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Appendix A Deterministic scaling limit of stochastic processes

In order to show the deterministic scaling of online SGD under a proper chosen time scale, we will
make use of a convergence result by [21, 31], which is adapted below in Theorem A.1.
Theorem A.1 (Deterministic scaling limit of stochastic processes). Consider a d-dimension discrete
time stochastic process sequence, {Ων ; ν = 0, 1, 2, ..., [Sτ ]}S=1,2,... for some τ > 0. The increment
Ων+1 −Ων is assumed to be decomposable into three parts,

Ων+1 −Ων =
1

S
ψ(Ων) +Λν + Γν , (21)

such that
Assumption A.1.1. The process Λ̃

ν ≡
∑ν

ν′=0 Λ
ν′

is a martingale and E∥Λν∥2 ≤ C(τ)2/S1+ϵ1

for some ϵ1 > 0.
Assumption A.1.2. E∥Γν∥ ≤ C(τ)/S1+ϵ2 for some ϵ2 > 0.

Assumption A.1.3. The function ψ(Ω) is Lipschitz, i.e, ∥ψ(Ω)− ψ(Ω̃)∥ ≤ C∥Ω− Ω̃∥ for any Ω

and Ω̃.

Let Ω(t), with 0 ≤ t ≤ τ , be a continuous stochastic process such that Ω(t) = Ων with ν = [St].
Define the deterministic ODE

d

dt
Ω̄(t) = ψ(Ω̄(t)) , (22)

with Ω̄(0) = Ω̄0.

Then, if assumptions A.1.1 to A.1.3 hold and assuming E∥Ω0 − Ω̄0∥ < C/Sϵ3 for some ϵ3 > 0 then
we have for any finite S:

E
∥∥∥Ων − Ω̄

( ν
S

)∥∥∥ ≤ C(τ)ecτS−min{ 1
2 ϵ1,ϵ2,ϵ3} , (23)

where Ω̄(·) is the solution of Eq.(22).

Proof. The reader interested in the proof is referred to the supplementary materials of [21, 31].

Although the theorem wasn’t originally proven in the p→ ∞ setting, a glance at its proof shows that
it still holds upon replacing C(τ) by C(p, τ) in Assumption A.1.1 and A.1.2, as well as Equation
(23). We choose ∥·∥ to be the L∞ norm, since it suits better the p→ ∞ scaling. The S in Theorem
A.1 corresponds to 1/δt, where δt is defined in Theorem 2.1.

Following [21], we define for j, l ∈ [p]

Ψjl(Ω;x) =
γ

pd δt

(
Eν
j λ

ν
l + Eν

l λ
ν
j

)
+

γ2

p2 d δt
Eν
j E

ν
l ,

and
ψjl(Ω) = Ex∼N (x|0,1) [Ψjl(Ω;x)] .

The functions Ψ, ψ are similarly defined on [p]× [p+ 1, p+ k]. With that, we write

Ων+1 −Ων =
1

S
ψ(Ω) +

1

S
(Ψ(Ων ;x)− ψ(Ων))︸ ︷︷ ︸

Λν

+Γν ,
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where for j, l ∈ [p]

Γν
jl =

γ2

p2d2
(
∥x∥22 − d

)
Eν
j E

ν
l .

The main obstacle to bounding Λν and Γν is the fact that the qjj can a priori diverge to infinity.
Our first task is therefore to show that this does not happen; as a proxy we show a subgaussian-like
moment bound:

E
[
(qνjj)

t
]
≤
(
C(τ) +

ct

S

)t

.

Equipped with the above bound, controlling E∥Λν∥2 and E∥Γν∥ becomes fairly easy. All proof
details are in the below sections.

