016. 1, 8, A

Rémi Munos. Error Bounds for Approximate Policy Iteration. In International Conference on
Machine Learning, 2003. A

Rémi Munos. Error Bounds for Approximate Value Iteration. In AAAI Conference on Artificial
Intelligence, 2005. A

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-Agnostic Exploration via Policy
Gradient of a Non-Parametric State Entropy Estimate. AAAI Conference on Artificial Intelligence,
2021. A

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-Driven Exploration
by Self-Supervised Prediction. In International Conference on Machine Learning, 2017. A

11



Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):
143:1–143:14, July 2018. ISSN 0730-0301. A

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum Entropy Gain
Exploration for Long Horizon Multi-goal Reinforcement Learning. In International Conference
on Machine Learning, 2020. A

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic Curiosity through Reachability. In International Conference
on Learning Representations, 2019. A

Jürgen Schmidhuber. Curious model-building control systems. In International Joint Conference on
Neural Networks, 1991a. A

Jürgen Schmidhuber. A Possibility for Implementing Curiosity and Boredom in Model-Building
Neural Controllers. In International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, 1991b. A

Jürgen Schmidhuber. Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010. A

David Silver. Reinforcement Learning and Simulation-Based Search in Computer Go. PhD thesis,
CAN, 2009. A

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, January 2016. 1, 6

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. CoRR, abs/1712.01815, 2017. A

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing Exploration In Reinforcement
Learning With Deep Predictive Models. CoRR, abs/1507.00814, 2015. A

Alexander L. Strehl and Michael L. Littman. A Theoretical Analysis of Model-Based Interval
Estimation. In International Conference on Machine Learning, 2005. A

Alexander L. Strehl and Michael L. Littman. An analysis of model-based Interval Estimation for
Markov Decision Processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.
A

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman. PAC
Model-Free Reinforcement Learning. In International Conference on Machine Learning, 2006. A

Yi Sun, Faustino J. Gomez, and Jürgen Schmidhuber. Planning to Be Surprised: Optimal Bayesian
Exploration in Dynamic Environments. In Conference on Artificial General Intelligence, 2011. A

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2nd edition, 2018. 1

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. In Advances in Neural Information
Processing Systems, 1999. 2

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A Study of Count-Based Exploration
for Deep Reinforcement Learning. In Advances in Neural Information Processing Systems, 2017.
A

12



Sebastian B. Thrun and Knut Möller. On Planning And Exploration In Non-Discrete Environments.
Technical report, Gesellschaft fur Mathematik und Datenverarbeitung, D-5205 St, 1991. A

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, May 1992. 1, 2

Ronald J. Williams and Jing Peng. Function Optimization using Connectionist Reinforcement
Learning Algorithms. Connection Science, 3(3):241–268, 1991. A

Kenny Young and Tian Tian. MinAtar: An Atari-inspired Testbed for More Efficient Reinforcement
Learning Experiments. CoRR, abs/1903.03176, 2019. 1, 8.1, G

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum Entropy Inverse
Reinforcement Learning. In AAAI Conference on Artificial Intelligence, 2008. 1

13



A ADDITIONAL RELATED WORK

This section describes a short survey of exploration in RL.

Optimism in the Face of Uncertainty (OFU). Arguably, the most famous exploration strategy is
OFU. Exploration methods based on OFU mainly fall in two categories: confidence-based (Strehl &
Littman, 2005; Jaksch et al., 2010; Dann & Brunskill, 2015) and bonus-based methods (Strehl et al.,
2006; Strehl & Littman, 2008; Azar et al., 2017; Jin et al., 2018). While they have strong theoretical
guarantees, they do not directly extend to the deep RL setting, since visitation counts need to be
stored. Bellemare et al. (2016) generalize the notion of visitation counts and enable OFU in the deep
RL setting.

In contrast to OFU, ReMax uses no explicit mechanism to encourage exploration. Instead, exploration
emerges through resetting and seeking the best trajectory.

