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ABSTRACT

We present a framework for designing efficient diffusion models on symmetric Riemannian manifolds,
which include the torus, sphere, special orthogonal group, and unitary group. While diffusion models
on symmetric manifolds have gained significant attention, existing approaches often rely on the
manifolds’ heat kernels, which lack closed-form expressions and result in exponential-in-dimension
per-iteration runtimes during training. We introduce a new diffusion model for symmetric-space
manifolds, leveraging a projection of Euclidean Brownian motion to bypass explicit heat kernel
computations. Our training algorithm minimizes a novel objective function derived via Ito’s Lemma,
with efficiently computable gradients, allowing each iteration to run in polynomial time for symmetric
manifolds. Additionally, the symmetries of the manifold ensure the diffusion satisfies an “average-
case” Lipschitz condition, enabling accurate and efficient sample generation. These improvements
enhance both the training runtime and sample accuracy for key cases of symmetric manifolds, helping
to bridge the gap between diffusion models on symmetric manifolds and Euclidean space.

1 INTRODUCTION

In recent years, diffusion-based methods have achieved significant success in generating synthetic data, including
highly realistic images and videos (see OpenAl|(2023)). Given a dataset D C R¢ in a d-dimensional Euclidean space
sampled from some unknown probability distribution 7, the goal of a diffusion model (or any generative model) is
to learn a distribution v which approximates the distribution 7 and to generate new samples from v. While most
existing diffusion models generate samples from a probability distribution in Euclidean space R? Ho et al.| (2020);
Rombach et al.| (2022)), many applications require data constrained to a d-dimensional non-Euclidean manifold M, as
seen in fields such as robotics |[Feiten et al.| (2013); |Urain et al.|(2023)); Shi et al.| (2023); Selig| (2013)) and molecular
drug discovery |Shapovalov and Dunbrack] (2011); Maji et al.|(2019); |Cheng et al.|(2021)); [Leach et al.|(2022)); Watson
et al.|(2023)), where configurations are often represented on symmetric-space manifolds like the torus, sphere, special
orthogonal group SO(n), or unitary group U(n) where n = v/d. It is possible to enforce manifold constraints by
mapping samples from Euclidean space R to the manifold M. However, this often leads to low-quality samples due to
geometric distortions caused by the mapping |Leach et al.|(2022)); Watson et al.|(2023) For example, consider generating
points from a distribution p on the d-dimensional torus Ty = S; X - - - X S1. A naive approach would map the dataset
D to Euclidean space via the map 1) converting points on the torus to angles in [0, 27)? C R%. One can then train a
Euclidean diffusion model on the dataset (D). However, this can severely distort the geometry of p, leading to a
multimodal distribution that is harder for a diffusion model to learn compared to the original unimodal distribution on
the torus (see Appendix [C).

To address this, several works have developed diffusion models directly constrained to non-Euclidean Riemannian
manifolds |De Bortoli et al.|(2022); |Lou et al.|(2024)); Huang et al.[(2022)); Zhu et al.|(2024); Yim et al.|(2023)). However,
a significant gap remains between the runtime and sampling guarantees of Euclidean and manifold-based diffusion
models. For instance, while Euclidean models have a per-iteration runtime of O(d) arithmetic operations and O(1)
gradient evaluations Ho et al.| (2020); Rombach et al.| (2022), the objectives of manifold diffusion models often require
exponential runtime in the dimension De Bortoli et al.[(2022); Lou et al.|(2024)). Reducing this runtime gap, particularly
for symmetric manifolds, remains an open challenge.