A.1 Preliminaries: bounding the qjj

Since σ is L-Lipschitz, we have by the Cauchy-Schwarz inequality

(Eν)2 ≤ 3L2

k

k∑
r=1

(λ∗r)
2 +

3L2

p

p∑
j=1

(λj)
2 + 3∆ζ2 ≡ Φν (24)

Define

sν = EΦν =
3L2

k

k∑
r=1

ρrr +
3L2

p

p∑
j=1

qνjj + 3∆

Assumption 1 in Theorem 2.1 implies that

|qν+1
jj − qνjj | ≤

1

S

(
c1(λ

ν
j )

2 + c2(Eν)2
)

where c1, c2 are absolute constants. Summing those inequalities yield

|sν+1 − sν | ≤ c3
S
Φν ,

and finally

Eν [s
ν+1] ≤ sν

(
1 +

c3
S

)
≤ sνec3/S .

As a result, we have for any 0 ≤ ν ≤ Sτ

E[sν ] ≤ c4e
c3τ . (25)

For simplicity, let qν denote any of the qνjj . We have, for all t ≥ 0,

(qν+1)t − (qν)t = t(qν)t−1(qν+1 − qν) +O

(
t2

S2

)
,

where the remainder term has bounded expectation. Again, we write∣∣(qν+1)t − (qν)t
∣∣ ≤ t(qν)t−1 1

S
(c1(Eν)2 + c2(λ

ν
i )

2) +
c5t

2

S2
.

By Assumption 3, the qνii are bounded from below by a constant, hence

Eν [(q
ν+1)t] ≤ (qν)t

(
1 +

c6t

S

)
+O

(
c5t

2

S2

)
This implies that for any t ≥ 0 and 0 ≤ ν ≤ Sτ ,

E[(qν)t] ≤
(
c7 +

c5t
2

S

)
ec6τ ≤

(
C(τ) +

c5t

S

)t

(26)
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A.2 Assumption A.1.1

We have for all i, j ∈ [p+ k],(
Ων+1

ij − Eν [Ω
ν+1
ij ]

)2 ≤ 2
(
(Ων+1

ij − Ων
ij)

2 + (Ων
ij − Eν [Ω

ν+1
ij ])2

)
.

As a consequence,
E∥Λν∥2 ≤ 4max

i,j
(Ων+1

ij − Ων
ij)

2 .

Now, by definition,

(qν+1
ij − qνij)

2 ≤ L

S2

(
c1(Eν)2 + c2| Eν |(|λi|+ |λj |)

)2 ≤ L

S2

(
c3(Eν)4 + c4(max

ℓ
λνℓ )

4

)
,

The term in (Eν)4 is bounded by the same techniques as the last section. For the second term,

Eν

[
(max

ℓ
λℓ)

4

]
≤ c5 log(p)

2

(
max

ℓ
qνℓℓ

)4

,

and we can write for any t ≥ 0

max
ℓ

(qνℓℓ)
4 ≤

(∑
ℓ

(qνℓℓ)
t

)4/t

.

By Jensen’s inequality, for t ≥ 4

E

[(
max

ℓ
qνℓℓ

)4
]
≤

(∑
ℓ

E[(qνℓℓ)t
)4/t

≤ p4/t
(
C(τ) +

c6t

S

)4

,

using (26). Choosing t = 4 log(p) ≪ S shows that

E
[
max
i,j

(qν+1
ij − qνij)

2

]
≤ C(τ) log(p)2

S2

A similar bound holds for the mij , and hence

E∥Λν∥2 ≤ c5 log(p)
2

S2
,

which implies Assumption A.1.1 with ϵ1 = 1 and C(p, τ) = C ′(τ) log(p).

A.3 Assumption A.1.2

Since σ is Lipschitz, for any i, j ∈ [p]

Eν
i E

ν
j ≤ L2(Eν)2.

Hence,

E[∥Γν∥∞] ≤ L2γ2

d2p2
E
[(
∥x∥22 − d

)
Φν
]

≤ L2γ2

d2p2

(
1

2
√
d
E
[(
∥x∥22 − d

)2]
+

√
d

2
E
[
(Eν)4

])
.