Intrinsic Motivation (IM). An alternative approach that scales well to the deep RL setting is
IM-based methods, which are broadly categorized to three types: prediction-error-based, information-
gain-based, and novelty-based methods.

Prediction-error-based methods construct a state-transition dynamics model and encourage the agent
to visit states (or state-action pairs) whose next state is unpredictable by the model (Stadie et al.,
2015; Pathak et al., 2017). This idea dates back to Schmidhuber (1991b) and Thrun & Möller (1991).

Prediction-error-based methods may unnecessarily prefer states at which next states are unpredictable
(due to e.g., noise) (Schmidhuber, 1991a). Instead, information-gain-based methods encourage the
agent to visit states (or state-action pairs) at which the agent can gain information to refine the model
(Schmidhuber, 2010; Sun et al., 2011; Houthooft et al., 2016).

Novelty-based methods literally encourages the agent to visit "novel" states (or state-action pairs).
There are different ways to measure the novelty, such as pseudo-count (Bellemare et al., 2016),
estimated probability of a state to be contained in a reply buffer (Fu et al., 2017), reachability
(Savinov et al., 2019), and intra-episode diversity of states (Badia et al., 2020). Tang et al. (2017)
employ a direct approach for the counts to discretize the state space and use hash.

These methods typically require the estimation of some probability density model, such as state-
transition dynamics and state visitation frequency. In contrast, our method does not require the
estimation of any additional quantity.

RND (Burda et al., 2019) and the E-value (Fox et al., 2018) are interesting exceptions of novelty-based
methods that do not require the estimation of a probability density model. It would be an interesting
future direction to combine our method with them to determine a state to reset to.

Entropy Maximization. Exploration methods based on entropy maximization are often used with
policy gradient and actor-critic methods (Williams & Peng, 1991; Mnih et al., 2016; Espeholt et al.,
2018). SAC is an example of such methods, and it is a popular deep RL algorithm for continuous
control (Haarnoja et al., 2018).

While these approaches aim at increasing the action entropy, increasing the state entropy might be
more reasonable from the exploration perspective (Pitis et al., 2020; Mutti et al., 2021) because the
action entropy promotes only undirected exploration. Baram et al. (2021) propose to maximize a
transition entropy, which is the entropy of a next state conditioned on a current state, as a proxy for
the state entropy.

In contrast to these methods, exploration emerges through resetting and seeking the best trajectory in
ReMax, as noted before.

Tree-search. MCTS (Coulom, 2006) and its variant UCT (Kocsis & Szepesvári, 2006) are popular
tree-search algorithms. ExIt (Anthony et al., 2017) combines UCT and deep learning. It uses tree
search to find an improved policy, and neural networks imitate it and estimate its value. This approach
has been shown to work in complex two-player games (Silver et al., 2017) too. Building on ExIt,
Anthony et al. (2019) propose to express a simulation policy by a neural network and train it by the
policy gradient method, which removes the necessity of state (and state-action pair) counts in UCT.
Temporal-difference search (Silver, 2009) is based on a similar idea, but its simulation policy is the
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ε-greedy policy with respect to a Q-function, and the Q-function is updated during the search based
on temporal-difference learning.

Our algorithm can be understood as a kind of the tree-search algorithm, wherein it learns a policy
maximizing the ReMax objective, and goes back some steps when a leaf node (terminal state) is
reached.

Resetting. The closest to our method is probably Go-Explore (Ecoffet et al., 2021). It essentially
counts the number of visitation to each observed state, resets to a less visited state, and then starts an
exploration from it. Counting requires the discretization of the state space, and Go-Explore requires
some domain knowledge in general for a reasonable discretization.

In contrast, our method does not require visitation counts. Instead, exploration automatically emerges
through the maximization of the ReMax objective with the policy gradient method. Nonetheless,
learning when to reset and to which state in our method is an important and interesting direction.
Using counts like Go-Explore is one way, but using RND or E-values explained above may be
another.

