
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

EFFICIENT DIFFUSION MODELS FOR SYMMETRIC MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a framework for designing efficient diffusion models on symmetric Riemannian manifolds,
which include the torus, sphere, special orthogonal group, and unitary group. While diffusion models
on symmetric manifolds have gained significant attention, existing approaches often rely on the
manifolds’ heat kernels, which lack closed-form expressions and result in exponential-in-dimension
per-iteration runtimes during training. We introduce a new diffusion model for symmetric-space
manifolds, leveraging a projection of Euclidean Brownian motion to bypass explicit heat kernel
computations. Our training algorithm minimizes a novel objective function derived via Ito’s Lemma,
with efficiently computable gradients, allowing each iteration to run in polynomial time for symmetric
manifolds. Additionally, the symmetries of the manifold ensure the diffusion satisfies an “average-
case” Lipschitz condition, enabling accurate and efficient sample generation. These improvements
enhance both the training runtime and sample accuracy for key cases of symmetric manifolds, helping
to bridge the gap between diffusion models on symmetric manifolds and Euclidean space.

1 INTRODUCTION

In recent years, diffusion-based methods have achieved significant success in generating synthetic data, including
highly realistic images and videos (see OpenAI (2023)). Given a dataset D ⊆ Rd in a d-dimensional Euclidean space
sampled from some unknown probability distribution π, the goal of a diffusion model (or any generative model) is
to learn a distribution ν which approximates the distribution π and to generate new samples from ν. While most
existing diffusion models generate samples from a probability distribution in Euclidean space Rd Ho et al. (2020);
Rombach et al. (2022), many applications require data constrained to a d-dimensional non-Euclidean manifoldM, as
seen in fields such as robotics Feiten et al. (2013); Urain et al. (2023); Shi et al. (2023); Selig (2013) and molecular
drug discovery Shapovalov and Dunbrack (2011); Maji et al. (2019); Cheng et al. (2021); Leach et al. (2022); Watson
et al. (2023), where configurations are often represented on symmetric-space manifolds like the torus, sphere, special
orthogonal group SO(n), or unitary group U(n) where n =

√
d. It is possible to enforce manifold constraints by

mapping samples from Euclidean space Rd to the manifoldM. However, this often leads to low-quality samples due to
geometric distortions caused by the mapping Leach et al. (2022); Watson et al. (2023) For example, consider generating
points from a distribution µ on the d-dimensional torus Td = S1 × · · · × S1. A naive approach would map the dataset
D to Euclidean space via the map ψ converting points on the torus to angles in [0, 2π)d ⊆ Rd. One can then train a
Euclidean diffusion model on the dataset ψ(D). However, this can severely distort the geometry of µ, leading to a
multimodal distribution that is harder for a diffusion model to learn compared to the original unimodal distribution on
the torus (see Appendix C).

To address this, several works have developed diffusion models directly constrained to non-Euclidean Riemannian
manifolds De Bortoli et al. (2022); Lou et al. (2024); Huang et al. (2022); Zhu et al. (2024); Yim et al. (2023). However,
a significant gap remains between the runtime and sampling guarantees of Euclidean and manifold-based diffusion
models. For instance, while Euclidean models have a per-iteration runtime of O(d) arithmetic operations and O(1)
gradient evaluations Ho et al. (2020); Rombach et al. (2022), the objectives of manifold diffusion models often require
exponential runtime in the dimension De Bortoli et al. (2022); Lou et al. (2024). Reducing this runtime gap, particularly
for symmetric manifolds, remains an open challenge.

To understand the technical difficulty, first consider the Euclidean case. At a high level, a diffusion model consists of
two components: a forward noising process that adds noise over time T > 0 until the data is (nearly) indistinguishable
from a Gaussian distribution, and a reverse denoising process that starts from a sample of this Gaussian distribution
and gradually removes the noise to generate samples approximating the original distribution π Ho et al. (2020);
Rombach et al. (2022). A latent variable model is used to approximate the reverse diffusion, where the latent variables

1

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

z(t1), z(t2), . . . , z(T) model random updates over discrete time intervals, approximating these updates as Gaussian
distributions whose mean (and sometimes covariance) is modeled by a neural network. In the manifold case, the forward
diffusion is standard Brownian motion on the manifold, and the reverse diffusion is the time-reversal of this process
De Bortoli et al. (2022); Lou et al. (2024); Huang et al. (2022). However, because Brownian motion on a manifold
involves adding infinitesimal Gaussian noise in the tangent space at each point, it is unclear how to model the reverse
diffusion as a Gaussian latent variable model.

To overcome this, De Bortoli et al. (2022); Huang et al. (2022) move to continuous time, where the updates of the
reverse diffusion Yt converge to Gaussian distributions on the tangent space. The reverse diffusion is governed by
a stochastic differential equation (SDE) involving the manifold’s heat kernel. The heat kernel pτ |b(·|b) represents
the density of Brownian motion at time τ , initialized at a point b. Training the reverse diffusion model thus involves
minimizing an objective function that depends on the heat kernel De Bortoli et al. (2022); Huang et al. (2022); Lou
et al. (2024). Even in the Euclidean case, the training objective is nonconvex, and there are generally no guarantees of a
polynomial-in-dimension runtime for the overall training process. However, in Euclidean space, the heat kernel has a
closed-form expression that can be computed in time linear in d, allowing each iteration of the training algorithm to run
in polynomial time. For non-Euclidean manifolds, the lack of a closed-form heat kernel creates significant challenges,
making the heat kernel computation a bottleneck during each iteration De Bortoli et al. (2022). On symmetric manifolds
like the orthogonal group, the heat kernel can only be computed via inefficient series expansions which require a runtime
that grows exponentially with d. For this reason, inaccurate approximations are oftentimes used, degrading the quality
of generated samples De Bortoli et al. (2022); Lou et al. (2024). Another issue is that, on manifolds with non-zero
curvature, such as the sphere, orthogonal group, and unitary group, standard Brownian motion cannot be obtained as the
projection of Brownian motion in Rd. As a result, previous works rely on numerical SDE or ODE solvers to compute
samples from the forward diffusion during each evaluation of the objective function De Bortoli et al. (2022); Lou et al.
(2024). The use of these solvers introduces significant computational bottlenecks in training diffusion models.

Our contributions. We study the problem of designing efficient diffusion models whenM is a symmetric-space
manifold, such as the torus Td, sphere Sd, special orthogonal group SO(n), and the unitary group U(n) where n =

√
d,

as well as direct products of these manifolds such as the special Euclidean group SE(n) which is isomorphic to
Rn × SO(n). We present a new training algorithm (Algorithm 1) for these manifolds, where each iteration can be
computed in O(d) arithmetic operations for Td or Sd, and O(d

ω
2) arithmetic operations for SO(n) or U(n), and O(1)

evaluations of the gradient of a model for the drift and diffusion terms of the reverse diffusion. Here ω ≈ 2.37 is the
matrix multiplication exponent. This significantly improves upon the per-iteration bounds of previous methods (see
Table 1). For example, on SO(n) and U(n) our method achieves exponential improvements, bringing the per-iteration
runtime closer to that of the Euclidean case. Subsequently, we provide a sampling algorithm (Algorithm 2) along with
a guarantee on its accuracy and runtime. Given an ε-minimizer of our training objective, the algorithm achieves an
ε× poly(d) bound on the total variation distance accuracy and a poly(d) runtime (Theorem 2.2). This improves upon
the sampling accuracy bounds of De Bortoli et al. (2022), which are not polynomial in the dimension. Theorem 2.2
holds for more general manifolds that satisfy an average-case Lipschitz condition (Assumption 2.1). Using tools from
random matrix theory, we prove this condition holds for the manifolds of interest (Lemma B.4).

Our paper introduces several new ideas. For the training result, we define a novel forward diffusion onM obtained by
projecting Brownian motion in Rd ontoM via a given map φ : Rd →M, which satisfies the average-case Lipschitz
condition and can be efficiently computed via the singular value decomposition whenM is the unitary or orthogonal
group. This choice of forward diffusion ensures that we can efficiently sample from our forward diffusion process in a
simulation free manner–without requiring the use of an SDE (or ODE) solver– by sampling from a Gaussian in Rd
and projecting this point ontoM. We also introduce a new training objective that bypasses the need to compute the
manifold’s heat kernel. By applying Ito’s Lemma from stochastic calculus, we project the SDE for a reverse diffusion in
Euclidean space ontoM. The drift term of the resulting SDE is expressed as an expectation of the Euclidean heat kernel.
Since the Euclidean heat kernel has a closed-form expression and the projection map φ can be computed efficiently, we
compute the objective in time O(d

ω
2).

For the sampling result, we demonstrate that the reverse SDE satisfies a Lipschitz condition provided the projection
map satisfies the average-case Lipschitz condition (Lemma B.4). Since the projection introduces a non-constant term
in the SDE on the manifold, Girsanov’s theorem techniques from prior works cannot be used to bound the accuracy.
To address this, we develop an optimal transport-based approach, leading to a novel probabilistic coupling argument
that provides the desired accuracy and runtime bounds. This approach is entirely different from previous proofs in
Euclidean space Chen et al. (2023b;a); Cheng et al. (2022); Benton et al. (2023) and manifold-based diffusion models
De Bortoli et al. (2022), which rely on Girsanov’s theorem.

2

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Algorithm Unitary or Orthogonal group Sphere Torus
Score-based Riemannian De Bortoli et al. (2022) 2d + poly(d, 1

δ
) 2d + poly(d, 1

δ
) 2d + poly(d, 1

δ
)

Scaling Riemannian Lou et al. (2024) 2d + poly(d, 1
δ
) poly(d, 1

δ
) d log(1

δ
)

This paper d
ω
2 log(1

δ
) d log(1

δ
) d log(1

δ
)

Table 1: Arithmetic operations to compute the objective function’s gradient per-iteration of the training algorithm, when M is the
unitary group, orthogonal group, sphere, or torus.

2 RESULTS

For a manifoldM, we are given a projection map φ : Rd → M and a restricted-inverse map ψ : M → Rd such
that φ(ψ(x)) = x for all x ∈ M. Denote by TxM the tangent space ofM at x. We assume access to an oracle that
computes the exponential map exp(x, v) onM for any x ∈ M and v ∈ TxM. This oracle is not needed for our
training algorithm (Algorithm 1); it is only required for the sample generation algorithm (Algorithm 2), which uses the
trained model. We are given a dataset D ⊆M sampled from π with support onM.

We set φ : Rd → Rd and ψ : Rd → Rd as identity maps whenM = Rd. For the torus Td, φ(x)[i] = x[i] mod 2π
maps points to their angles, and ψ is its inverse on [0, 2π)d. For the sphere Sd, φ(x) = x

∥x∥ , and ψ embeds the unit
sphere into Rd. For groups SO(n) and U(n), the map φ takes each upper triangular matrix X ∈ Rn×n (or X ∈ Cn×n),
computes the spectral decomposition U∗ΛU ofX+X∗, and outputs φ(X) = U . The map ψ takes each matrix U ∈M,
computes U∗ΛU where Λ = 1

ndiag(n, n− 1, . . . , 1), scales the diagonal by 1
2 , and outputs the upper triangular entries

of the result. For all of the above maps, ψ(M) is contained in a ball of radius poly(d). Our general results hold under
this assumption on ψ. For manifoldsM =M1×M2, which are direct products of manifoldsM1 andM2, where one
is given maps φ1, ψ1 forM1 and φ2, ψ2 forM2, one can use the concatenated maps φ = (φ1, φ2) and ψ = (ψ1, ψ2).

We give an algorithm (Algorithm 1) which trains our model by minimizing a nonconvex objective function via stochastic
gradient descent. Our training algorithm outputs trained models f(x, t) and g(x, t) for the drift and covariance terms of
our reverse diffusion, and passes these trained models as inputs to our sample generation algorithm (Algorithm 2).