The first expectation is the variance of a χ2
d random variable, which is equal to 2d, and the second

expectation is bounded by the same methods as the above sections. The term in brackets is therefore
bounded by c1

√
d, and

E[∥Γν∥∞] ≤ c2
γ2

d3/2p2

Finally, since for any y > 0 we have y2 ≤ max(y, y2)3/2, letting y = γ/p we find

E[∥Γν∥∞] ≤ c2 max

(
γ

pd
,
γ2

p2d

)3/2

≤ c3(δt)
3/2,

hence Assumption A.1.2 is true with ϵ2 = 1/2.

15



A.4
√

-Lipschitz property

Let Ω,Ω′ ∈ R(p+k)×(p+k), we can write the (i, j) coefficient of ψ(Ω) as fij(
√
Ω), where

f : R(p+k)×(p+k) → R
A 7→ Ex∼N (0,Ip+k)[gij(Ax)]

The same arguments as above show that the function f is Lipschitz, and hence for some constant L′′

we have
∥ψ(Ω)− ψ(Ω′)∥ ≤ L′′∥

√
Ω−

√
Ω′∥.

Appendix B A lemma on ODE perturbation

In this section, we prove a proposition that bounds the difference between an ODE solution and a
perturbed version, for a bounded time t.

Theorem B.1. Let f, g : Rn → Rn be two L-Lipschitz functions, and consider the following
differential equations in Rn:

dx

dt
= f(x) + ϵg(x),

dy

dt
= f(y),

where ϵ > 0, and with the initial condition x(0) = y(0) . Then, if τ > 0 is fixed, we have

∥x(t)− y(t)∥2 ≤ cϵeLτ

for any 0 ≤ t ≤ τ , with c a constant independent from ϵ, τ .

Before proving this proposition, we begin with a small lemma:

Lemma B.2. Let a, b > 0, and z : R+ → R+ a function satisfying

dz

dt
= az + b

√
z

with z(0) = 0. Then, for some constant c > 0, we have

z(t) ≤ c
b2eat

a2
for all t ≥ 0

Proof. Upon considering the function a2z(t/a)/b2 instead, we can assume that a = b = 1. Then,
we have

dz

dt
≤ max(z, 1) + max(

√
z, 1),

and the RHS is an increasing function. Hence, if z̃ is a solution of

dz̃

dt
= max(z, 1) + max(

√
z̃, 1),

with z̃(0) = 0, then z(t) ≤ z̃(t) for all t ≥ 0. Since the RHS of the above equation is Lipschitz
everywhere, we can apply the Picard–Lindelöf theorem, and check that the unique solution to this
equation is

z̃(t) =

{
2t if t ≤ 1

2

(c1e
t − c2)

2 otherwise
,

where c1 and c2 are ad hoc constants. The lemma then follows from adjusting the constant c as
needed.

We are now in a position to show Theorem B.1:
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Proof. Assume for simplicity that x(0) = y(0) = 0. We begin by bounding x(t); we have

d∥x∥2

dt
= 2x⊤ dx

dt
≤ 2∥x∥ ∥f(x) + ϵg(x)∥ .

By the Lipschitz condition,

∥f(x) + ϵg(x)∥ ≤ ∥f(0) + ϵg(0)∥+ L

2
∥x∥ ,

so that
d∥x∥2

dt
≤ L∥x∥2 + 2∥f(0) + ϵg(0)∥ ∥x∥ .

Applying Lemma B.2 and taking square roots on each side,

∥x(t)∥ ≤ c
∥f(0) + ϵg(0)∥

L
eLt/2 ≤ c

∥f(0) + ϵg(0)∥
L

eLτ/2 , (27)

for any 0 ≤ t ≤ τ . Now, similarly,

d∥x− y∥2

dt
≤ 2∥x− y∥

∥∥∥∥d(x− y)

dt

∥∥∥∥
≤ 2∥x− y∥ ∥f(x)− f(y) + ϵg(x)∥
≤ L∥x− y∥2 + 2ϵ∥g(x)∥ ∥x− y∥

≤ L∥x− y∥2 + ϵ
(
∥g(0)∥+ c∥f(0) + ϵg(0)∥eLτ/2

)
∥x− y∥ ,

having used (27) on the last line. This is again the setting of Lemma B.2, which gives

∥x− y∥ ≤ c1ϵe
Lτ/2 e

Lt/2

L
≤ c2ϵe

Lτ .