Change of a Start-state Distribution. An idea different from but related to resetting is the change
of a start-state distribution. It changes the start-state distribution from MDP’s initial-state distribution
to one that generates states nearby goal states (Florensa et al., 2017; McAleer et al., 2019), and
human-expert data distribution (Hosu & Rebedea, 2016; Peng et al., 2018). As in resetting, restart
modifies the data distribution for training, whose importance is backed up by some theoretical work
(Kakade & Langford, 2002; Munos, 2003; 2005). However, the start-state distribution must be chosen
appropriately and often requires side information like expert data or limited task setting such as
goal-conditioned MDPs. Therefore, we did not compare our algorithm against those methods.

B REMAX OBJECTIVE IN BANDIT PROBLEM

We can analytically compute the ReMax objective in the bandit problem:

J
(K)
ReMax(π) = 0.25

(
1− pK

)
+ 0.75

(
1− (1− p)K

)
, (9)

where p := π(a = 1). The first term represents the probability that the correct arm is 0, and the agent
plays it at least once. The second term is that of the action a = 1. Fig. 1 (A) compares JRL and

J
(2)
ReMax(π) = −p2 + 1.5p+ 0.25 . (10)

We can confirm that p = 0.75 (shown as the black dotted line in Fig. 1 A) maximizes the ReMax
objective, and the optimal policy under the ReMax objective is exploratory.

C BIASED MAZE ABLATION STUDY

We ran several additional experiments in the biased maze problem (Sec. 5) to analyze the behavior of
ReMax REINFORCE in detail.

C.1 BIAS TERM EFFECT

In our experiment, the standard REINFORCE got stuck in a deterministic suboptimal solution (Fig. 4).
This result may be confusing as the policy π(a = 1|si) = σ(wi + c) has a weight parameter wi for
each state. Learning an appropriate wi for each state must be enough to solve the maze. It happens
because the bias term c allows the policy to control the “prior” behavior at unseen states. Note that c
does not depend on the state index i, and is expected to learn the global maze bias. Fig. 10 shows
the results for the standard REINFORCE with and without bias term c. The learning rate was 0.03.
Without c, the algorithm does not get stuck in a deterministic suboptimal solution because it cannot
control the behavior at unseen states. As wi is initialized to zero, the probability to select action one
at a new state is always 0.5. This initial distribution for unseen states is good enough to keep going
on the maze. However, our interest here is the algorithm behavior when the policy can control its
exploratory behavior, and thus we added the bias term c in our experiment. In this case, an algorithm
may fail to solve the maze if it has a poor exploration mechanism, as the standard REINFORCE
actually did. This is also the case when the policy uses a neural network as function approximator.
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Figure 10: REINFORCE performance with/without bias term c. Average evaluation return of ten runs (Left)
and average probability to choose action one at a new state (Right).

C.2 COMPARISON TO OTHER OBJECTIVES

In Sec. 7, we compared the ReMax objective and its average variant (instead of maximization). Here,
we show the results of another variant and the results with different K. We consider two variants:

• average: we replaced the maximizing operation in ReMax objective by averaging operation.
• separated: we regard a trajectory tree as separated trajectories, and apply the standard RL

objective and REINFORCE algorithm to them.

See Fig. 11 for the results with the average variant and Fig. 12 for the separated variant. The learning
rate was 0.03. Although both variants benefit from sampling with well-tuned resetting, they are not
as exploratory as the ReMax objective, and we see that their performance are worse than the ReMax
objective.
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Figure 11: Results of average variant. Evaluation return (Left) and probability to select action one at a new
state (Right). Dotted lines indicate the results of average variant.

