
A Related works1

I. Boltzmann Generators2

Bolzmann generators [Noé et al., 2019] are normalizing flows that approximate Boltzmann distri-3

butions. Noé et al. [2019] utilized the fact that normalizing flows are tractable density models and4

introduced a notion of training by energy via reverse KL-divergence minimization. Recently, there has5

been a growing interest in Boltzmann generators. Dibak et al. [2022] proposed temperature steerable6

flows that generalized to families of ensembles across multiple temperatures, thereby increasing7

the range of thermodynamic states accessible for sampling. Unfortunately, this model tends to8

undersample significant local minimas for systems as small as alanine dipeptide. The authors believed9

that this was due to the limited expressivity of the flow model. Wu et al. [2020] proposed stochastic10

normalizing flows, which combine flows with MCMC methods by introducing sampling layers11

between flow layers to improve model expressivity. Unfortunately, this method is computationally12

expensive as it involves many more target evaluations. In addition, stochastic normalizing flows13

tend to miss modes [Midgley et al., 2022]. Köhler et al. [2021] introduced smooth normalizing14

flows, which are C∞-smooth, thus making them more physically amenable. They also introduce15

force-matching as an added loss term. While they have impressive results and modal coverage for16

alanine dipeptide, they utilize a root-finding algorithm to approximate the inverse for their smooth17

flows, which becomes computationally prohibitive for higher-dimensional systems.18

This work has focused on normalizing flows. However, diffusion models have also shown great19

promise as an alternative generative model for learning Boltzmann generators. Jing et al. [2022] train20

a diffusion model to learn the Boltzmann distribution over the torsion angles of multiple drug-like21

molecules, while using cheminformatics methods for the bond lengths and angles. They perform22

energy-based training (similar in spirit to the reverse KL divergence in flow model training) via23

estimation of a score matching loss using samples generated by the model. However, this method does24

not scale well to larger molecules and inherits the same problem of unstable training at initialization.25

II. Loss functions26

Wirnsberger et al. [2022] trained a flow model without MD samples by minimizing the KL divergence27

to approximate the Boltzmann distribution of atomic solids with up to 512 atoms. However, the28

KL-divergence suffers from mode-seeking behavior, which severely impairs training for multimodal29

target distributions. While the forward KL-divergence, i.e. maximum likelihood, is mass covering,30

the Monte Carlo approximations of such an objective have a very high variance in loss. To circumvent31

this, Midgley et al. [2022] trains a flow to approximate a target p by minimizing the alpha-divergence32

with α = 2, which is estimated with annealed importance sampling (AIS) using the flow q as the33

base distribution and p2/q as target. This method is notable in that it does not require any MD34

samples but still achieves impressive results for alanine dipeptide. Nonetheless, the AIS component35

is computationally expensive and scales poorly for larger systems.36

III. Coarse-graining37

Several works have attempted to scale flow-based Boltzmann generators to larger systems. Mahmoud38

et al. [2022] trained a flow model on coarse-grained protein representations which they then mapped39

back to full-atom representations using a language model. On a similar note, Köhler et al. [2022]40

trained a normalizing flow to represent the probability density for coarse-grained (CG) MD samples41

in order to learn the parameters of a CG model. Unfortunately, coarse-grain approaches tend to lose42

significant information compared to full-atom resolution for downstream applications. Importantly,43

both works note that using internal-coordinate representations do not scale well as small changes in44

torsion angles can lead to large global distortions. Our results indicate that this is not necessarily true,45

as we use a reduced internal-coordinate representation.46

IV. Normalizing flow architectures47

Our flow model, while novel, shares some similarities to previous works. DenseFlow [Grcić et al.,48

2021] fuses a densely connected convolutional block with Nyström self-attention in modules with49

both cross-unit and intra-module couplings. This architecture is specifically designed for image50
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data and utilizes a linear approximation for the self-attention mechanism. In contrast, we use gated51

attention and rotary positional embeddings in order to handle the sequential nature of proteins.52

Multiscale flow architectures were first introduced by Dinh et al. [2017] In the protein domain,53

previous works also split the inputs into different channels [Noé et al., 2019, Köhler et al., 2021,54

2022]. However, they split the input dimensions into torsion, angle, and bond channels. In contrast,55

our model splits the input into separate backbone and sidechain channels to better capture the global56

distribution.57

V. Transferable models58

As mentioned in the discussion section of the main text, one of the primary limitations of this work is59

the inability to transfer across molecular systems. Several works have attempted to overcome this60

limitation. Klein et al. [2023a] developed Timewarp: an enhanced sampling method which uses61

a normalising flow as a proposal distribution in a Markov Chain Monte Carlo (MCMC) method62

targeting the Boltzmann distribution. However, the transferability of Timewarp is demonstrated only63

for small peptides (2-4 amino acids), and its capabilities are yet to be validated on larger systems.64