Appendix C Expectations over the local fields

In this appendix we present the explicit expressions from the expectations of the local fields used to
compute the population risk and the ODE terms.

C.1 Population risk

We write the population risk (10) as

R(Ω) = Eλ,λ∗∼N (λ,λ∗|0,Ω) Eζ∼P(ζ)

[(
f̂(λ)− f(λ∗)

)2]
= Rt(P ) +Rs(Q) +Rst(P ,Q,M) ,

(28)

with

Rt ≡ Eλ∗∼N (λ∗|0,P )

[
f(λ∗)2

]
=

1

k2

k∑
r,s=1

Eλ∗∼N (λ∗|0,P ) [σ(λ
∗
r)σ(λ

∗
s)] (29a)

Rs ≡ Eλ∼N (λ|0,Q)

[
f̂(λ)2

]
=

1

p2

k∑
j,l=1

Eλ∼N (λ|0,Q) [σ(λj)σ(λl)] , (29b)

Rst ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
f̂(λ)f(λ∗)

]
= − 2

pk

p∑
j=1

k∑
r=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ(λj)σ(λ
∗
r)] (29c)

Define the vector λαβ ≡
(
λα, λβ

)⊤ ∈ R2, where the upper indices on the components indicate they
may refer to student or teacher local fields. Consider the covariance matrix on the subspace spanned
by λαβ :

Ωαβ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβ

(
λαβ

)⊤]
∈ R2×2 . (30)
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For σ(x) = erf(x/
√
2) the expectations in Eqs. (29) are in general given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ(λα)σ(λβ)

]
=

1

π
arcsin

 Ωαβ
12√(

1 + Ωαβ
11

)(
1 + Ωαβ

22

)
 . (31)

where Ωαβ
jl ≡ (Ωαβ)jl is an element of the covariance matrix given by Eq. (30).

Explicitly, the population risk contributions are

Rt(P ) =
1

k2

k∑
r,s=1

1

π
arcsin

(
ρrs√

(1 + ρrr) (1 + ρss)

)
, (32a)

Rs(Q) =
1

p2

k∑
j,l=1

1

π
arcsin

(
qjl√

(1 + qjj) (1 + qll)

)
, (32b)

Rst(P ,Q,M) = − 2

pk

p∑
j=1

k∑
r=1

1

π
arcsin

(
mjr√

(1 + qjj) (1 + ρrr)

)
. (32c)

C.2 ODE contributions

From the update equations, we first consider the expectations linear in Ej :

Eλ,λ∗∼N (λ,λ∗|0,Ω) Eζ∼P(ζ) [Ej λl] =
1

k

k∑
r′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)λlσ(λ

∗
r′)]

− 1

p

p∑
l′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)λlσ(λl′)] ,

(33a)

Eλ,λ∗∼N (λ,λ∗|0,Ω) Eζ∼P(ζ) [Ej λ
∗
r ] =

1

k

k∑
r′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)λ

∗
rσ(λ

∗
r′)]

− 1

p

p∑
l′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)λ

∗
rσ(λl′)] .