D PROOF OF THE RESET POLICY GRADIENT THEOREM

Theorem 1 (Reset Policy Gradient Theorem). Denote τ∗ is the optimal trajectory in the tree, T ,
so that RReMax (T ) = R(τ∗) =

∑
(s,a)∈τ∗ r(s, a). Moreover, denote τfixed(st) is a subsequence

τfixed(st) ∈ τ∗, starting at s0 and ending at sh, h < t, s.t. for all possible trajectories with k ≥ t,
and all s ∈ τfixed(st) we have s /∈ X (sk), where X (sk) is the set of admissible states to reset to in
state sk. In other words, τfixed(st) is the set of states in the optimal trajectory to which it is impossible
to reset to when starting at state st, at any point following time-step, t. Then we have

∇θE [RReMax (T )] = E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
RReMax(T )−R (τfixed(st))− bt

) (11)
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Figure 12: Results of separated variant. Evaluation return (Left) and probability to select action one at a new
state (Right). Dotted lines indicate the results of separated variant.

Proof. Starting from the unbiasedness of Eq. 5, we have

∇θE [RReMax (T )] = E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
RReMax(T )− bt

)
= E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
R (τ∗\τfixed(st)) +R (τfixed(st))− bt

)
= E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
R (τ∗\τfixed(st))− bt

)
+ E

 ∑
t|ut=at∈A

∇θ log πθ(at|st)
(
R (τfixed(st))

)
(12)

It remains to be shown that E
[∑

t|ut=at∈A ∇θ log πθ(at|st)
(
R (τfixed(st))

)]
= 0. It is well known

that Eπθ
[∇θ log πθ(a)Y ] = 0, for a random variable Y statistically independent to a, because

Eπθ
[∇θ log πθ(a)Y ] = Eπθ

[∇θ log πθ(a)]Eπθ
[Y ], and Eπθ

[∇θ log πθ(a)] = ∇θEπθ
[1] = 0. Fi-

nally, note that R (τfixed(st)) will not change, irrespective of the choice of at based on the definition
of τfixed(st); hence, it is statistically independent to at, and the expectation is 0.

E HYPERPARAMETER SELECTION IN MNIST MAZE PROBLEM

In the MNIST maze experiments (Sec. 6), we aimed to examine the behavior of ReMax REINFORCE
when the policy appropriately utilizes the information from the image input to solve the maze.
Therefore, we searched the hyperparameters, the learning rate and the image input scale d so that the
policy can solve the maze well when the image flip probability is temporarily set to 0, i.e. when the
agent can solve the maze perfectly if it blindly believes the MNIST image hint. We performed ten
validation runs with different seeds than the test runs and grid-searched the hyperparameters. The
search space was {0.0003, 0.001, 0.003, 0.01, 0.03} for the learning rate and {1.0, 0.1, 0.01} for d.
Fig. 13 shows the learning curve of top five hyperparameter sets in validation runs. Based on this
experiment, we used 0.003 for the learning rate and 0.01 for d. Note that, with those hyperparameters,
the policy quickly learned to reach the maximum length of maze (1000).

F TRUNCATED ROLLOUTS WITH RESETTING

The rollout procedure of each rollout worker is described in Algorithm 1. Each rollout function call
receives the state sstart, from which the rollout starts and returns a fixed-size trajectory tree and the
start state sstart for the next rollout. Note that the initial sstart is sampled from ρ0. Instead of setting
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Figure 13: Top five hyperparameters in validation runs.

a fixed number of resets K as previously, the resetting will continue for as many times as necessary
until the fixed tree size is reached. Moreover, as there is the possibility of no resets occurring if the
agent does not encounter a terminal state, we introduced a hyperparameter preset that determines
the probability of resetting at non-terminal states: η(y = 1|s) = 1 if s is a terminal state and preset
otherwise.