To understand the technical difficulty, first consider the Euclidean case. At a high level, a diffusion model consists of
two components: a forward noising process that adds noise over time 7' > 0 until the data is (nearly) indistinguishable
from a Gaussian distribution, and a reverse denoising process that starts from a sample of this Gaussian distribution
and gradually removes the noise to generate samples approximating the original distribution 7 |Ho et al.| (2020);
Rombach et al.|(2022). A latent variable model is used to approximate the reverse diffusion, where the latent variables



z(t1), z(t2), ..., z(T) model random updates over discrete time intervals, approximating these updates as Gaussian
distributions whose mean (and sometimes covariance) is modeled by a neural network. In the manifold case, the forward
diffusion is standard Brownian motion on the manifold, and the reverse diffusion is the time-reversal of this process
De Bortoli et al.[(2022); [Lou et al.| (2024); Huang et al.| (2022)). However, because Brownian motion on a manifold
involves adding infinitesimal Gaussian noise in the tangent space at each point, it is unclear how to model the reverse
diffusion as a Gaussian latent variable model.

To overcome this, [De Bortoli et al.| (2022); [Huang et al.| (2022) move to continuous time, where the updates of the
reverse diffusion Y; converge to Gaussian distributions on the tangent space. The reverse diffusion is governed by
a stochastic differential equation (SDE) involving the manifold’s heat kernel. The heat kernel p,,(-|b) represents
the density of Brownian motion at time 7, initialized at a point b. Training the reverse diffusion model thus involves
minimizing an objective function that depends on the heat kernel De Bortoli et al.| (2022)); Huang et al.| (2022)); Lou
et al.| (2024)). Even in the Euclidean case, the training objective is nonconvex, and there are generally no guarantees of a
polynomial-in-dimension runtime for the overall training process. However, in Euclidean space, the heat kernel has a
closed-form expression that can be computed in time linear in d, allowing each iteration of the training algorithm to run
in polynomial time. For non-Euclidean manifolds, the lack of a closed-form heat kernel creates significant challenges,
making the heat kernel computation a bottleneck during each iteration|De Bortoli et al. (2022). On symmetric manifolds
like the orthogonal group, the heat kernel can only be computed via inefficient series expansions which require a runtime
that grows exponentially with d. For this reason, inaccurate approximations are oftentimes used, degrading the quality
of generated samples De Bortoli et al.[(2022); [Lou et al.| (2024). Another issue is that, on manifolds with non-zero
curvature, such as the sphere, orthogonal group, and unitary group, standard Brownian motion cannot be obtained as the
projection of Brownian motion in R%. As a result, previous works rely on numerical SDE or ODE solvers to compute
samples from the forward diffusion during each evaluation of the objective function |De Bortoli et al.| (2022)); Lou et al.
(2024). The use of these solvers introduces significant computational bottlenecks in training diffusion models.

Our contributions. We study the problem of designing efficient diffusion models when M is a symmetric-space
manifold, such as the torus T, sphere Sy, special orthogonal group SO(n), and the unitary group U(n) where n = /d,
as well as direct products of these manifolds such as the special Euclidean group SE(n) which is isomorphic to
R™ x SO(n). We present a new training algorithm (Algorithm [I)) for these manifolds, where each iteration can be
computed in O(d) arithmetic operations for T4 or S4, and O(d? ) arithmetic operations for SO(n) or U(n), and O(1)
evaluations of the gradient of a model for the drift and diffusion terms of the reverse diffusion. Here w ~ 2.37 is the
matrix multiplication exponent. This significantly improves upon the per-iteration bounds of previous methods (see
Table . For example, on SO(n) and U(n) our method achieves exponential improvements, bringing the per-iteration
runtime closer to that of the Euclidean case. Subsequently, we provide a sampling algorithm (Algorithm[2)) along with
a guarantee on its accuracy and runtime. Given an e-minimizer of our training objective, the algorithm achieves an
e x poly(d) bound on the total variation distance accuracy and a poly(d) runtime (Theorem [2.2)). This improves upon
the sampling accuracy bounds of [De Bortoli et al.| (2022), which are not polynomial in the dimension. Theorem 2.2
holds for more general manifolds that satisfy an average-case Lipschitz condition (Assumption[2.T)). Using tools from
random matrix theory, we prove this condition holds for the manifolds of interest (Lemma [B.4).