Training. We show that the time per iteration of our training algorithm is dominated by the computation of the
objective function gradient (Lines 13 and 15 in Algorithm 2), which requires calculating the gradient of the projection
map ∇φ as well as the model gradients ∇θf and ∇ϕg, where θ and ϕ are the model parameters of f and g. When
M is one of the aforementioned symmetric manifolds, ∇φ can be computed at each iteration within error δ in
O(nω log(1δ)) = O(dω/2 log(1δ)) arithmetic operations in the case of the special orthogonal group SO(n) or unitary
group U(n), using the singular value decomposition of an n× n matrix, or in O(d log(1δ)) operations for the sphere or
torus. See Section 4 and Appendix A for details.

This significantly improves the per-iteration runtime of training diffusion models on symmetric manifolds (see Table
1). Specifically, it achieves an exponential improvement over the method in De Bortoli et al. (2022), which requires
summing Ω(2d) terms to compute the heat kernel on manifolds like the torus, sphere, orthogonal group, or unitary
group. Similarly, it improves on Lou et al. (2024), where heat kernel computations for manifolds like the orthogonal or
unitary group involve truncated expansions with approximately Ω(2d) terms. Additionally, De Bortoli et al. (2022) and
Huang et al. (2022) propose approximations to the training objective, but these are asymptotically biased and cannot be
improved beyond a fixed error, regardless of computation time (see Theorem 4 of Huang et al. (2022)). Our approach
further improves the accuracy dependence from polynomial-in-1δ to logarithmic-in- 1δ , as previous methods rely on
numerical solvers for SDEs or ODEs, which require polynomial-in- 1δ iterations for high accuracy. In contrast, our
forward diffusion is computed by adding a Gaussian vector and projecting onto the manifold, achieving any desired
accuracy with only a logarithmic dependence on 1

δ .

Sample generation. Our training algorithm (Algorithm 1) outputs trained models f(x, t) and g(x, t) for the drift and
covariance terms of our reverse diffusion. We then use these models to generate samples. First, we sample a point z
from the stationary distribution of the Ornstein-Uhlenbeck process Zt on Rd, which is Gaussian distributed. Next, we
project this point z onto the manifold to obtain a point y = φ(z), and solve the SDE dYt = f(Yt, t)dt+ g(Yt, t)dBt
given by our trained model for the reverse diffusion’s drift and covariance over the time interval [0, T], starting at the
initial point y. To simulate this SDE we can use any off-the-shelf numerical SDE solver, which takes as input the trained
model for f and g, and an oracle for computing the exponential map onM. We give one such solver in Algorithm 2,

3

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

and prove guarantees for the accuracy of the samples generated by this solver, and its runtime, in Theorem 2.2. Our
guarantees assume that the trained models f(x, t) and g(x, t) we hand to this solver minimize our training objective
within some error ε > 0.

Our theoretical guarantees hold whenM satisfies a symmetry property and φ satisfies an “average-case” Lipschitz
condition (Assumption 2.1). This symmetry property requires that each point z ∈ Rd can be parametrized as z ≡ z(U,Λ)
where U = φ(z) ∈ M and Λ ≡ Λ(z) ∈ A for some A ⊂ Rd−dim(M) is another parameter. For instance, on the
sphere, U = z

∥z∥ is the projection onto the sphere, and Λ = ∥z∥ is the distance to the origin. For SO(n) or U(n), the
parametrization comes from the spectral decomposition z = UΛU∗, where U ∈M and Λ is a diagonal matrix. On the
torus, U = φ(x) is the projection onto the torus, and Λ ∈ 2πZd. Zt, t ≥ 0, is the Ornstein-Uhlenbeck process on Rd,
Xt = φ(Zt), our forward diffusion process onM, and Yt = XT−t its time-reversal (see Section 3).

Assumption 2.1 (Average-case Lipschitz-ness). ∀t ∈ [0, T] there exists Ωt ⊆ Rd, whose indicator function 1Ωt
(x)

depends only on Λ ≡ Λ(x), for which P(Zt ∈ Ωt ∀ t ∈ [0, T]) ≥ 1−α. For every x ∈ Ωt we have ∥∇φ(x)∥2→2 ≤ L1,
∥ d
dU∇φ(x)∥2→2 ≤ L1, ∥∇2φ(x)∥2→2 ≤ L2, and ∥ d

dU∇φ(x)∥2→2 ≤ L2. Moreover, ∥ d
dU x∥2→2 ≤ ∥x∥2.

Roughly speaking, Assumption 2.1 states that the projection map φ : Rd →M satisfies a Lipschitz condition on a
set of average-case points Ωt ⊆ Rd, which contains the Euclidean-space forward diffusion Zt with high probability.
Additionally, Ωt exhibits a symmetry property: the indicator function 1Ωt(x) is independent of the projection U = φ(x).
We choose projection maps φ that satisfy this Assumption 2.1 with small Lipschitz constants. For example, for Td,
φ(x)[i] = x[i]mod2π, i ∈ [d] is 1-Lipschitz on all Rd, trivially satisfying the assumption. For the sphere, φ(x) = x

∥x∥
is 2-Lipschitz outside a ball of radius 1

2 around the origin, where the forward diffusion remains with high probability
(1 − O(2−d)). For SO(n) (or U(n)), φ(X), which computes the spectral decomposition U∗ΛU of X + X∗, has
derivatives with magnitude bounded by the inverse eigenvalue gaps 1

λi−λj
. While singularities occur at points with

duplicate eigenvalues, random matrix theory shows that eigengaps are w.h.p. bounded below by 1
poly(d) , ensuring

φ satisfies the average-case Lipschitz assumption. For the unitary group, we show that Assumption 2.1 holds for
L1 = O(d1.5

√
Tα− 1

3) and L2 = O(d2Tα− 2
3) (Lemma B.4). For the sphere, it holds for L1 = L2 = O(α− 1

d). For
the torus it holds for L1 = L2 = 1.

Theorem 2.2 (Accuracy and runtime of sampling algorithm). Let ε > 0, and suppose that φ :M→ Rd satisfies
Assumption 2.1 for some L1, L2 ≤ poly(d) and α ≤ ε, and ψ(M) is bounded by a ball of radius poly(d). Suppose
that f̂ and ĝ are outputs of Algorithm 2, and that f̂ and ĝ minimize our training objective for the target distribution π
with objective function value < ε. Then Algorithm 2, with inputs f̂ and ĝ, outputs a generated sample whose probability
distribution ν satisfies ∥ν − π∥TV < O(ε× (d3L1 + d2L2) log

(
d
ε

)
) = Õ(ε× poly(d)). Moreover, Algorithm 2, takes

O((d4L1 + d2L2) log
(
d
ε

)
) = poly(d)× log

(
d
ε

)
iterations, where each iteration requires one evaluation of f̂ and ĝ,

one evaluation of an oracle for computing the exponential map onM, plus O(d) arithmetic operations.

Plugging in our bounds on the average-case Lipschitz constants in the case of the torus, sphere, special orthogonal
group, and unitary group (Lemma B.4) into Theorem 2.2, we obtain the following guarantees for the accuracy and
runtime of our sampling algorithm for these symmetric manifolds:

Corollary 2.3. Suppose thatM is Td, Sd, SO(n), or U(n) with n =
√
d. Suppose that φ and ψ are chosen as specified

above for these manifolds. Suppose that f̂ and ĝ are outputs of Algorithm 2, and that f̂ and ĝ minimize our training
objective for the target distribution π with objective function value < ε. Then Algorithm 2, with inputs f̂ and ĝ, outputs
a generated sample whose probability distribution ν satisfies ∥ν − π∥TV ≤ O(ε× d6 log

(
d
ε

)
) for the torus and sphere

(or ∥ν − π∥TV < O(ε× d9 log
(
d
ε

)
) for SO(n) and U(n)). Moreover, Algorithm 2, takes O(d4 log

(
d
ε

)
) iterations for

the torus and sphere (or O(d5.5 log
(
d
ε

)
) iterations for SO(n) and U(n)), where each iteration requires one evaluation

of f̂ and ĝ, one evaluation of an oracle for computing the exponential map onM, plus O(d) arithmetic operations.

An overview of the proof of Theorem 2.2 is given in Section 5; the full proof appears in Appendix B. Theorem 2.2
improves on the sampling accuracy guarantees of De Bortoli et al. (2022) in the special case whenM is one of the
aforementioned symmetric manifolds, since the accuracy bound in De Bortoli et al. (2022) is not polynomial in the
dimension d (their “constant” term C ≡ C(M, d) has an unspecified dependence on the manifold and its dimension).
Finally, we note that Lou et al. (2024); Huang et al. (2022) do not provide guarantees on the accuracy or runtime of
their sampling algorithm. Improving the dependency on d in Theorem 2.2 remains an open problem.

4

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

3 DERIVING THE TRAINING AND SAMPLING ALGORITHMS

Given a standard Brownian motion Wt in Rd, a µ : Rd → Rd and R : Rd → Rd×d, a stochastic process Xt satisfies
the SDE dXt = µ(Xt)dt+R(Xt)dWt with initial condition x ∈ Rd if Xt = x+

∫ t
0
µ(Xs)ds+

∫ t
0
R(Xs)dWs.

Lemma 3.1 (Ito’s Lemma). Let ψ : Rd → Rk be a second-order differentiable function, let Bt be a Brownian motion,
and let X(t) ∈ Rd be an Ito diffusion process. Then

dψ(Xt)[i] = (∇ψ(Xt)[i])
⊤dXt +

1
2 (dXt)

⊤(∇2ψ(Xt)[i])dXt ∀t ≥ 0, i ∈ {1, . . . , k}. (1)

The transition kernel pt|τ (y|x) is the probability (density) that X will take the value y at time t conditional on X taking
the value x at time τ . Given an initial distribution π, the probability density at time t is pt(x) =

∫
M pt|0(x|z)π(z)dz.

For any diffusion process Xt, t ∈ [0, T], one can define its time-reversal Yt to be the stochastic process such that
Yt = XT−t for t ∈ [0, T]. Yt is also a diffusion, and its evolution is governed by an SDE. In the special case where Xt

has identity covariance, dXt = b(Xt)dt+ dBt, the reverse diffusion satisfies Anderson (1982)
dYt = −b(Xt)dt+∇ log pt(Xt)dt+ dBt. (2)

One can also define diffusions on Riemannian manifolds, in which case dBt corresponds to the derivative of Brownian
motion on the tangent space (see Hsu (2002)). Below we show the key steps in the derivation of our diffusion model,
training algorithm (Algorithm 1), and sampling algorithm (Algorithm 2).

Forward diffusion. Let {Zt}t≥0 be a diffusion on Rd with initial distribution q0 = ψ(π). We choose Zt to be the
Ornstein-Uhlenbeck process, defined by the SDE dZt = − 1

2Ztdt+ dBt, which has a stationary distribution N(0, Id).
The process is easy to sample from and has a closed-form Gaussian transition kernel:

qt|τ (y|x) = 1√
2π(1−e−(t−τ))

exp(− 1
2
∥y−xe−

1
2
(t−τ)∥2

/(1−e−(t−τ))) ∀x, y ∈ Rd, t > τ > 0. (3)

Let Xt := φ(Zt), the projection of Zt ontoM. Xt is the forward diffusion of our model.

Reverse diffusion SDE. Let Yt := XT−t denote the time-reversed diffusion of Xt. Yt is a diffusion onM, with its
distribution at time T equal to the target distribution π. The reverse diffusion follows the SDE:

dYt = f⋆(Yt, t)dt+ g⋆(Yt, t)dBt, (4)
for some functions f⋆(x, t) :M× [0, T]→ TxM and g⋆(x, t) :M→ TxM×TxM. Here dBt is the derivative of
standard Brownian motion onM’s tangent space. We write dBt ≡ dBxt when x ∈M is clear from context.