(33b)

Define the vector λαβγ ≡
(
λα, λβ , λγ

)⊤ ∈ R3, where the upper indices on the components indicate
they may refer to student or teacher local fields. Consider the covariance matrix on the subspace
spanned by λαβγ :

Ωαβγ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβγ

(
λαβγ

)⊤]
∈ R3×3 . (34)

For σ(x) = erf(x/
√
2) the expectations in Eqs. (33) are given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ′(λα)λβσ(λγ)

]
=

2

π

Ωαβγ
23

(
1 + Ωαβγ

11

)
− Ωαβγ

12 Ωαβγ
13(

1 + Ωαβγ
11

)√(
1 + Ωαβγ

11

)(
1 + Ωαβγ

33

)
−
(
Ωαβγ

13

)2 ,
(35)

where Ωαβγ
jl ≡ (Ωαβγ)jl is an element of the covariance matrix given by Eq. (34). As examples, we

write explicitly:

Ωjlr′ =

[
qjj qjl mjr′

qjl qll mlr′

mjr′ mlr′ ρr′r′

]
, Ωjrr′ =

[
qjj mjr mjr′

mjr ρrr ρrr′
mjr′ ρrr′ ρr′r′

]
. (36)
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The quadratic contribution in Ej is given by

Eλ,λ∗∼N (λ,λ∗|0,Ω) Eζ∼P(ζ) [Ej E l] =
1

k2

k∑
r,r′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)σ

′(λl)σ(λ
∗
r)σ(λ

∗
r′)]

+
1

p2

p∑
j′,l′=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)σ

′(λl)σ(λj′)σ(λl′)]

− 2

pk

p∑
l′=1

k∑
r=1

Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)σ

′(λl)σ(λ
∗
r)σ(λl′)]

+ ∆Eλ,λ∗∼N (λ,λ∗|0,Ω) [σ
′(λj)σ

′(λl)]
(37)

The solution of the noise-dependent term can be constructed with the covariance matrix (30) and is
given by [6]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ′(λα)σ′(λβ)

]
=

2

π

1√
1 + Ωαβ

11 +Ωαβ
22 +Ωαβ

11 Ω
αβ
22 −

(
Ωαβ

12

)2 (38)

Similarly, one can define the vector λαβγδ ≡
(
λα, λβ , λγ , λδ

)⊤ ∈ R4 and write the covariance
matrix on the subspace spanned by λαβγδ:

Ωαβγδ ≡ Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
λαβγδ

(
λαβγδ

)⊤]
∈ R4×4 . (39)

For σ(x) = erf(x/
√
2) the expectations in Eqs. (37) are given by [5]

Eλ,λ∗∼N (λ,λ∗|0,Ω)

[
σ′(λα)σ′(λβ)σ(λγ)σ(λδ)

]
=

4

π2

1√
Ω̄αβγδ

0

arcsin

 Ω̄αβγδ
1√

Ω̄αβγδ
2 Ω̄αβγδ

3

 ,

(40)
with

Ω̄αβγδ
0 ≡

(
1 + Ωαβγδ

11

)(
1 + Ωαβγδ

22

)
−
(
Ωαβγδ

12

)2
, (41a)

Ω̄αβγδ
1 ≡Ω̄αβγδ

0 Ωαβγδ
34 − Ωαβγδ

23 Ωαβγδ
24

(
1 + Ωαβγδ

11

)
− Ωαβγδ

13 Ωαβγδ
14

(
1 + Ωαβγδ

22

)
+Ωαβγδ

12 Ωαβγδ
13 Ωαβγδ

24 +Ωαβγδ
12 Ωαβγδ

14 Ωαβγδ
23 ,

(41b)

Ω̄αβγδ
2 ≡Ω̄αβγδ

0

(
1 + Ωαβγδ

44

)
−
(
Ωαβγδ

24

)2 (
1 + Ωαβγδ

11

)
−
(
Ωαβγδ

13

)2 (
1 + Ωαβγδ

22

)
+ 2Ωαβγδ

12 Ωαβγδ
13 Ωαβγδ

23 , .

(41c)

Ω̄αβγδ
3 ≡Ω̄αβγδ

0

(
1 + Ωαβγδ

44

)
−
(
Ωαβγδ

24

)2 (
1 + Ωαβγδ

11

)
−
(
Ωαβγδ

14

)2 (
1 + Ωαβγδ

22

)
+ 2Ωαβγδ

12 Ωαβγδ
14 Ωαβγδ

24 .