One promising direction for developing transferable models targeting the Boltzmann distribution is65

diffusion modeling. Jing et al. [2022] develop a torsion score model that allows for transferability66

across systems. However, their model is only trained and validated on small, drug-like molecules67

that are around the same size as alanine dipeptide or smaller. Fu et al. [2023] trained a multi-scale68

graph neural network that directly simulates coarse-grained MD with a very large time step and69

used a diffusion model as a refinement module to mitigate simulation instability. The degree of70

coarse-graining as presented in the paper diminishes the resolution, thereby making downstream71

drug-design applications infeasible. In addition, coarse-graining dynamics often do not mimic real72

transitions that occur in nature for proteins.73

VI. Equivariant flow models74

Several recent works have attempted to bring the benefits of equivariance (particularly SE(3) equiv-75

ariance) [Thomas et al., 2018, Kondor and Trivedi, 2018a,b] to normalizing flow models. Two76

recent works, in particular, were able to model the Boltzmann distribution for alanine dipeptide in77

Cartesian coordinates. Midgley et al. [2023] develop an augmented coupling flow that preserve78

SE(3) and permutation equivariance that can sample from the Boltzmann distribution of alanine79

dipeptide via importance weighting. Klein et al. [2023b] utilize a different generative modeling80

method called flow matching. Specifically, they utilize equivariant flow matching to exploit the81

physical symmetries of the Boltzmann distribution and achieve significant sampling efficiency for82

alanine dipeptide. Unfortunately, both works still fall short of internal coordinate-based methods for83

alanine dipeptide. However, as a Cartesian coordinate representation is more generalizable and will84

often present with smoother gradients and more stable training, they are a promising direction for85

developing scalable BGs.86

B Training by energy87

Below, we show the connection between minimizing the reverse KL-divergence and minimizing the88

energy of generated samples.89

KL(qθ||p) = Ex∼qθ [log qθ(x)− log p(x)]

= Ez∼q [log q(z)− log |det(Jfθ (z))| − log p(fθ(z))]

= −Hz + logC + Ez∼q [u(fθ(z))− log |det(Jfθ (z))|] ,

where Hz is the entropy of the random variable z and C =
∫
e−u(x)/(kT )dx is the normalization90

constant for the Boltzmann distribution p(x) ∝ e−u(x)/(kT ). When minimizing the KL-divergence91

with respect to the parameters θ, the entropy term and the log normalization constant disappear as92

they are not dependent on θ:93

θ∗ = argmin
θ

���−Hz +���logC + Ez∼q [u(fθ(z))− log |det(Jfθ (z))|]

= argmin
θ

Ez∼q [u(fθ(z))− log |det(Jfθ (z))|] .
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Fig. S.1: An illustration of the definition of bond length, bond angle, and dihedral angle by four atoms.
Subscripts indicate the atoms that define the value, where order is given by the bond graph connectivity.
In internal coordinate system, the position or Cartesian coordinate of atom 4 is determined by atom
1,2 and 3 based on bond length, bond angle and dihedral angle.

The expectation here is usually approximated with a Monte Carlo estimate, but a variety of different94

sampling procedures can be utilized. The log determinant Jacobian (ldj) term can be seen as promoting95

entropy, or exploration, of the sample space.96

C Coordinate Transformation97

I. Protein Structure98

Protein structure refers to the three-dimensional arrangement of atoms in an amino acid-chain99

molecule. There are four distinct levels by which we can describe protein structure. The primary100

structure of a protein refers to the sequence of amino acids in the polypeptide chain. The secondary101

structure refers to regularly patterned local sub-structures on the actual polypeptide backbone chain.102

The two most common secondary structure motifs are α-helices and β-sheets. Tertiary structure103

refers to the overall three-dimensional structure created by a single polypeptide. Tertiary structure is104

primarily driven by non-specific hydrophobic interactions as well as long-range intramolecular forces.105

Quaternary structure refers to the three-dimensional structure consisting of two or more polypeptide106

chains that operate as a single functional unit.107

II. Coordinate Representations108

Boltzmann generators usually do not operate directly with Cartesian coordinates. The primary global109

conformational changes of a protein do not described efficiently by the atomic Cartesian coordinates.110

This is driven by the fact that chemical bonds are very stiff, and energetically-favored conformational111

changes take place via rotations around single chemical bonds [Vaidehi and Jain, 2015]. A more112

commonly used alternative is internal coordinates. Internal coordinates are defined by bond lengths d,113

bond angles θ, and dihedral angles ϕ (Fig. S.1).114

In their seminal work, Noé et al. [2019] introduced a coordinate transformation whereby the protein115

backbone atoms (primarily defined as the N , Cα, and C atoms) are mapped PCA coordinates while116

the rest of the atoms are mapped to internal coordinates. The motivation behind this mixed coordinate117

transformation is that protein conformations are highly sensitive to changes in backbone internal118

coordinates. This often results in unstable training and difficulty in generating natural, i.e., high119