We cannot directly apply (2) to obtain a tractable expression for the SDE for the reverse diffusion Yt onM since we do
not have a closed-form expression for the transition kernel of pt of the forward diffusion Xt onM. Instead, we first
apply (2) to obtain an SDE for the reverse diffusion of Zt in Rd.

dHt =
(
1
2Ht + 2∇ log qT−t(Ht)

)
dt+ dBt (5)

We use Ito’s Lemma to project this SDE ontoM, giving an SDE for the reverse diffusion onM (see Appendix B.1)
dYt = E[∇φ(Ht)

⊤dHt +
1
2 (dHt)

⊤(∇2φ(Ht))dHt

∣∣φ(Ht) = Yt]. (6)
Objective function of training algorithm. From (6), we show one can train a model f and g for f⋆, g⋆ by solving an
optimization problem (Lemma B.2). Here, f, g ∈ C(Rd,Rd) be continuous functions from Rd to Rd and t ∼ Unif[0, 1].

minf EtEb∼π[∥(∇φ(ZT−t))
⊤ZT−t − ψ(b)e−

1
2 (T−t)

e−(T−t) − 1
+

1

2
tr(∇2φ(ZT−t))− f(φ(ZT−t), t)∥2|Z0 = ψ(b)], (7)

ming EtEb∼π[∥((∇φ(ZT−t))
⊤∇φ(ZT−t)− (g(φ(ZT−t), t))

2∥2F |Z0 = ψ(b)].

Sampling algorithm. To (approximately) sample from π, one can approximate the drift and diffusion terms of the
SDE for the reverse diffusion (4) using the trained models f̂ and ĝ obtained by solving (7) (in practice, we model these
functions with neural networks f̂θ and ĝϕ where θ and ϕ are the output of Algorithm 1). We initialize this SDE at
φ(N(0, Id)), the pushforward of N(0, Id) ontoM with respect to the map φ.

dŶt = f̂(Ŷt, t)dt+ ĝ(Ŷt, t)dBt, Ŷ0 ∼ φ(N(0, Id)). (8)

Since (unlike the forward SDE) the solution ŶT at time T is not a Gaussian or other easy-to-sample distribution, to
sample from ŶT one must instead numerically simulate the SDE (8). Towards this end, one can discretize the SDE in
(8) with some small time-step size ∆ > 0:

ŷi+1 = exp(ŷi; f̂(ŷi, t)∆ + ĝ(ŷi, t)
√
∆ξi), i ∈ {0, 1, . . . , T/∆} , (9)

with initial condition ŷ0 ∼ φ(N(0, Id)).

5

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

Algorithm 1: Training algorithm

Input: An oracle for the “projection” map φ : Rd →M, and for its gradient.
Input: An oracle for an “inverse” map ψ :M→ Rd such that φ(ψ(x)) = x for all x ∈M.
Input: Dataset D = {x10, . . . , xm0 } ⊆ M.
Input: T > 0.
Input: Model fθ̂ :M× [0, T]→ TM where θ̂ ∈ Ra1 denote trainable parameters.
Input: Model gϕ̂ :M× [0, T]→ TM× TM where θ̂ ∈ Ra2 denote trainable parameters.
Input: Initial parameters θ0 ∈ Ra1 , ϕ0 ∈ Ra2 .
Input: Hyperparameters: Number of stochastic gradient descent iterations r ∈ N. Step size η > 0, batch size b.

1 Define, for all θ̂ ∈ Ra1 ẑ ∈ Rd, b, x ∈M, t̂ ∈ [0, T], the objective function

F (θ̂; b, ẑ, x̂, t̂) := ∥(∇φ(ẑ))⊤ ẑ−ψ(b)e−
1
2
(T−t)

e−(T−t)−1
+ 1

2 tr(∇
2φ(ẑ))− f(x̂, t̂)∥2

2 Define for all θ̂ ∈ Ra2 ẑ ∈ Rd, b, x ∈M, t̂ ∈ [0, T], the objective function
G(ϕ̂; b, ẑ, x̂, t̂) := ∥(∇φ(ẑ))⊤∇φ(ẑ)− (gϕ̂(x̂, t̂))

2∥2F
3 Set θ ← θ0
4 Set ϕ← ϕ0
5 for i = 1, . . . , r do
6 Sample a random batch S ⊆ [m] of size b
7 Sample t ∼ Unif([0, T])
8 for j ∈ S do
9 Sample ξ ∼ N(0, Id)

10 Set zj ← ψ(xj0)e
− 1

2 (T−t) +
√
1− e−(T−t) ξ

11 Set xj ← φ(zj)
12 end
13 Compute Γ← 1

b

∑
j∈S ∇θF (θ;x

j
0, zj , xj , t)

14 θ ← θ − ηΓ
15 Compute Υ← 1

b

∑
j∈S ∇ϕG(ϕ;x

j
0, zj , xj , t)

16 ϕ← ϕ− ηΥ
17 end

Output: Trained parameters θ, ϕ for the models fθ and gϕ

Algorithm 2: Sampling algorithm
Input: An oracle which returns the value of the exponential map exp(x, v) on some manifoldM, for any x ∈M,

v ∈ TxM.
Input: An oracle for the “projection” map φ : Rd →M.
Input: Model fθ̂ :M× [0, T]→ TM where θ̂ ∈ Ra1 denote trainable parameters.
Input: Model gϕ̂ :M× [0, T]→ TM× TM where θ̂ ∈ Ra2 denote trainable parameters.
Input: Trained parameters θ, ϕ (from output of Algorithm 1)
Input: T > 0, N ∈ N
Input: Discretization size ∆ > 0 such that T∆ ∈ NZ.

1 Sample z0 ∼ N(0, Id)
2 Set ŷ0 ← φ(z0)

3 for i = 0, 1, . . . , T∆ − 1 do
4 Sample ξ ∼ N(0, Id).
5 Set ŷi+1 ← exp(ŷi; f̂(ŷi, i∆)∆+ ĝ(ŷi, i∆)

√
∆ξi)

6 end
Output: ŷ T

∆

6

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

4 ILLUSTRATION OF OUR FRAMEWORK FOR THE SPHERE

Suppose we are given a dataset D ⊆ Sd−1, which was sampled from an unknown distribution π with support on Sd−1.
The goal is to train a generative model which generates samples from a distribution ν which is close to the target
distribution π. We construct the generative model using our general framework outlined in the previous sections. We
first choose a projection map φ : Rd → Sd−1 to be φ(x) = x

∥x∥ for x ∈ Sd−1, and ψ : Sd−1 → Rd to be the usual
embedding of the unit sphere into Rd.

Forward diffusion. Our model adds noise to the data by running a “forward” diffusion Xt constrained to the sphere
initialized at the target distribution π. We define our forward diffusion to be the projection Xt = φ(Zt) of the
Euclidean-space Ornstein-Uhlenbeck diffusion Zt onto the manifoldM, where Zt is initialized at the pushforward
ψ(π) of the target distribution π onto Rd. Since the Ornstein-Uhlenbeck distribution Zt is a Gaussian process, each
sample from our forward diffusion to be computed by drawing a single sample from a Gaussian distribution, and
computing the projection map φ once.

The forward and reverse diffusion of our model on the sphere are different than those of prior diffusion models on the
sphere. The evolution of our forward diffusion Xt on the sphere is goverened by the SDE dXt = α(Xt, t)(− 1

2Xtdt+
dBt) initialized at the target distribution π, where the coefficient α(t) is given by the coniditonal expectation α(Xt, t) :=

E
[

1
∥Zt∥

∣∣φ(Zt) = Xt

]
. Our forward (and reverse) diffusions has a (time-varying and) spatially-varying covariance

term α(Xt, t)dBt not present in prior models De Bortoli et al. (2022) Lou et al. (2024). This covariance term, which
accounts for the curvature of the sphere, allows our forward diffusion to be computed as a projection of Euclidean
Brownian motion onto the sphere despite the sphere’s non-zero curvature.

Training the model. The SDE for the reverse diffusion of our model has both a drift and covariance term. To train
a model f for the drift term, we first sample a point b from the dataset D at a random time t ∈ [0, T], and point ẑ
from the Ornstein-Uhlenbeck diffusion Zt initialized at ψ(b), which is Gaussian distributed. Next, we project this
sample ẑ to obtain a sample φ(ẑ) from our forward diffusion Xt on the manifold. Finally, we plug in the point
φ(ẑ), and the datapoint b into the training objective function for the drift term f , which is given by the closed-form

expression
∥∥∥∥ 1
∥ẑ∥ (I −

1
∥ẑ∥2 ẑẑ

⊤) ẑ−ψ(b)e
− 1

2
(T−t)

e−(T−t)−1
− f(φ(ẑ), t)

∥∥∥∥2. The model for the drift term f is trained by minimizing

the expectation of this objective function over random samples of b ∼ D and ẑ ∼ Zt. To learn the SDE of the reverse
diffusion, we must also train a model for the spatially-varying covariance term, which is given by a d× d covariance
matrix. Learning a dense matrix model for this covariance term would require at least d2 arithmetic operations. However,
as a result of the symmetries of the sphere, the covariance matrix has additional structure: it is a multiple α(Xt, t) of
the d× d identity matrix. Thus, to learn this covariance term, it is sufficient to train a model α̂(Xt, t) for α(Xt, t). This
can be accomplished by minimizing the objective function (α̂(φ(ẑ), t)− 1

∥ẑ∥)
2. Evaluating our objective functions for

the drift term and covariance terms can thus be accomplished via a single evaluation of the projection map φ(x) = x
∥x∥ ,

which requires O(d log 1
δ) arithmetic operations to compute within accuracy δ > 0, when generating the input to our

training objective function, which is sublinear in the dimension d2 of the covariance term.

In contrast, the forward diffusion used in prior diffusion models on the sphere De Bortoli et al. (2022) Lou et al. (2024),
cannot be computed as the projection of a Euclidean Brownian motion and must instead be computed by solving an
SDE (or probability flow ODE) on the sphere. This requires a number of arithmetic operations which is a higher-order
polynomial in the dimension d and in the desired accuracy 1

δ (the order of the polynomial depends on the specific SDE
or ODE solver used). As their training objective function requires samples from the forward diffusion as input, the cost
of computing their objective function is therefore at least a higher-order polynomial in d and 1

δ (for De Bortoli et al.
(2022) it is exponential in d, since their training objective relies on an inneficient expansion for the heat kernel which
takes 2d arithmetic operations to compute).

Sample generation. Once the models f(x, t) and g(x, t) for the drift and covariance terms of our reverse diffusion are
trained, we use these models to generate samples. First, we sample a point z from the stationary distribution of the
Ornstein-Uhlenbeck process Zt on Rd, which is Gaussian distributed. Next, we project this point z onto the manifold to
obtain a point y = φ(z), and solve the SDE dYt = f(Yt, t)dt+ g(Yt, t)dBt given by our trained model for the reverse
diffusion’s drift and covariance over the time interval [0, T], starting at the initial point y. To simulate this SDE we can
use any off-the-shelf numerical SDE solver. The point yT computed by the numerical solver at time T is the output of
our sample generation algorithm.

7

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

5 PROOF OUTLINE OF THEOREM 2.2

In the following, for any random variable X we denote its probability distribution by LX . As already mentioned,
previous works use Girsanov’s theorem to bound the accuracy of diffusion methods. However, Girsanov transformations
do not exist for our diffusion as it has a non-constant covariance term which varies with the position x. Thus, we
depart from previous works and instead use an optimal transport approach based on a carefully chosen optimal
coupling between the “ideal diffusion” Yt and the algorithm’s process ŷt Specifically, denoting by µt the distribution
of Yt and by νt the distribution of Ŷt, the goal is to bound the Wasserstein optimal transport distance W2(µt, νt) :=

infκ∈K(µt,νt) E(Yt,Ŷt)
[ρ2(Ŷt, Y2)] where K(µ, ν) is the collection of all couplings of the distributions µ and ν.Towards

this end, we would like to find a coupling κ which (approximately) minimizes E(Yt∼µt,Ŷt∼νt)[ρ
2(Ŷt, Y2)] at any given

time t.