Algorithm 1 Rollout function with reset
Input: sstart

Initialize t = 0, s = sstart, X = {s}, and T = {s}
while t < H do

Determine whether to reset or not y ∼ η(·|s)
if y == 1 then

Add s to leaf nodes
Determine where to reset x ∼ πX (·|s)
Update s← sRe(x) ▷ Reset to sRe(x)
continue

else
Sample a ∼ πθ(·|s) and s′ ∼ P (·|s, a)
Update T ← T ∪ {a, s′} and X ← X ∪ {s′}
Update t← t+ 1 and s← s′

end if
end while
Add s to leaf nodes
Sample sstart randomly from leaf node states
if sstart is terminal then sstart ∼ ρ0(·)
return T , sstart

G MINATAR EXPERIMENT DETAILS

Neural network architecture. We employed the same neural network architecture in the original
MinAtar study (Young & Tian, 2019) to ensure a reasonable baseline algorithm performance. The
architecture consists of one convolutional layer, one linear hidden layer, and one fully connected
output player. The convolutional layer has 16 output channels from 3× 3 kernel with stride size 1.
Both hidden layer and output layer have 128 units. The SiLU and dSiLU activation functions (Elfwing
et al., 2018) are used after the convolutional layer and hidden layer, respectively. The policy and
value function share the network.

Hyperparameter selection with validation runs. In the MinAtar experiments, we determined
several hyperparameters from validation runs. The hyperparameter for A2C (w/o entropy bonus) is
the learning rate α. A2C (w/ entropy bonus) has the additional hyperparameter β for controlling the
scale of entropy bonus term. In ReMax A2C, the hyperparameters are the learning rate α and preset,
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probability that reset happens at a non-terminal state. In each of the MinAtar games, we selected the
hyperparameters which maximized the average evaluation return of five validation runs. The results
of validation runs are shown in Table 1, Table 2, and Table 3.

Table 1: Validation return of A2C (w/o entropy bonus)

α Asterix Breakout Freeway Seaquest SpaceInvaders
0.01 7.25 2.55 16.93 0.66 96.40
0.003 18.39 6.09 25.39 6.06 145.27
0.001 6.31 5.83 24.78 5.88 131.30
0.0003 3.70 5.07 16.93 4.09 44.89

Table 2: Validation return of A2C (w/ entropy bonus)

α β Asterix Breakout Freeway Seaquest SpaceInvaders
0.01 0.3 6.60 11.97 13.11 2.00 34.16
0.01 0.1 14.22 20.09 29.17 3.25 106.03
0.01 0.03 15.67 17.48 54.76 3.92 141.84
0.01 0.01 14.25 6.22 56.76 1.35 75.30
0.003 0.3 12.25 19.80 11.35 2.67 45.14
0.003 0.1 34.07 25.09 51.72 8.45 222.99
0.003 0.03 37.02 16.91 63.29 9.05 233.12
0.003 0.01 32.36 14.36 62.72 7.55 172.87
0.001 0.3 7.39 8.25 11.17 0.79 37.16
0.001 0.1 19.79 18.18 24.19 0.88 102.43
0.001 0.03 22.59 10.97 58.60 4.99 160.39
0.001 0.01 7.54 6.62 60.32 5.98 136.31
0.0003 0.3 1.33 4.34 11.26 0.71 35.63
0.0003 0.1 1.83 7.20 15.45 0.54 37.65
0.0003 0.03 3.33 5.24 23.20 0.55 43.97
0.0003 0.01 3.90 5.16 33.82 2.13 44.35

Table 3: Validation return of ReMax A2C

α preset Asterix Breakout Freeway Seaquest SpaceInvaders
0.01 0.0 12.23 11.90 13.55 5.47 106.82
0.01 0.02 11.40 14.64 16.93 3.33 105.09
0.01 0.05 12.87 11.99 23.40 3.17 63.57
0.003 0.0 28.63 22.91 16.93 7.96 212.20
0.003 0.02 29.36 20.96 61.17 33.54 200.19
0.003 0.05 28.18 19.05 60.98 42.04 171.43
0.001 0.0 15.62 16.15 17.55 7.79 102.03
0.001 0.02 18.79 15.34 50.10 7.82 65.44
0.001 0.05 19.48 12.33 52.66 6.44 46.71
0.0003 0.0 3.22 9.52 16.93 1.32 35.06
0.0003 0.02 2.82 9.93 16.93 0.63 32.61
0.0003 0.05 2.32 7.65 19.61 0.42 29.37
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