Our paper introduces several new ideas. For the training result, we define a novel forward diffusion on M obtained by
projecting Brownian motion in R% onto M via a given map ¢ : R? — M, which satisfies the average-case Lipschitz
condition and can be efficiently computed via the singular value decomposition when M is the unitary or orthogonal
group. This choice of forward diffusion ensures that we can efficiently sample from our forward diffusion process in a
simulation free manner—without requiring the use of an SDE (or ODE) solver— by sampling from a Gaussian in R?
and projecting this point onto M. We also introduce a new training objective that bypasses the need to compute the
manifold’s heat kernel. By applying Ito’s Lemma from stochastic calculus, we project the SDE for a reverse diffusion in
Euclidean space onto M. The drift term of the resulting SDE is expressed as an expectation of the Euclidean heat kernel.
Since the Euclidean heat kernel has a closed-form expression and the projection map ¢ can be computed efficiently, we
compute the objective in time O(d? ).

For the sampling result, we demonstrate that the reverse SDE satisfies a Lipschitz condition provided the projection
map satisfies the average-case Lipschitz condition (Lemma [B.4). Since the projection introduces a non-constant term
in the SDE on the manifold, Girsanov’s theorem techniques from prior works cannot be used to bound the accuracy.
To address this, we develop an optimal transport-based approach, leading to a novel probabilistic coupling argument
that provides the desired accuracy and runtime bounds. This approach is entirely different from previous proofs in
Euclidean space (Chen et al.[(2023bja)); |(Cheng et al|(2022)); Benton et al.|(2023)) and manifold-based diffusion models
De Bortoli et al.[(2022), which rely on Girsanov’s theorem.



Algorithm Unitary or Orthogonal group Sphere Torus
Score-based Riemannian|De Bortoli et al.| (2022) 27 + poly(d, 1) 27 + poly(d, 1) | 27+ poly(d, 1)
Scaling Riemannian [Lou et al.| (2024) 27 + poly(d, 1) poly(d, 3) dlog(3)
This paper B d? log(z) dlog(3) dlog(3)

Table 1: Arithmetic operations to compute the objective function’s gradient per-iteration of the training algorithm, when M is the
unitary group, orthogonal group, sphere, or torus.

2 RESULTS

For a manifold M, we are given a projection map ¢ : R? — M and a restricted-inverse map ¢ : M — R? such
that p(y)(x)) = « for all x € M. Denote by 7,M the tangent space of M at z. We assume access to an oracle that
computes the exponential map exp(z,v) on M for any z € M and v € T, M. This oracle is not needed for our
training algorithm (Algorithm[I); it is only required for the sample generation algorithm (Algorithm [2), which uses the
trained model. We are given a dataset D C M sampled from 7 with support on M.

We set ¢ : R? — R% and ¢ : R? — R? as identity maps when M = R<. For the torus Ty, ¢(x)[i] = z[i{] mod 2w
maps points to their angles, and 4 is its inverse on [0, 27)%. For the sphere Sy, () = Ta7> and ¢ embeds the unit

sphere into RY. For groups SO(n) and U(n), the map ¢ takes each upper triangular matrix X € R"*" (or X € C"*™),
computes the spectral decomposition U* AU of X + X *, and outputs ¢(X) = U. The map 1) takes each matrix U € M,
computes U*AU where A = %diag(n, n—1,...,1), scales the diagonal by %, and outputs the upper triangular entries
of the result. For all of the above maps, ¢(M) is contained in a ball of radius poly(d). Our general results hold under
this assumption on 1. For manifolds M = M; x M, which are direct products of manifolds M; and M, where one
is given maps 1, 01 for M and @, 1o for M, one can use the concatenated maps ¢ = (1, p2) and P = (11, 1s).

We give an algorithm (Algorithm[T)) which trains our model by minimizing a nonconvex objective function via stochastic
gradient descent. Our training algorithm outputs trained models f(z,t) and g(«, t) for the drift and covariance terms of
our reverse diffusion, and passes these trained models as inputs to our sample generation algorithm (Algorithm 2).