As a first attempt, we consider the simple coupling where we couple the “ideal” reverse diffusion Yt,

dYt = f⋆(Yt, t)dt+ g⋆(Yt, t)dBt, (10)

and the reverse diffusion Ŷt given by our trained model f̂ , ĝ,

dŶt = f̂(Ŷt, t)dt+ ĝ(Yt, t)dBt. (11)

To couple these two diffusions, we set their Brownian motion terms dBt to be equal to each other at every time t.
In a similar manner, we can also couple Ŷt and the discrete-time algorithm ŷi by setting the Gaussian term ξi in the
stochastic finite difference equation Equation to be equal to ξi = 1√

∆

∫∆(i+1)

∆i
dBtdt for every i (9).

Step 1: Bounding the Wasserstein distance for everywhere-Lipschitz SDEs. To bound the Wasserstein distance
W2(Yt, ŷt) ≤W2(Yt, Ŷt)+W2(Ŷt, ŷt), we first prove a generalization of Gronwall’s inequality to Stochastic differential
equations on manifolds (Lemma B.3). Gronwall’s inequality Gronwall (1919) says that if R : [0, T]→ R satisfies the
differential inequality d

dR(t) ≤ β(t)R(t) for all t > 0, where the coefficient β(t) : [0, T]→ R may also be a function
of t, then the solution to this differential inequality satisfies R(t) ≤ R(0)e

∫ t
0
β(s)ds.

Towards this end, we first couple Yt and Ŷt by setting their Brownian motion terms dBt equal to each other and then
derive an SDE for the squared geodesic distance ρ2(Ŷt, Yt) using Ito’s lemma. Taking the expectation of this SDE gives
and ODE for E[ρ2(X̂t, Xt)],

dE[ρ2(X̂t, Xt)] = E
[
∇ρ2(X̂t, Xt)

⊤
(
f⋆(Xt, t)

f̂(X̂t, t)

)]
dt

+
1

2
E

[
Tr

[(
g⋆(Xt, t) 0
ĝ(Xt, t) 0

)⊤

[∇2ρ2(X̂t, Xt)]

(
g⋆(Xt, t) 0
ĝ(Xt, t) 0

)]]
dt. (12)

To bound each term on the r.h.s., we first observe that, roughly speaking, due to the non-negative curvature of the
manifold, by the Rauch comparison theorem, each derivative on the r.h.s. is at least no larger than in the Euclidean case
M = Rd. In this case ρ2(X̂t, Xt) = ∥X̂t −Xt∥22 and hence that

|∇ρ2(X̂t, Xt)
⊤
(
f⋆(Xt, t)

f̂(X̂t, t)

)
| ≤ 2∥X̂t −Xt∥ × ∥f⋆(Xt, t)− f̂(X̂t, t)∥ ≤ 2∥X̂t −Xt∥ × (c∥X̂t −Xt∥+ ε),

as long as we can show that f⋆ is c- Lipschitz for some c > 0 (see Step 2 below). Bounding the covariance term in a
similar manner, and applying Gronwall’s lemma to the differential inequality, we get that

W2(Ŷt, Yt) ≤ E[ρ2(Ŷt, Yt)] ≤ (ρ2(Ŷ0, Y0) + ε)ect. (13)

Step 2: Showing that our diffusion satisfies an “average-case” Lipschitz condition. To apply (13), we must first
show that the drift and diffusion terms f⋆ and g⋆ are Lipschitz onM. Towards this end, we would ideally like to apply
bounds on the derivatives of φ : Rd →M which defines our diffusion Yt. Unfortunately, in general, φ may not be
differentiable at every point. This is the case for the sphere, where the map φ(z) = z

∥z∥ has a singularity at z = 0. This
issue also arises in the case of the unitary group and orthogonal group, since the derivative of the spectral decomposition
φ(z) = U∗ΛU has singularities at any matrix z which has an eigenvalue gap λi − λi+1 = 0.

8

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

To tackle this challenge, we show that, for the aforementioned symmetric manifolds, the forward diffusion Zt in Rd
remains in some set Ωt ⊆ Rd with high probability 1−α, on which the map φ(Zt) has derivatives bounded by poly(d)
(Assumption 2.1 and Lemma B.4). We then show how to “remove” the rare outcomes of our diffusion that do not fall
inside Ωt. As our forward diffusion Xt (and thus the reverse diffusion Yt = XT−t) remains at every t inside Ωt with
probability ≥ 1− α, removing these “bad” outcomes only adds a cost of α to the total variation error.

Showing that φ has poly(d) derivatives w.h.p. (showing that Assumption 2.1 holds). We first consider the sphere,
which is the simplest case (aside from the trivial case of the torus, where the derivatives of φ are all O(1) at every
point). In the case when data is on the sphere, which we embed as a unit sphere in Rd, one can easily observe that
e.g. ∥∇φ(z)∥ ≤ O(1) for any z outside a ball of radius r ≥ Ω(1) centered at the origin. As the volume of a ball of
radius r = α is 1

rd
, one can use standard Gaussian concentration inequalities to show that the Brownian motion Xt will

remain outside this ball for time T with probability roughly 1−O(1
rdT

).

We next show that the Lipschitz property holds for the unitary group U(n). Similar techniques can be used for the
case of the special orthogonal group, and we omit those details. We first recall results from random matrix theory
which allow us to bound the eigenvalue caps of a matrix with Gaussian entries. Specifically, these results say that
roughly speaking, if X0 is any matrix and Xt = X0 +B(t), where B(t) is a symmetric matrix with iid N(0, t) entries
undergoing Brownian motion, one has that the eigenvalues γ1(t) ≥ · · · ≥ γn(t) of Xt satisfy (see e.g. Anderson et al.
(2010); Mangoubi and Vishnoi (2023))

P(infs∈[t0,T](γi+1(t)− γi(t)) ≤ s 1
poly(n)

√
t
) ≤ O(s

1
2) ∀s ≥ 0. (14)

Thus, if we define Ωt to be the set of outcomes of such that γi+1(t) − γi(t) ≤ α2 1
poly(n)

√
t
, we have that P(Xt ∈

Ωt ∀t ∈ [t0, T]) ≥ 1− α.

Our high-probability bound on Ωt allows us to show that φ satisfies a Lipschitz property at “most” points Ωt. However,
if we wish to apply (13), we need to show that drift term f⋆ and covariance term g⋆ in our diffusion satisfy a Lipschitz
property at every point in Rd. Towards this end, we first make a small modification to the objective function which
allows us to exclude outcomes {Xt}t∈[0,T] of the forward diffusion such that Xt /∈ Ωt for some t ∈ [0, T]. Specifically,
we multiply the objective function (7) by the indicator function 1Ωt

(z). As determining whether a point z ∈ Ωt
requires only checking the eigenvalue gaps (whenM is the unitary or orthogonal group), computing 1Ωt

(z) can be
done efficiently using the singular value decomposition.

Bounding the Lipschitz constant of f⋆ and g⋆. Recall that (when, e.g.,M is one of the aforementioned symmetric
manifolds) we may decompose any z ∈ Rd as z ≡ z(U,Λ) where U ∈ M. Note that 1Ωt

(z) is not a continuous
function of z. However, we will show that, as 1Ωt

(z(U,Λ)) depends only on Λ, multiplying our objective function by
1Ωt

does not make f⋆ and g⋆ discontinuous (and thus does not prevent them from being Lipschitz). This is because
f⋆ and g⋆ are given by conditional expectations conditioned on U , and can thus be decomposed as integrals over Λ.
Towards this end we express f⋆ as an integral over the parameter Λ,

f⋆(U, t) =

cU
∫
Λ∈A

[
∇φ(z(U,Λ))⊤∇ log qT−t|0(z(U,Λ))+

1
2 tr∇

2φ(z(U,Λ))
]
qT−t(z(U,Λ))1Ω(Λ)dΛ,

where cU =
(∫

Λ∈A qT−t(z(U,Λ))1Ω(Λ)dΛ
)−1

is a normalizing constant. Differentiating w.r.t. U ,

d

dU
f⋆(U, t) =Ez(U,Λ)∼qT−t

[
d

dU
((∇φ(z(U,Λ)))⊤∇U log qT−t|0(z(U,Λ))

+ 1
2 tr(∇

2φ(z(U,Λ))))1Ω(Λ)|V = U] + · · · , (15)

where “· · · ” includes three other similar terms that we omit due to space constraints. To bound the terms on the r.h.s. of
(15), we apply Assumption 2.1 which says that the operator norms of ∇φ, ∇2φ, d

dU∇φ and d
dU∇

2φ are all bounded
above by poly(d) whenever z ∈ Ωt. To bound the term ∇U log qT−t|0(z(U,Λ)) we note that ∇ log qT−t|0(z(U,Λ))

is the drift term of the reverse diffusion in Euclidean space. This term was previously shown to be dC2-Lipschitz
for all t ≥ Ω(1d) when the support of the data distribution in Rd lies in a ball of radius C (see, e.g., Proposition 20
of Chen et al. (2023b)). Thus, plugging in the above bounds into (15) we have that ∥ d

dU f
⋆(U, t)∥2→2 ≤ poly(d). A

similar calculation shows that ∥ d
dU g

⋆(U, t)∥2→2 ≤ poly(d). This immediately implies that f⋆(U, t) and g⋆(U, t) are
poly(d)-Lipschitz at every U ∈M.

9

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

Step 3: Improving the coupling to obtain polynomial-time bounds. Now that we have shown that f⋆ and g⋆

are poly(d)-Lipschitz, we can apply (13) to bound the Wasserstein distance: W2(Ŷt+τ , Yt+τ) ≤ (ρ2(Ŷt, Yt) +
ε)ecτ ∀τ ≥ 0, where c ≤ poly(d).

Moreover, with slight abuse of notation, we may define ŷt+τ to be a continuous-time interpolation of the discrete
process ŷ. Applying (13) to this process we get that, roughly, W2(Ŷt+τ , ŷt+τ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ for τ ≥ 0.
Thus, we get a bound on the Wasserstein error,

W2(Yt+τ , ŷt+τ) ≤W2(Ŷt+τ , Yt+τ) +W2(Ŷt+τ , ŷt+τ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ τ ≥ 0. (16)
Unfortunately, after times τ > 1

c = 1
poly(d) , this bound grows exponentially with the dimension d.

To overcome this challenge, we define a new coupling between Yt and Ŷt which we “reset” after time intervals of length
τ = 1

c by converting our Wasserstein bound into a total variation bound after each time interval. Towards this end, we
use the fact that if at any time t the total variation distance satisfies ∥LYt

− Lŷt∥TV ≤ α, then there exists a coupling
such that Yt = Ŷt with probability at least 1− α. In other words, w.p. ≥ 1− α, we have ρ(ŷt+τ , Yt+τ) = 0, and we
can apply inequality (16) over the next time interval of τ without incurring an exponential growth in time. Repeating
this process T

τ times, we get that ∥LYT
− LŷT ∥ ≤ α× T

τ , where the TV error grows only linearly with T .

Converting Wasserstein bounds on the manifold to TV bounds. To complete the proof, we still need to show how
to convert the Wasserstein bound into a TV bound (Lemma B.7). Towards this end, we begin by showing that
the transition kernel p̃t+τ+∆̂|t+τ (· |Ht+τ) of the reverse diffusion Ht in Rd is close to a Gaussian in KL distance:

DKL(N(Ht+τ + ∆̂∇p̃T−t−τ (Ht+τ), ∆̂Id) ∥ p̃t+τ+∆̂|t+τ (· |Ht+τ)) ≤ ατ
T . One can do this via Girsanov’s theorem,

since, unlike the diffusion Yt on the manifold, the reverse diffusion in Euclidean space Ht does have a constant diffusion
term (see e.g. Theorem 9 of Chen et al. (2023b)).