Boltzmann probability, structures. Most works since have used full internal coordinate representations120

but experimented only with small systems, the most common of which is alanine dipeptide (22 atoms).121

Köhler et al. [2022] note that scaling Boltzmann generators to larger systems is difficult with internal122

coordinate representations.123

In our work, rather than using a full internal coordinate representation, which would be 3N − 6124

dimensional (where N is the number of atoms in the system), we utilize a reduced internal coordinate125

representation. For training features, we use the dihedral angles and the bond angles for the 3126

backbone atoms (N , Cα, C). For side-chain atoms, we use all rotatable dihedral angles around single127

bond. All bond lengths and bond angles other than the 3 defining backbone atoms and improper128

torsion angles are kept at their mean values calculated from input protein structures. By examining129

all protein structures generated, we confirmed that such a reduced internal coordinate system can130
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Table S.1: Hyperparameters for training

Optimizer AdamW
λ 0.0001

Learning rate 0.002
Scheduler ReduceLROnPlateau

Patience (epochs) 5
Factor 0.1

Batch Size 256
Dropout 0.1
Qdim 32
Kdim 32
Vdim 64

Normalization Scaled
Attention Laplace
Activation SiLU
RQS bins 8

Epochs (NLL) 200
Epochs (NLL + W) 50

Epochs (NLL + W + KL) 20
Epochs (NLL + KL) 10

represent all protein structures to very high accuracy and quality. Recent works have adopted similar131

approaches; Wu et al. [2022] utilize only the backbone torsion and bond angles to represent various132

proteins, while Wang et al. [2022] simply use the backbone torsion angles to represent the polypeptide133

AiB9.134

D Training details and architecture135

All models were trained on a single NVIDIA A100 GPUs with the Adam optimizer and a dropout136

factor of 0.1. For model that utilized GAU-RQS blocks, the dimensionalities of the Q, K, and V137

matrices were 32, 32, and 64, respectively. In addition, we utilized scaled normalization [Nguyen and138

Salazar, 2019], the Laplace attention function [Ma et al., 2023], and SiLU activations [Ramachandran139

et al., 2017]. For the gated attention units, we also use the T5 relative positional bias [Raffel et al.,140

2020]. For the rational quadratic splines (RQS), we use a bin size of K = 8.141

Data was all standard normalized. Dihedral angles were constrained to be within [−π, π] and shifted142

as done by Sittel et al. [2017].143

For the multi-stage training strategy, all models were trained for 200 epochs ( 12 hours) with the NLL144

loss, 50 epochs ( 8 hours) with NLL+W, 20 epochs ( 8 hours) with NLL+W+KL, and 10 epochs ( 3145

hours) with NLL+KL. The approximate times are for protein G, which has 56 residues.146

We do no hyperparameter tuning due to the lack of compute and time. Further implementation details147

are given in the code, which is available upon request. A summary of the hyperparameters for our148

model are provided in Table S.1.149

E Further ablations150

In this section, we provide further ablations for Table 1 in the main text. In particular, we provide151

further ablations with regards to the training strategy with the baseline neural spline flows (NSF)152

architecture in Table S.2. As we can see from the table, while our different training strategies improve153

upon the baseline model with NLL training, the improvements are not as drastic as for our architecture154

(Table 1).155
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Table S.2: Training NSF basline model with different strategies. We compute ∆D, energy u(·),
and mean NLL of 106 generated structures after training with different training strategies for the
baseline NSF model with ADP, protein G, and Villin HP35.

Training strategy

System NLL KL W2 ∆D (Å) Energy u(x) (kcal/mol) −Ep(x)[log qθ(x)]

✓ 0.09± 0.01 (−1.19± 0.61)× 101 38.29± 0.19
ADP ✓ ✓ 0.08± 0.01 (−1.21± 0.48)× 101 40.11± 0.20

✓ ✓ 0.05± 0.01 (−0.99± 0.57)× 101 41.03± 0.08
✓ ✓ ✓ 0.04± 0.00 (−1.22± 0.13)× 101 39.10± 0.13

✓ 2.92± 0.80 (2.15± 3.31)× 1010 −263.46± 0.13
Protein G ✓ ✓ 18.19± 2.88 (2.90± 0.82)× 102 −260.87± 0.51

✓ ✓ 1.81± 0.33 (6.04± 3.79)× 107 −261.01± 0.33
✓ ✓ ✓ 1.58± 0.29 (−0.86± 2.04)× 102 −257.82± 0.92

✓ 0.81± 0.06 (7.78± 17.4)× 107 687.95± 1.92
HP35 ✓ ✓ 0.91± 0.05 (2.15± 11.4)× 103 691.41± 1.47

✓ ✓ 0.59± 0.05 (9.61± 2.55)× 107 690.87± 1.05
✓ ✓ ✓ 0.61± 0.07 (−1.77± 1.49)× 102 691.10± 2.12

Table S.3: Effective sample size (ESS) of the various training strategies and architectures.