(41d)

C.3 From gradient flow to local fields

Consider the gradient flow approximation

dwj

dt
= −∇wj

R(W ,W ∗)

= − 1

p
√
d
Ex∼N (x|0,1) [xσ

′(λj) E ] .
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Now, since for any x⊤y, we have

d
(
x⊤y

)
dt

= x⊤ dy

dt
+ y⊤ dx

dt
,

we find
dqjl
dt

= − 1

pd
Ex∼N (x|0,1) [(σ

′(λj)λl + σ′(λl)λj) E ] .

Recalling the definition Ej = σ′(λj) E , the terms present inside the expectation are exactly those in
the learning term of Eq.(11).

Appendix D Initial conditions and symmetric teacher

In this work we have constructed teacher matrices W ∗ ∈ Rk×d in order to have

ρrs =
w∗⊤

r w∗
s

d
= δrs , (42)

where w∗
r ≡ [W ∗]r ∈ Rd is the r-th row of the matrix W ∗. We have started by sampling k vectors

of dimension d uniformly on a ball of radius
√
d. Then we constructed an orthonormal basis using

singular value decomposition.

The initial student weights W 0 ∈ Rp×d were taken as

W 0 = AW ∗ , (43)

with each row of A ∈ Rp×k sampled uniformly on a ball of radius one. We acknowledge choosing
initial student weights as linear combinations of the teacher can be artificial and shrinks the first
plateau, but our focus on this work was the specialization phase. Nevertheless, this choice and
Eq. (42) are particularly suitable to theoretical analysis. Once k and p are fixed, the dimension d
can be varied without changing Q0, M0 and P , thereby removing any influence of different initial
conditions for different d and providing the reader better visualization on the learning curves. To
clarify this point, consider the j-th row w0

j ≡ [W 0]j ∈ Rd of W 0:

w0
j =

k∑
r=1

ajrw
∗
r , (44)

with ajr ≡ [A]jr. Using Eq. (42) one can write

q0jl =
w0⊤

j w0
l

d
=

k∑
r,r′=1

ajrajr′
w∗⊤

r w∗
r′

d︸ ︷︷ ︸
=δrr′

=

k∑
r=1

ajralr . (45)

Similarly,

m0
jr =

w0⊤
j w∗

r

d
= ajr . (46)

Thus once A is fixed, the input dimension d can be varied without affecting the initial conditions. We
chose to sample aj ≡ [A]j ∈ Rk on a ball of radius one both to introduce some randomness on the
initialization and to keep the initial parameters bounded by one.

We stress that we use these initial conditions to make the data comparable for varying dimension
d in the numerical illustrations. Our conclusions do not depend on this particular choice of initial
conditions. If one simply takes random initialization wj ∼ N (wj |0,1) for each j, the full picture
we have presented in this manuscript remains unchanged. In Figure 6 we present an example of
curves within the blue region (see Section 2 for the characterization of this regime) with unconstrained
Gaussian initialization. Dots represent simulations, while solid lines are obtained by integration of
the ODEs given by Eqs. (18), with initial conditions adjusted to match simulations.

Although varying the initial population risk with d slightly changes the exact position where the spe-
cialization transition starts, the particular initial conditions adopted in this work do not affect whether
the specialization transition takes place or not, comparing to unconstrained Gaussian initialization.
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Figure 6: Population risk dynamics for κ = δ = 0 (Saad & Solla scaling) : p0 = 8, k = 4, ρrs = δrs.
Initialization: wj ∼ N (wj |0,1) for j = 1, ..., p0. Activation function: σ(x) = erf(x/

√
2). Data

distribution: P(x) = N (x|0,1). Dots represent simulations, while solid lines are obtained by
integration of the ODEs given by Eqs. (18), with initial conditions adjusted to match simulations.
Observe the difference on the initialization for different d.
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