Next, we use the fact that with probability at least 1−α τ
T the map φ in a ball of radius 1

poly(d) about the pointHt+τ has c-
Lipschitz Jacobian where c = poly(d), and that the inverse of the exponential map exp(·) has O(1)-Lipschitz Jacobian,
to show that the transition kernel pt of Yt = φ(Ht) satisfies DKL(ν1 ∥ pt+τ+∆̂|t+τ (· |Yt+τ)) ≤ (1 + ∆̂c)d ατT ≤ 2ατT
if we choose ∆̂ ≤ O(1

cd), where ν1 := expYt+τ
(N(Yt+τ + ∆̂f⋆(Yt+τ , t+ τ), ∆̂g⋆2(Yt+τ , t+ τ)Id)).

Next, we plug in our Wasserstein bound W (Yt+τ , ŷt+τ) ≤ O(ε) into the formula for the KL divergence between two
Gaussians to bound ∥LYt+τ+∆̂

−Lŷt+τ+∆̂
∥TV. Specifically, noting that Lŷt+τ+∆̂|ŷt = expŷt+τ

(N(ŷt+τ +∆̂f(ŷt+τ , t+

τ), ∆̂g2(ŷt+τ , t+ τ)Id)), we have that

DKL(ν1,Lŷt+τ+∆̂|ŷt+τ
) =

(
Tr(g⋆2(Yt+τ , t+ τ))−1g2(ŷt+τ , t+ τ)

)
− d+ log det g⋆2(Yt+τ ,t+τ)

det g2(ŷt+τ ,t+τ)
+ w⊤(∆̂g⋆2(Yt+τ , t))

−1w,

where w := Yt+τ− ŷt+τ+∆̂(f⋆(Yt+τ , t+τ)−f(ŷt+τ , t+τ)). Since with probability≥ 1−α τ
T we have g⋆(Yt+τ) ⪰

poly(d), plugging in the error bounds ∥f⋆(Yt+τ , t)− f(Yt+τ , t)∥ ≤ ε and ∥g⋆(Yt+τ , t)− g(Yt+τ , t)∥F ≤ ε and the
c-Lipschitz bounds on f⋆ and g⋆, where c = poly(d), (Assumption 2.1), we get that DKL(ν1,Lŷt+τ+∆̂

) ≤ O(ε2c2).
Thus, by Pinsker’s inequality, we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt − Lŷt∥TV

≤
√
DKL(ν1 ∥ pt+τ+∆̂|t+τ (· |Yt+τ)) +

√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (17)

Step 4: Bounding the accuracy. Recall that qt is the distribution of the forward diffusion Zt in Euclidean space after
time t, which is an Ornstein-Uhlenbeck process. Standard mixing bounds for Ornstein-Uhlenbeck process imply that,
∥qt −N(0, Id)∥TV ≤ O(Ce−t) for all t > 0 (see e.g. Bakry et al. (2014)), where C ≤ poly(d) is the diameter of the
support of ψ(π). Thus, it is sufficient to choose T = log(Cε) to ensure ∥LYT

− π∥TV = ∥qT −N(0, Id)∥TV ≤ O(ε).

As (17) holds for all t ∈ τN, the distribution ν = LŷT of our sampling algorithm’s output satisfies, since τ = 1
c ,

∥π − ν∥TV = ∥LYT
− π∥TV + ∥LYT

− ν∥TV ≤ O(ε+ εcTτ) = O(εc2 log(dCε)) = Õ(ε× poly(d)).

Step 5: Bounding the runtime. Since our accuracy bound requires T = log(dCε), and requires a time-step size of
∆ = cd ≤ 1

poly(d) , the number of iterations is bounded by T
∆ = cdT ≤ O

(
poly(d)× log

(
dC
ε

))
.

10

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12(3):
313–326, 1982.

Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices. Number 118. Cambridge
university press, 2010.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion operators, volume
103. Springer, 2014.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Linear convergence bounds for diffusion
models via stochastic localization. arXiv preprint arXiv:2308.03686, 2023.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling: User-friendly
bounds under minimal smoothness assumptions. In International Conference on Machine Learning, pages 4735–4763.
PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as learning the score:
theory for diffusion models with minimal data assumptions. In The Eleventh International Conference on Learning
Representations, 2023b. URL https://openreview.net/forum?id=zyLVMgsZ0U_.

Xiang Cheng, Jingzhao Zhang, and Suvrit Sra. Theory and algorithms for diffusion processes on riemannian manifolds.
arXiv preprint arXiv:2204.13665, 2022.

Yu Cheng, Yongshun Gong, Yuansheng Liu, Bosheng Song, and Quan Zou. Molecular design in drug discovery: a
comprehensive review of deep generative models. Briefings in bioinformatics, 22(6):bbab344, 2021.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Arnaud Doucet.
Riemannian score-based generative modelling. Advances in Neural Information Processing Systems, 35:2406–2422,
2022.

Wendelin Feiten, Muriel Lang, and Sandra Hirche. Rigid motion estimation using mixtures of projected gaussians. In
Proceedings of the 16th International Conference on Information Fusion, pages 1465–1472. IEEE, 2013.

Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a system of differential
equations. Annals of Mathematics, pages 292–296, 1919.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

Elton P Hsu. Stochastic analysis on manifolds. Number 38. American Mathematical Soc., 2002.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville. Riemannian diffusion
models. Advances in Neural Information Processing Systems, 35:2750–2761, 2022.

Adam Leach, Sebastian M Schmon, Matteo T Degiacomi, and Chris G Willcocks. Denoising diffusion probabilistic
models on so (3) for rotational alignment. In ICLR 2022 Workshop on Geometrical and Topological Representation
Learning, 2022.

Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling riemannian diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

Debanjana Maji, Alan Grossfield, and Clara L Kielkopf. Structures of sf3b1 reveal a dynamic achilles heel of
spliceosome assembly: Implications for cancer-associated abnormalities and drug discovery. Biochimica et Biophysica
Acta (BBA)-Gene Regulatory Mechanisms, 1862(11-12):194440, 2019.

Oren Mangoubi and Nisheeth K Vishnoi. Private covariance approximation and eigenvalue-gap bounds for complex
gaussian perturbations. In The Thirty Sixth Annual Conference on Learning Theory, pages 1522–1587. PMLR, 2023.

OpenAI. Video generation models as world simulators, 2023. URL https://openai.com/index/video-
generation-models-as-world-simulators/.

11

https://openreview.net/forum?id=zyLVMgsZ0U_
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration. Electronic Commu-
nications in Probability, 8(82):1–9, 2013.

Jon M Selig. Geometrical methods in robotics. Springer Science & Business Media, 2013.

Maxim V Shapovalov and Roland L Dunbrack. A smoothed backbone-dependent rotamer library for proteins derived
from adaptive kernel density estimates and regressions. Structure, 19(6):844–858, 2011.

Di Shi, Long Li, Yixin Shao, Wuxiang Zhang, and Xilun Ding. Multi-mode control strategy for robotic rehabilitation
on special orthogonal group so (3). IEEE Transactions on Industrial Electronics, 2023.

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se (3)-diffusionfields: Learning smooth cost functions
for joint grasp and motion optimization through diffusion. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 5923–5930. IEEE, 2023.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach, Woody Ahern,
Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein structure and function with
rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and Tommi Jaakkola.
Se (3) diffusion model with application to protein backbone generation. In International Conference on Machine
Learning, pages 40001–40039. PMLR, 2023.

Yuchen Zhu, Tianrong Chen, Lingkai Kong, Evangelos A Theodorou, and Molei Tao. Trivialized momentum facilitates
diffusion generative modeling on lie groups. arXiv preprint arXiv:2405.16381, 2024.

12

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

CONTENTS

1 Introduction 1

2 Results 3

3 Deriving the training and sampling algorithms 5

4 Illustration of our framework for the sphere 7

5 Proof Outline of Theorem 2.2 8

A Illustration of our framework for the Euclidean space, torus, special orthogonal group, and unitary group 14

B Proof of Theorem 2.2 15

B.1 Correctness of the training objective functions . 15

B.2 Proof of Lemma B.3 . 18

B.3 Proof that average-case Lipschitzness holds on symmetric manifolds of interest (Lemma B.4) 20

B.4 Proof of Lipschitzness of f⋆ and g⋆ on all ofM(Lemma B.6) . 21

B.5 Wasserstein to TV conversion on the manifold (Lemma B.7) . 24

B.6 Completing the proof of Theorem 2.2 . 25

C Challenges encountered when applying Euclidean diffusion for generating points constrained to non-
Euclidean symmetric manifolds 26

13

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

A ILLUSTRATION OF OUR FRAMEWORK FOR THE EUCLIDEAN SPACE, TORUS, SPECIAL
ORTHOGONAL GROUP, AND UNITARY GROUP

1. Euclidean space Rd. In Euclidean case, our algorithm (with the above choice of φ,ψ) recovers the algorithms
of diffusion models on Rd from prior works . The forward diffusion is the Ornstein-Uhlenbeck process with
SDE dZt = − 1

2Ztdt+ dBt initialized at the target distribution π, where Bt is the standard Brownian motion.

The training objective for the drift term f(z, t) of the reverse diffusion is given by ∥(ẑ⊤ ẑ−be−
1
2
(T−t)

e−(T−t)−1
−f(ẑ, t)∥2

where b is a point sampled from the dataset and ẑ is a point sampled from ZT−t|{Z0 = b} which is Gaussian
distributed as N(be−

1
2 (T−t),

√
1− e−(T−t)Id) (see Section 3). The number of arithmetic operations to

compute the training objective is therefore the same as for previous diffusion models in Euclidean space.
2. Torus Td. For the torus, the forward and reverse diffusion of our model are the same as the models used in

previous diffusion models on the torus De Bortoli et al. (2022) Lou et al. (2024). The Forward diffusion is
given by the SDE dXt = − 1

2Xtdt+ dBt on the torus, initialized at the target distribution π.
The only difference is in the training objective function. To obtain our objective function we observe that Xt is
the projection of the Xt = φ(Zt) of the Ornstein-Uhlenbeck diffusion on Rd via our choice of projection map
φ for the torus. The drift term f for the reverse diffusion can be trained by minimizing the objective function

∥ẑ⊤ ẑ−ψ(b)e−
1
2
(T−t)

e−(T−t)−1
− f(φ(ẑ), t)∥2, where ẑ ∼ N(be−

1
2 (T−t),

√
1− e−(T−t)Id). Our objective function can

be computed in O(d) arithmetic operations, improving by an exponential factor on the per-iteration training
runtime of De Bortoli et al. (2022) which relies on an inefficient expansion of the heat kernel which requires
and exponential-in-d number of arithmetic operations to compute, and matching the per-iteration training
runtime of Lou et al. (2024) who derive a more efficient expansion for the heat kernel in the special case of the
torus.

3. Special Orthogonal group SO(n) and Unitary group U(n).
For the Special Orthogonal group SO(n) and Unitary group U(n), the forward and reverse diffusion of our
model are also different from those of previous works, as our model’s diffusions have a spatially-varying
covariance term to account for the non-zero curvature of these manifolds. As a result of this covariance term,
our forward diffusion can be computed as a projection φ of the Ornstein-Uhlenbeck process in Rd ≡ Rn×n
(or Cn×n) onto the manifold SO(n) (U(n)). This projection can be computed via a single evaluation of the
singular value decomposition of a n×nmatrix, which requires at mostO(nω) = O(d

ω
2) arithmetic operations,

where ω ≈ 2.37 is the matrix multiplication exponent and d = n2 is the manifold dimension.
The forward diffusion U(t) ∈ SO(n) (or U(t) ∈ U(n)) of our model is given by the system of stochastic
differential equations

dui(t) =
∑

j∈[n],j ̸=i

αij(t)dBijuj(t)−
1

2

∑
j∈[d],j ̸=i

βij(t)ui(t)dt, (18)

where αij(t) := E
[

1
λi−λj

|φ(Zt) = U(t)
]

and βij(t) := E
[

1
(λi−λj)2

|φ(Zt) = U(t)
]

for every i, j ∈ [d].