Training strategy

System Arch. NLL KL W2. ESS (%)

NSF ✓ 3.9± 0.5

✓ 9.1± 1.7
ADP Ours ✓ ✓ 58.6± 8.4

✓ ✓ 39.4± 2.7

Ours ✓ ✓ ✓ 88.4± 0.2

NSF ✓ 0.0± 0.0

✓ 0.0± 0.0
Protein G Ours ✓ ✓ 0.0± 0.0

✓ ✓ 0.0± 0.0

Ours ✓ ✓ ✓ 62.47± 1.4

NSF ✓ 0.0± 0.0

✓ 0.0± 0.0
HP35 Ours ✓ ✓ 0.0± 0.0

✓ ✓ 0.0± 0.0

Ours ✓ ✓ ✓ 43.9± 1.3

F Reweighted distribution156

Typically, the output distribution of the flow model will not match exactly with the target distribution,157

and previous works employ importance sample reweighting to the target distribution [Noé et al., 2019,158

Midgley et al., 2022, Wu et al., 2020]. While efficient Boltzmann reweighting is feasible for a small159

system like alanine dipeptide, the current work makes several modeling assumptions to scale to larger160

molecules. We model a distribution on a space with reduced dimensionality, which is not exactly161

the Boltzmann distribution. To be precise, we model p(τ, θbb|L = L̄), where τ are torsion angles,162

θbb denotes backbone bond angles, and L and L̄ denote other internal coordinates and their mean163

marginals, respectively. In addition, while the MD simulations for the training data were trained with164

explicit water, we use an implicit water model (for efficiency) when training with the energy function.165

This results in a wider range of energy values for our training data and generated samples for protein166
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G and villin HP35 (the alanine dipeptide data is open source and is run with an implicit solvent). Due167

to precision issues, it is difficult to meaningfully compare importance weights as only the lowest168

energy structures will tend to have a nonzero importance weight. For these reasons, we consider169

the histogram of our training data distribution for e−u(x), and use the bins and densities to define170

pdata(x), our target distribution. We define q(x) as the likelihood according to our flow model.171

We report the effective sample size (ESS) [Martino et al., 2017] (Table S.3) and display the reweighted172

energy distribution according to the energies computed for the training data distribution of protein G173

and villin HP35 (Fig. S.2). As we can see from the table, for larger systems such as protein G and174

HP35, only the model that utilizes our novel architecture and multi-stage training strategy are capable175

of capturing a meaningful subset of the data distribution, as measured by ESS. This is primarily due176

to the fact that the other models generate samples with atomic clashes that dramatically increase their177

associated energies.178

To remedy some of the issues with using the Boltzmann distribution as our target distribution, we179

computed the energies of the generated structures and the training data with force field parameters180

that more closely modeled the simulating force field (specifically, we use the GBn2 implicit solvent181

model). We then set the target distribution as p(x) ∝ e−u(x). We conduct importance sampled182

reweighting and display the results for protein G in Fig S.3. As we can see, Boltzmann reweighting183

tends to sample only for the lowest energy states. In fact, samples from the training data would rarely184

have nonzero weights. This motivated our previous approach for Fig. S.2.185

Fig. S.2: Energy distribution of the training data (orange), samples generated from the model (blue),
and the importance weight resampled energy distribution from the flow model (green) for protein G
and HP35. The target distribution for importance weighting is set as the histogram distribution of
pdata(x) ∝ e−u(x). Energy here is computed in a vacuum.
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Fig. S.3: Energy distribution of the training data (orange), samples generated from the model (blue),
and the importance weight resampled energy distribution from the flow model (green) for protein G.
We modify the force field for computing the energies to be closer to the simulating force field. The
target distribution for importance weighting is the Boltzmann probability p(x) ∝ e−u(x).

References186

Manuel Dibak, Leon Klein, Andreas Krämer, and Frank Noé. Temperature steerable flows and187

boltzmann generators. Phys. Rev. Research, 4(L042005), 2022.188

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In189

International Conference on Learning Representations, 2017.190

Xiang Fu, Tian Xie, Nathan J. Rebello, Bradley D. Olsen, and Tommi Jaakkola. Simulate time-191

integrated coarse-grained molecular dynamics with multi-scale graph networks. Transactions on192

Machine Learning Research, 2023.193
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