Training. We show that the time per iteration of our training algorithm is dominated by the computation of the
objective function gradient (Lines [I3]and[T3]in Algorithm [2), which requires calculating the gradient of the projection
map V¢ as well as the model gradients Vg f and V 4g, where 6 and ¢ are the model parameters of f and g. When
M is one of the aforementioned symmetric manifolds, Vi can be computed at each iteration within error § in
O(n*log(%)) = O(d“/?log(3)) arithmetic operations in the case of the special orthogonal group SO(n) or unitary

group U(n), using the singular value decomposition of an n x n matrix, or in O(dlog(%)) operations for the sphere or
torus. See Sectiond]and Appendix [A]for details.

This significantly improves the per-iteration runtime of training diffusion models on symmetric manifolds (see Table
[I). Specifically, it achieves an exponential improvement over the method in|[De Bortoli et al.| (2022)), which requires
summing (2¢) terms to compute the heat kernel on manifolds like the torus, sphere, orthogonal group, or unitary
group. Similarly, it improves on Lou et al.|(2024), where heat kernel computations for manifolds like the orthogonal or
unitary group involve truncated expansions with approximately €2(2%) terms. Additionally, De Bortoli et al. (2022) and
Huang et al.| (2022)) propose approximations to the training objective, but these are asymptotically biased and cannot be
improved beyond a fixed error, regardless of computation time (see Theorem 4 of [Huang et al.[|(2022)). Our approach

further improves the accuracy dependence from polynomial-in-% to logarithmic—in—é, as previous methods rely on

numerical solvers for SDEs or ODEs, which require polynomial-in-% iterations for high accuracy. In contrast, our

forward diffusion is computed by adding a Gaussian vector and projecting onto the manifold, achieving any desired
accuracy with only a logarithmic dependence on %.

Sample generation. Our training algorithm (Algorithm [1) outputs trained models f(z,¢) and g(z, t) for the drift and
covariance terms of our reverse diffusion. We then use these models to generate samples. First, we sample a point 2z
from the stationary distribution of the Ornstein-Uhlenbeck process Z; on R, which is Gaussian distributed. Next, we
project this point z onto the manifold to obtain a point y = ¢(z), and solve the SDE dY; = f (Y3, t)dt + g(Y;,t)dB;
given by our trained model for the reverse diffusion’s drift and covariance over the time interval [0, T'], starting at the
initial point y. To simulate this SDE we can use any off-the-shelf numerical SDE solver, which takes as input the trained
model for f and g, and an oracle for computing the exponential map on M. We give one such solver in Algorithm 2]



and prove guarantees for the accuracy of the samples generated by this solver, and its runtime, in Theorem [2.2] Our
guarantees assume that the trained models f(x,t) and g(x,t) we hand to this solver minimize our training objective
within some error € > 0.

Our theoretical guarantees hold when M satisfies a symmetry property and ¢ satisfies an “average-case” Lipschitz
condition (Assumption . This symmetry property requires that each point z € R? can be parametrized as z = z(U, A)
where U = ¢(z) € M and A = A(z) € A for some A C R4=4m(M) j5 another parameter. For instance, on the
sphere, U = H—j” is the projection onto the sphere, and A = ||z|| is the distance to the origin. For SO(n) or U(n), the
parametrization comes from the spectral decomposition z = UAU™, where U € M and A is a diagonal matrix. On the
torus, U = o(x) is the projection onto the torus, and A € 2nZe. Z,, t > 0, is the Ornstein-Uhlenbeck process on R4,
X; = o(Z;), our forward diffusion process on M, and Y; = Xp_, its time-reversal (see Section .