A model for the drift term f for the reverse diffusion can be trained by minimizing the objective function

∥R− 1
2DU − f(φ(ẑ), t)∥

2
F where R is the matrix with i’th column Ri = e−

1
2
(T−t)

e−(T−t)−1
U(λiI − Λ)+U∗ψ(b)ui

for each i ∈ [n], and D is the diagonal matrix with i’th diagonal entry Dii =
∑
j∈[n],j ̸=i

1
λi−λj

for each

i ∈ [n], where ẑ = be−
1
2 (T−t) +

√
1− e−(T−t)G where G is a Gaussian random matrix with iid N(0, 1)

entries and and UΛU∗ denotes the spectral decomposition of ẑ + ẑ∗.
To learn the SDE of the reverse diffusion, we must also train a model for the covariance term, which is given
by a d× d = n2 × n2 covariance matrix. To train a model for this covariance term with runtime sublinear in
the number of matrix entries n4, we observe that as a result of the symmetries of the orthogonal (or unitary)
group, the covariance term in (18) is fully determined by the n2 scalar terms αij(t) for i, j ∈ [n] and the n×n
matrix U . Thus, to learn the covariance term, it is sufficient to train a model A(U, t) ∈ Rn×n for these n2
terms, which can be done by minimizing the objective function ∥A(U, t)−A∥2F , where A is the n× n matrix
with (i, j)’th entry Aij = 1

λi−λj
for i, j ∈ [n], and λi denotes the i’th diagonal entry of Λ.

The training objective function for both the drift and covariance term can thus be computed via a singular
value decomposition of an n×n matrix (and matrix multiplications of n×n matrices), which requires at most

14

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

O(nω) = O(d
ω
2) arithmetic operations, where ω ≈ 2.37 is the matrix multiplication exponent and d = n2 is

the manifold dimension.
In contrast, the training objectives in prior works including De Bortoli et al. (2022) Lou et al. (2024) require
an exponential in dimension number of arithmetic operations to compute as they rely on the heat kernel of the
manifold, which lacks an efficient closed-form expression. Instead, their training algorithm requires computing
an expansion for the heat kernel of these manifolds which is given as a sum of terms over the d-dimensional
lattice, and one requires computing roughly 2d of these terms to compute the heat kernel within an accuracy of
O(1).

B PROOF OF THEOREM 2.2

In the following, we denote by ρ(x, y) the geodesic distance between x, y ∈M, and by Γx→y(v) the parallel transport
of a vector v ∈ Tx from x to y.

For convenience, we denote φi(·) := φ(·)[i].
Recall that we have assumed that ψ(M) is contained in a ball of radius C = poly(d). We will prove our results under
the more general assumption (Assumption B.1(ψ, π, C)), which is satisfied whenever ψ(M) ≤ C.

Assumption B.1 (Bounded Support (ψ, π, C)). The pushforward of ψ(π) of π with respect to the map ψ :M→ Rd
has support on a ball of radius C centered at 0.

B.1 CORRECTNESS OF THE TRAINING OBJECTIVE FUNCTIONS

Lemma B.2. f⋆ and g⋆ are solutions to the following optimization problems:

minf∈C(Rd,Rd) Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(ZT−t))

⊤ZT−t − ψ(b)e−
1
2 (T−t)

e−(T−t) − 1

+
1

2
tr(∇2φ(ZT−t))− f(φ(ZT−t), t)

∥∥∥∥2∣∣∣∣Z0 = ψ(b)

]
, (19)

ming∈C(Rd,Rd×d) Et∼Unif([0,1])Eb∼π
[∥∥((∇φ(ZT−t))

⊤∇φ(ZT−t)− (g(φ(ZT−t), t))
2
∥∥2
F

∣∣∣∣Z0 = ψ(b)

]
.

Proof. Step 1: Obtaining an expression for the reverse diffusion SDE in Rd:

We cannot in general directly apply (2) to obtain a tractable expression for the SDE for the reverse diffusion Yt inM,
since we do not have a tractable formula for the transition kernel of pt of the forward diffusion Xt onM. Instead, we
will first obtain an SDE for the reverse diffusion of Zt in Rd, and then “project” this SDE ontoM. Let Ht := ZT−t
denote the time-reversed diffusion of Zt. Ht is a diffusion in Rd. From (2), we have that the SDE for the reverse
diffusion Ht on Rd is given by the following formula:

dHt =

(
1

2
Ht + 2∇ log qT−t(Ht)

)
dt+ dWt (20)

Equation (20) can be re-written as

dHt =

(
1

2
Ht + 2Eb∼q0|t(·|Ht)[∇ log qT−t|0(Ht|b)]

)
dt+ dWt (21)

The r.h.s. of (21) is tractable since we have a tractable expression for the transition kernel qT−t|0 (it is just a time
re-scaling of the Gaussian Kernel, the trasition kernel of Brownian motion).

Step 2: Obtaining an expression for the reverse diffusion SDE inM:

Note that there exists a coupling between Zt and Ht such that Ht = ZT−t and that Yt = XT−t for all t ∈ [0, T]. Thus,
under this choice of coupling, we have that Yt = XT−t = φ(ZT−t) = φ(Ht) for all t ∈ [0, T]. In the special case

15

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

when there is only one datapoint x0, the SDE for the reverse diffusion Yt onM can be obtained by applying Ito’s
lemma (Lemma 3.1) to Yt = φ(Ht):

dYt[i] = ∇φi(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φi(Ht))dHt ∀i ∈ [d]. (22)

In the following, to simplify notation, we drop the “i” index from the notation φi and dYt[i]. Unfortunately, the r.h.s. of
(22) is not a (deterministic) function of Yt = φ(Ht), since φ is not an invertible map. To solve this problem, we can
take the conditional expectation of (22) with respect to Yt = φ(Ht):

dYt = E[dYt|Yt] = E[dYt|φ(Ht)] = E[∇φ(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φ(Ht))dHt|φ(Ht)]. (23)

The drift term on the r.h.s. of (23) is a deterministic function of Yt. Denote this function by f⋆ :M× [0, T]→ TM
for any input x ∈M and output in the tangent space TxM at ofM at x.

Moreover, by (2), the diffusion term on the r.h.s. of (23) must be the same as the diffusion term for the forward diffusion
Yt onM. This diffusion term can be obtained from the diffusion term dWt on Rd, via Ito’s lemma, which implies
that the diffusion term is E[∇φ(Ht)

⊤dWt|φ(Ht)]. The diffusion term is also a deterministic function g⋆ of Yt, where
g⋆(Yt) is a symmetric k × k matrix,

E[∇φ(Ht)
⊤dWt|φ(Ht)] = g⋆(Yt, t)dW̃t, (24)

where W̃t is a standard Brownian motion onM.

Since dWt is the derivative of a standard Brownian motion in Rd, and dW̃t is the derivative of a standard Brownian
motion on the tangent space ofM, we have that

E[(∇φ(Ht))
⊤∇φ(Ht)|φ(Ht)] = (g⋆(Yt, t))

2. (25)

Thus, (23) can be expressed as:

dYt = E[∇φ(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φ(Ht))dHt|φ(Ht)] = f⋆(Yt, t)dt+ g⋆(Yt, t)dW̃t. (26)

In the more general setting when there is more than one datapoint, (26) generalizes to:

dYt = Eb∼πE[∇φ(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φ(Ht))dHt|φ(Ht), HT = b]] (27)

= f⋆(Yt, t)dt+ g⋆(Yt, t)dW̃t. (28)

Since Yt = φ(Ht), we can bring f⋆(Yt, t)dt and g⋆(Yt, t)dW̃t inside the conditional expectation:

Eb∼πE[∇φ(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt|φ(Ht), HT = b]] = g⋆(Yt, t)dW̃t.

We can re-write this as

Eb∼πEφ(Ht)[EHt|φ(Ht)[∇φ(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt|Ht, HT = b]]]

= g⋆(Yt, t)dW̃t.

This simplifies to

Eb∼π
[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt
∣∣∣∣HT = b

]
= g⋆(Yt, t)dW̃t. (29)

where the expectation is taken over the outcomes of Ht. Plugging in (21) into (29), and separating the drift and the
diffusion terms on both sides of the equation (and noting that the higher-order differentials (dt)2 and dWtdt vanish),
we get that the drift terms satisfy

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
dt

+
1

2
(dWt)

⊤(∇2φ(Ht))dWt − f⋆(Yt, t)dt
∣∣∣∣HT = b

]
= 0. (30)

16

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

Noting that (dWt[i])
2 = dt and dWt[i]dWt[j] = 0 for all i ̸= j, we get

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
dt

+
1

2
tr(∇2φ(Ht))dt− f⋆(Yt, t)dt

∣∣∣∣HT = b

]
= 0. (31)

Dividing both sides by dt, we get an expression for the drift term f⋆

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
+

1

2
tr(∇2φ(Ht))− f⋆(Yt, t)

∣∣∣∣HT = b

]
= 0. (32)

Finally, from (25), we have that diffusion term g⋆ satisfies

Eb∼π
[
E

[
(∇φ(Ht))

⊤∇φ(Ht)− (g⋆(Yt, t))
2

∣∣∣∣φ(Ht)

] ∣∣∣∣HT = b

]
= 0. (33)

Step 3: Training the drift term.

From (32), we have that function f⋆ is the solution to the following optimization problem:

min
f

Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(Ht))

⊤
(
1

2
Ht + 2∇ log qT−t|0(Ht|b)

)
+

1

2
tr(∇2φ(Ht))− f(Yt, t)

∥∥∥∥2∣∣∣∣HT = b

]
. (34)

where the inner expectation is taken over b ∼ π and over the outcomes of Ht at time t conditioned on HT = b (Note
that Yt = φ(Ht) is a deterministic function of Ht).

Now, Ht|{HT = b} has the same probability distribution as ZT−t|{Z0 = b} (and that Yt|{HT = b} has the same
probability distribution as XT−t|{Z0 = b}). Thus, we can re-write (34) as

min
f

Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(ZT−t))

⊤ (
ZT−t + 2∇ log qT−t|0(ZT−t|b)

)
+

1

2
tr(∇2φ(ZT−t))− f(XT−t, t)

∥∥∥∥2∣∣∣∣Z0 = b

]
, (35)

Step 4: Training the diffusion term.

From (33) we have that g⋆ is the solution to the following optimization problem:

min
g

Et∼Unif([0,1])Eb∼π
[∥∥(∇φ(Ht))

⊤∇φ(Ht)− (g(Yt, t))
2
∥∥2
F

∣∣∣∣HT = b

]
,

where ∥ · ∥F is the Frobenius norm. Since Ht|{HT = b} has the same probability distribution as ZT−t|{Z0 = b} (and
that Yt|{HT = b} has the same probability distribution as XT−t|{Z0 = b}), we can re-write (34) as

min
g

Et∼Unif([0,1])Eb∼π
[∥∥((∇φ(ZT−t))

⊤∇φ(ZT−t)− (g(XT−t, t))
2
∥∥2
F

∣∣∣∣Z0 = b

]
.

17

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

B.2 PROOF OF LEMMA B.3

In the proof of Theorem 2.2 we will use the following lemma.

Lemma B.3 (Gronwall-like inequality for SDEs on a manifold of non-negative curvature). Suppose thatM is a
Riemannian manifold with non-negative curvature, and let ρ(x, y) denote the geodesic distance between any x, y ∈M.
Suppose also that Xt and X̂t are two diffusions onM such that

dXt = b(Xt, t) + σ(Xt, t)dWt,

and
dX̂t = b̂(X̂t, t) + σ̂(Xt, t)dWt,

where b is C1(t)-Lipschitz and σ is C2(t)-Lipschitz at every time t ∈ [0, T]. Moreover, assume that

∥b(x, t)− b̂(x, t)∥ ≤ ε
and

∥σ(x, t)− σ̂(x, t)∥2F ≤ ε
for all x ∈M. Then there exists a coupling between Xt and X̂t such that, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,t]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
(2C1(s)+3C2(s)

2+2ds.

Proof of Lemma B.3. We first couple Xt and X̂t by setting their underlying Brownian motion terms dWt to be equal to
each other.

Next, we compute the distance ρ2(X̂t, Xt) using Ito’s Lemma.

Letting h(x, y) := ρ2(x, y), we have

By Ito’s Lemma, we have

dρ2(X̂t, Xt) = dh(X̂t, Xt)

= ∇h(X̂t, Xt)
⊤
(
b(Xt, t)

b̂(X̂t, t)

)
dt

+
1

2
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]
dt

+∇h(X̂t, Xt)
⊤
(
σ(Xt, t) 0
σ̂(Xt, t) 0

)
d

(
Wt

Ŵt

)
Therefore,

dE[ρ2(X̂t, Xt)] = E
[
∇h(X̂t, Xt)

⊤
(
b(Xt, t)

b̂(X̂t, t)

)]
dt

+
1

2
E

[
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]]
dt

+ 0. (36)

Now, sinceM has non-negative curvature, by the Rauch comparison theorem we have∣∣∣∣∇h(X̂t, Xt)
⊤
(
b(Xt, t)

b̂(X̂t, t)

) ∣∣∣∣ ≤ 2ρ(X̂t, Xt)× ∥b̂(X̂t, t)− ΓXt→X̂t
(b(Xt, t))∥

≤ 2ρ(X̂t, Xt)×
(
∥b(X̂t, t)− ΓXt→X̂t

(b(Xt, t))∥+ ∥b(X̂t, t)− b̂(X̂t, t)∥
)

≤ 2ρ(X̂t, Xt)× (C1(t)ρ(X̂t, Xt) + ε) (37)

18

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

where the last inequality holds since b is C1(t)-Lipschitz.

Moreover, sinceM has non-negative curvature, by the Rauch comparison theorem we also have that

1

2
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]

≤
∥∥∥σ̂(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥2
F

≤
(∥∥∥σ(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥
F
+

∥∥∥σ̂(X̂t, t)− σ(X̂t, t)
∥∥∥
F

)2

≤ 3
∥∥∥σ(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥2
F
+ 3

∥∥∥σ̂(X̂t, t)− σ(X̂t, t)
∥∥∥2
F

≤ 3C2(t)
2ρ2(X̂t, Xt) + 3ε2 (38)

Plugging (37) and (38) into (36), we have

d

dt
E[ρ2(X̂t, Xt)] ≤ 2E[C1(t)ρ

2(X̂t, Xt) + ερ(X̂t, Xt)] + 3C2(t)
2E[ρ2(X̂t, Xt)] + 3ε2 ∀t ≥ 0. (39)

Hence,
d

dt
E[ρ2(X̂t, Xt)] ≤ 2E[C1(t)ρ

2(X̂t, Xt) + ρ2(X̂t, Xt)] + 3C2(t)
2E[ρ2(X̂t, Xt)] + 5ε2

= 2E[C1(t)ρ
2(X̂t, Xt) + ρ2(X̂t, Xt)] + 3C2(t)

2E[ρ2(X̂t, Xt)] + 5ε2

= (2C1(t) + 3C2(t)
2 + 2)E[ρ2(X̂t, Xt)] + 5ε2

Let τ ∈ [0, T] be some number, and define R(t) := E[ρ2(X̂t, Xt)] + infs∈[0,τ]
5ε2

2C1(s)+3C2(s)2+2 for all t ∈ [0, τ].

Then we have,
d

dt
R(t) ≤ (2C1(t) + 3C2(t)

2 + 2)R(t) ∀t ≥ 0 (40)

Thus, plugging (40) into Gronwall’s lemma, we have, for all t ≥ 0,

R(t) ≤ R(0)e
∫ t
0
(2C1(s)+3C2(s)

2+2ds

=

(
E[ρ2(X̂0, X0)] + inf

s∈[0,τ]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds

Thus,

E[ρ2(X̂t, Xt)] + inf
s∈[0,τ]

5ε2

2C1(s) + 3C2(s)2 + 2

≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,T]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds

Hence, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,τ]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.

Plugging in τ = t in the above equation, we have, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,t]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.

19

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

B.3 PROOF THAT AVERAGE-CASE LIPSCHITZNESS HOLDS ON SYMMETRIC MANIFOLDS OF INTEREST (LEMMA
B.4)

Lemma B.4 (Average-case Lipschitzness). For the Unitary group, we have that Assumption(φ,L1, L2, α) 2.1 holds
for L1 = O(d1.5

√
Tα− 1

3) and L2 = O(d2Tα− 2
3). For the sphere, it holds for L1 = L2 = O(α− 1

d). For the Torus it
holds for L1 = L2 = 1.

Proof. For the torus, the map φ(x) has∇φ(x) = Id at every x ∈ Rd, which implies that Assumption 2.1 is satisfied
for L1 = L2 = 1.

Sphere. In the case of the sphere, which we embed via the map ψ as a unit sphere in Rd, one can easily observe that e.g.
∥∇φ(z)∥ ≤ O(1) for any z outside a ball of radius r ≥ Ω(1) centered at the origin. As the volume of a ball of radius
r = α is 1

rd
times the volume of the unit ball, one can use standard Gaussian concentration inequalities to show that the

Brownian motion Xt will remain outside this ball for time T with probability at least 1− 4 1
rdT

.

Moreover, by standard Gaussian concentration inequalities Rudelson and Vershynin (2013), we have that ∥Xt∥ ≤
2
√
Td log(1

α) with probability at least 1− 2α for all t ∈ [0, T].

This motivates defining the set Ωt := {z ∈ Rd : (4 1
αT)

1
d ≤ ∥z∥ ≤ 2

√
Td log(1

α)}, as we then have

P(Xt ∈ Ωt ∀ t ∈ [0, T]) ≥ 1− α.

Since ∥z∥ ≥ (4 1
αT)

1
d for any z ∈ Ωt and any t ∈ [0, T], we must have that

∥∇φ(z(U,Λ))∥2→2 ≤ 3(4
1

αT
)

2
d = L1,

∥ d

dU
∇φ(z(U,Λ))∥2→2 ≤ 3(4

1

αT
)

2
d = L1,

∥∇2φ(z(U,Λ))∥2→2 ≤ 3(4
1

αT
)

3
d = L2,

∥ d

dU
∇φ(z(U,Λ))∥2→2 ≤ 3(4

1

αT
)

3
d = L2,

∥ d

dU
(z(U,Λ))∥2→2 ≤ ∥x∥,

Unitary group. We next show that the Lipschitz property holds for the unitary group U(n). Similar techniques can be
used for the case of the special orthogonal group, and we omit those details. We first recall results from random matrix
theory which allow us to bound the eigenvalue caps of a matrix with Gaussian entries. Specifically, these results say
that, roughly speaking, if X0 is any matrix and Xt = X0 +B(t), where B(t) is a symmetric matrix with iid N(0, t)
entries undergoing Brownian motion, one has that the eigenvalues γ1(t) ≥ · · · ≥ γn(t) of Xt satisfy (see e.g. Anderson
et al. (2010); Mangoubi and Vishnoi (2023))

P(inf
s∈[t0,T]

(γi+1(t)− γi(t)) ≤ s
1

poly(d)
√
t
) ≤ O(s

1
2) ∀s ≥ 0. (41)

Thus, if we define Ωt to be the set of outcomes of such that γi+1(t) − γi(t) ≤ α2 1
poly(n)

√
t
, we have that P(Xt ∈

Ωt ∀t ∈ [t0, T]) ≥ 1− α.

From the Matrix calculus formulas for ∇φ(U⊤ΛU), d
dU∇φ(U

⊤ΛU), ∇φ(U⊤ΛU), and d
dU∇

2φ(U⊤ΛU), we have
that, for all z(U,Λ) = UΛU⊤ ∈ Ω,

∥∇φ(z(U,Λ))∥2→2 ≤
d∑
i=1

1

λi+1 − λi
≤ d1.5

√
tα− 1

3 = L1,

20

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

∥ d

dU
∇φ(z(U,Λ))∥2→2 ≤ ∥Λ∥2→2

d∑
i=1

1

λi+1 − λi

≤ (C +
√
Td log(

1

α
))×

d∑
i=1

1

λi+1 − λi
≤ d1.5

√
tα− 1

3 = L1,

∥∇2φ(z(U,Λ))∥2→2 ≤
d∑
i=1

1

(λi+1 − λi)2
≤ d2tα− 2

3 = L2,

∥ d

dU
∇φ(z(U,Λ))∥2→2 ≤ ∥Λ∥2→2

d∑
i=1

1

(λi+1 − λi)2

(C +
√
Td log(

1

α
))×

d∑
i=1

1

(λi+1 − λi)2
≤ d2tα− 2

3 = L2,

∥ d

dU
(z(U,Λ))∥2→2 ≤ ∥Λ∥2→2

since λi+1 − λi ≤ α
1
3

1√
d
√
t

for all i ∈ [d] and ∥Λ∥2→2 ≤ 2
√
Td log(1

α) whenever z(U,Λ) ∈ Ωt

B.4 PROOF OF LIPSCHITZNESS OF f⋆ AND g⋆ ON ALL OFM(LEMMA B.6)

We will use the following Proposition of Chen et al. (2023b):
Proposition B.5 (Proposition 20 of Chen et al. (2023b)). Suppose that ψ(π) has support on a ball of radius C > 0.

For any α > 0, define the “early stopping time” t0 := min(αC ,
α2

d).

Then the drift term ∇ log qt(·) of the reverse diffusion SDE in Euclidean space is O(1
α2 dC

2(min(C,
√
d)2))-Lipschitz

at every time t > t0.

Moreover, W2(qt0 , π) ≤ α.

Denote by Γx→y(v) the parallel transport of a vector v from x to y.
Lemma B.6. Suppose that Assumption 2.1(φ,L1, L2, α) and Assumption B.1(ψ, π, C) both hold. Then for every
t ∈ [t0, T],

∥f⋆(x, t)− Γx→y(f
⋆(x, t))∥ ≤ C × ρ(x, y), ∀x, y ∈M (42)

and
∥g⋆(y, t)− Γx→y(g

⋆(x, t))∥F ≤ C × ρ(x, y) ∀x, y ∈M (43)

where C := (C +
√
Td log(1

α))
4 × L2

3 × L1 + (C +
√
Td log(1

α))
2 × L3 × L2 and t0 := min(αC ,

α2

d), and L3 =

O(1
α2 dC

2(min(C,
√
d)2)).

Proof. Recall that (when, e.g.,M is one of the aformentioned symmetric manifolds) we may decompose any z ∈ Rd
as z ≡ z(U,Λ) where U ∈M.

We have the following expression for f⋆(U, t)

f⋆(U, t) = cU

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t|0(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ,

where cU =
(∫

Λ∈A qT−t(z(U,Λ))1Ω(Λ)dΛ
)−1

is a normalizing constant.

21

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

Then

d

dU
f⋆(U, t)

= cU ×
d

dU

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ,

+ (
d

dU
cU)×

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ (44)

For the first term on the r.h.s. of (44) we have,

cU ×
d

dU

∫
Λ∈A

[
(∇Uφ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ,

= cU ×
∫
Λ∈A

(
d

dU

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

])
× qT−t(z(U,Λ))1Ω(Λ)dΛ,

+ cU ×
∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× d

dU
qT−t(z(U,Λ))1Ω(Λ)dΛ,

= cU ×
∫
Λ∈A

(
d

dU

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

])
× qT−t(z(U,Λ))1Ω(Λ)dΛ,

+ cU ×
∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
×∇U log qT−t(z(U,Λ))× qT−t(z(U,Λ))1Ω(Λ)dΛ,

= Ez(U,Λ)∼qT−t

[
d

dU

(
(∇φ(z(U,Λ)))⊤∇U log qT−t|0(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
,

+ Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇U log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

)
×∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣∣∣V = U

]
,

22

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

For the second term on the r.h.s. of (44) we have,

d

dU
cU = c2U

∫
Λ∈A

d

dU
(qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A

d

dU
(elog qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A
∇U log qT−t(z(U,Λ))(e

log qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A
∇U log qT−t(z(U,Λ))× qT−t(z(U,Λ))1Ω(Λ)dΛ

= cU × Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]

and hence,

(
d

dU
cU)×

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ

= Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]

× Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]

Thus

d

dU
f⋆(U, t) (45)

= Ez(U,Λ)∼qT−t

[
d

dU

(
(∇φ(z(U,Λ)))⊤∇U log qT−t|0(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
,

+ Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇U log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

)
×∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣∣∣V = U

]
+ Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]

× Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) (46)

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
(47)

Moreover, by standard Gaussian Concentration inequalities we have that ∥z(U,Λ)∥F ≤ C +
√
Td log(1

α). From
Proposition B.5 we have that∇ log pT−t|0(z(U,Λ)) is L3-Lipschitz where L3 := O(1

α2 dC
2(min(C,

√
d)2)) and hence

23

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

that

∥∇U log pT−t|0(z(U,Λ))∥2→2 ≤ ∥
d

dU
(z(U,Λ))∥2→2 × ∥∇ log pT−t|0(z(U,Λ))∥2→2

≤ ∥ d

dU
(z(U,Λ))∥2→2 × L3 × ∥z(U,Λ)∥F ≤ L3 × (C +

√
Td log(

1

α
))

≤ (C +
√
Td log(

1

α
))2 × L3, (48)

where the last inequality holds by Assumption B.1 and standard Gaussian concentration inequalities.

Thus, plugging Assumption 2.1 and (48) into (45), we have that∥∥∥∥ d

dU
f⋆(U, t)

∥∥∥∥
2→2

≤ (C +
√
Td log(

1

α
))4 × L2

3 × L1 + (C +
√
Td log(

1

α
))2 × L3 × L2 (49)

Replacing σ with µ in the above calculation, we also get that∥∥∥∥ d

dU
g⋆(U, t)

∥∥∥∥
2→2

≤ (C +
√
Td log(

1

α
))4 × L2

3 × L1 + (C +
√
Td log(

1

α
))2 × L3 × L2 (50)

Thus, (49) and (50) imply that

∥f⋆(y, t)− Γx→y(f
⋆(x, t))∥ ≤ C × ρ(x, y), ∀x, y ∈M (51)

and
∥g⋆(y, t)− Γx→y(g

⋆(x, t))∥F ≤ C × ρ(y, x) ∀x ∈M, (52)

where C := (C +
√
Td log(1

α))
4 × L2

3 × L1 + (C +
√
Td log(1

α))
2 × L3 × L2.

B.5 WASSERSTEIN TO TV CONVERSION ON THE MANIFOLD (LEMMA B.7)

Lemma B.7 (Wasserstein to TV conversion on the manifold). There is a number c ≤ poly(d) such that for every
t ∈ [t0, T] and any τ ≤ 1

c we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt
− Lŷt∥TV

≤
√
DKL(ν1 ∥ pt+τ+∆̂|t+τ (· |Yt+τ)) +

√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (53)

Proof of Lemma B.7. Now that we have shown that f⋆ and g⋆ are poly(d)-Lipschitz (by Lemmas B.4 and B.6), we
can apply Lemma B.3 to bound the Wasserstein distance: W2(Ŷt+τ , Yt+τ) ≤ (ρ2(Ŷt, Yt) + ε)ecτ ∀τ ≥ 0, where
c ≤ poly(d).

Moreover, with slight abuse of notation, we may define ŷt+τ to be a continuous-time interpolation of the discrete
process ŷ. Applying (13) to this process we get that, roughly, W2(Ŷt+τ , ŷt+τ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ for τ ≥ 0.
Thus, we get a bound on the Wasserstein error,

W2(Yt+τ , ŷt+τ) ≤W2(Ŷt+τ , Yt+τ) +W2(Ŷt+τ , ŷt+τ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ τ ≥ 0 (54)

Unfortunately, after times τ > 1
c = 1

poly(d) , this bound grows exponentially with the dimension d.

To overcome this challenge, we define a new coupling between Yt and Ŷt which we “reset” after time intervals of length
τ = 1

c by converting our Wasserstein bound into a total variation bound after each time interval. Towards this end, we
use the fact that if at any time t the total variation distance satisfies ∥LYt − Lŷt∥TV ≤ α, then there exists a coupling
such that Yt = Ŷt with probability at least 1− α. In other words, w.p. ≥ 1− α, we have ρ(ŷt+τ , Yt+τ) = 0, and we
can apply inequality (54) over the next time interval of τ without incurring an exponential growth in time. Repeating
this process T

τ times, we get that ∥LYT
− LŷT ∥ ≤ α× T

τ , where the TV error grows only linearly with T .

24

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

Converting Wasserstein bounds on the manifold to TV bounds. To complete the proof, we still need to show how to
convert the Wasserstein bound into a TV bound (Lemma B.7). Towards this end, we begin by showing that the transition
kernel p̃t+τ+∆̂|t+τ (· |Ht+τ) of the reverse diffusion Ht in Rd is close to a Gaussian in KL distance:

DKL(N(Ht+τ + ∆̂∇p̃T−t−τ (Ht+τ), ∆̂Id) ∥ p̃t+τ+∆̂|t+τ (· |Ht+τ)) ≤
ατ

T

. One can do this using Girsanov’s theorem, since, unlike the diffusion Yt on the manifold, the reverse diffusion in
Euclidean space Ht does have a constant diffusion term (see e.g. Theorem 9 of Chen et al. (2023b)).

Next, we use the fact that with probability at least 1− α τ
T the map φ in a ball of radius 1

poly(d) about the point Ht+τ

has c-Lipschitz Jacobian where c = poly(d), and that the inverse of the exponential map exp(·) has O(1)-Lipschitz
Jacobian, to show that the transition kernel pt of Yt = φ(Ht) satisfies

DKL(ν1 ∥ pt+τ+∆̂|t+τ (· |Yt+τ)) ≤ (1 + ∆̂c)d
ατ

T
≤ 2

ατ

T

if we choose ∆̂ ≤ O(1
cd), where ν1 := expYt+τ

(N(Yt+τ + ∆̂f⋆(Yt+τ , t+ τ), ∆̂g⋆2(Yt+τ , t+ τ)Id)).

Next, we plug in our Wasserstein bound W (Yt+τ , ŷt+τ) ≤ O(ε) into the formula for the KL divergence between two
Gaussians to bound ∥LYt+τ+∆̂

−Lŷt+τ+∆̂
∥TV. Specifically, noting that Lŷt+τ+∆̂|ŷt = expŷt+τ

(N(ŷt+τ +∆̂f(ŷt+τ , t+

τ), ∆̂g2(ŷt+τ , t+ τ)Id)), we have that

DKL(ν1,Lŷt+τ+∆̂|ŷt+τ
) =

(
Tr(g⋆2(Yt+τ , t+ τ))−1g2(ŷt+τ , t+ τ)

)
− d+ log det g⋆2(Yt+τ ,t+τ)

det g2(ŷt+τ ,t+τ)
+ w⊤(∆̂g⋆2(Yt+τ , t))

−1w,

where w := Yt+τ− ŷt+τ+∆̂(f⋆(Yt+τ , t+τ)−f(ŷt+τ , t+τ)). Since with probability≥ 1−α τ
T we have g⋆(Yt+τ) ⪰

poly(d), plugging in the error bounds ∥f⋆(Yt+τ , t)− f(Yt+τ , t)∥ ≤ ε and ∥g⋆(Yt+τ , t)− g(Yt+τ , t)∥F ≤ ε and the
c-Lipschitz bounds on f⋆ and g⋆, where c = poly(d), (Assumption 2.1), we get that DKL(ν1,Lŷt+τ+∆̂

) ≤ O(ε2c2).
Thus, by Pinsker’s inequality, we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt
− Lŷt∥TV

≤
√
DKL(ν1 ∥ pt+τ+∆̂|t+τ (· |Yt+τ)) +

√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (55)

B.6 COMPLETING THE PROOF OF THEOREM 2.2

Bounding the accuracy. Recall that qt is the distribution of the forward diffusion Zt in Euclidean space after time t,
which is an Ornstein-Uhlenbeck process. Standard mixing bounds for Ornstein-Uhlenbeck process imply that

∥qt −N(0, Id)∥TV ≤ O(Ce−t)

for all t > 0 (see e.g. Bakry et al. (2014)). Thus, it is sufficient to choose T = log(1
Cε) to ensure that

∥LYT
− π∥TV = ∥qT −N(0, Id)∥TV ≤ O(ε)

.

As Lemma B.7 holds for all t ∈ τN, the distribution ν = LŷT of our sampling algorithm’s output satisfies

∥π − ν∥TV = ∥LYT
− π∥TV + ∥LYT

− ν∥TV ≤ O(ε) +O(εc× T
τ) = O(ε× poly(d)).

Bounding the runtime of the sampling algorithm. Since our accuracy bound requires T = log(d
εC), and requires a

time-step size of ∆ ≤ 1
poly(d) , the number of iterations is bounded by

T

∆
≤ O

(
poly(d)× log

(
d

εC

))
.

25

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

C CHALLENGES ENCOUNTERED WHEN APPLYING EUCLIDEAN DIFFUSION FOR GENERATING
POINTS CONSTRAINED TO NON-EUCLIDEAN SYMMETRIC MANIFOLDS

The following examples illustrate why using Euclidean diffusion models to enforce symmetric manifold constraints
may be insufficient.

Example 1: Consider the problem of generating points from a distribution µ on the d-dimensional torus Td =
S1× · · · × S1, given a dataset D sampled from µ. A naive approach is to map the dataset D from the torus to Euclidean
space via the map ψ which maps each point on the torus to its angles in [0, 2π)d ⊆ Rd. One can then train a Euclidean
diffusion model on the dataset ψ(D).

However, the map ψ can greatly distort the geometry of µ. To see why, let µ be a unimodal distribution on Td with
mode cenetered near (0, . . . , 0). The pushforward of µ under ψ consists of a distribution with 2d modes, each near
the 2d corners of the d-cube [0, 2π)d (see Figure 1). Thus, a Euclidean diffusion model needs to learn a multimodal
distribution, which may be much harder than learning a unimodal distribution.

Example 2: Another example is the problem of generating samples from a distribution on the manifold SO(3) of
rotation matrices. There is a natural map ψ from SO(3) to R3 which maps any M ∈ SO(3) to its three Euler angles
(a, b, c) ∈ [−π, π]× [−π2 ,

π
2]× [−π, π] ⊆ R3. However, ψ has a singularity at b = π

2 , which may make it harder to
learn distributions with a region of high probability density passing through this singularity, as ψ may separate this
region into multiple disconnected regions.

Additionally, it has been observed empirically that applying Euclidean diffusion models to generate Euler angles in R3

leads to samples of lower quality than those generated by diffusion models on the manifold SO(3); see e.g. Leach et al.
(2022), and Watson et al. (2023).

Figure 1: A probability density µwith one mode (blue) on the torus. The map ψ, which maps points in the d-dimensional
torus Td to Euclidean space Rd, may break up the single mode on the torus into up to 2d separated modes in Rd. This
can make the task of learning the pushforward of the target distribution on Rd much more challenging than the task of
learning the original target distribution on the torus, as the distribution in Rd may have exponentially-in-d more modes.

26

	Introduction
	Results
	Deriving the training and sampling algorithms
	Illustration of our framework for the sphere
	Proof Outline of Theorem 2.2
	Illustration of our framework for the Euclidean space, torus, special orthogonal group, and unitary group
	Proof of Theorem 2.2
	Correctness of the training objective functions
	Proof of Lemma B.3
	Proof that average-case Lipschitzness holds on symmetric manifolds of interest (Lemma B.4)
	Proof of Lipschitzness of f and g on all of M(Lemma B.6)
	Wasserstein to TV conversion on the manifold (Lemma B.7)
	Completing the proof of Theorem 2.2

	Challenges encountered when applying Euclidean diffusion for generating points constrained to non-Euclidean symmetric manifolds