Assumption 2.1 (Average-case Lipschitz-ness). Vt € [0, T there exists 2y C R%, whose indicator function 1g, ()
depends only on A = A(x), for whichP(Z, € Q. YV t € [0, T]) > 1—c. Foreveryx € Q we have |Vo(z)||a—2 < L1,

H%VSD(I)Hz—a < Ly, [|[V20(2) |22 < Lo, and ||%ch(x)||2_>2 < Lo. Moreover, %xﬂg_,g <|lz|l2.

Roughly speaking, Assumption states that the projection map ¢ : R? — M satisfies a Lipschitz condition on a
set of average-case points {2; C R“, which contains the Euclidean-space forward diffusion Z; with high probability.
Additionally, §2; exhibits a symmetry property: the indicator function 1q,, (x) is independent of the projection U = ¢(z).
We choose projection maps ¢ that satisfy this Assumption with small Lipschitz constants. For example, for Ty,
¢(z)[i] = z[ijmod2m, i € [d] is 1-Lipschitz on all RY, trivially satisfying the assumption. For the sphere, ¢(x) = Tl

is 2-Lipschitz outside a ball of radius % around the origin, where the forward diffusion remains with high probability

(1 — O(2=%)). For SO(n) (or U(n)), ¢(X), which computes the spectral decomposition U*AU of X + X*, has

derivatives with magnitude bounded by the inverse eigenvalue gaps /\_1 - While singularities occur at points with
=X

duplicate eigenvalues, random matrix theory shows that eigengaps are w.h.p. bounded below by m, ensuring

 satisfies the average-case Lipschitz assumption. For the unitary group, we show that Assumption holds for
Ly = O(d**\/Ta~3) and Ly = O(d?Ta™%) (Lemma|B.4). For the sphere, it holds for L; = Ly = O(a~#). For
the torus it holds for L; = Lo = 1.

Theorem 2.2 (Accuracy and runtime of sampling algorithm). Let ¢ > 0, and suppose that p : M — R? satisfies
Assumption 21| for some L1, Ly < poly(d) and o < €, and 1(M) is bounded by a ball of radius poly(d). Suppose

that f and G are outputs of Algorithm and that f and § minimize our training objective for the target distribution
with objective function value < €. Then Algorithm with inputs f and g, outputs a generated sample whose probability
distribution v satisfies ||v — ||ty < O(e x (d3Ly + d®Ly)log (£)) = O(e x poly(d)). Moreover, AlgorithmE] takes
O((d*Ly + d*Ls) log (g)) = poly(d) x log (%) iterations, where each iteration requires one evaluation of f and g,
one evaluation of an oracle for computing the exponential map on M, plus O(d) arithmetic operations.

Plugging in our bounds on the average-case Lipschitz constants in the case of the torus, sphere, special orthogonal
group, and unitary group (Lemma[B.4) into Theorem we obtain the following guarantees for the accuracy and
runtime of our sampling algorithm for these symmetric manifolds:

Corollary 2.3. Suppose that M is Tg4, Sq, SO(n), or U(n) withn = Vd. Suppose that ¢ and ) are chosen as specified

above for these manifolds. Suppose that f and § are outputs of AlgorithmE] and that éand g minimize our training

objective for the target distribution T with objective function value < €. Then Algorithm |2} with inputs f and §, outputs
a generated sample whose probability distribution v satisfies |[v — ||ty < O(e x d° log (g)) for the torus and sphere
(or v — ||ty < O(e x d®log (£)) for SO(n) and U(n)). Moreover, Algorithm takes O(d*log (£)) iterations for
the torus and sphere (or O(d> log (g)) iterations for SO(n) and U(n)), where each iteration requires one evaluation

of f and g, one evaluation of an oracle for computing the exponential map on M, plus O(d) arithmetic operations.

An overview of the proof of Theorem [2.2]is given in Section [5} the full proof appears in Appendix [B] Theorem
improves on the sampling accuracy guarantees of |De Bortoli et al.|(2022) in the special case when M is one of the
aforementioned symmetric manifolds, since the accuracy bound in De Bortoli et al.[(2022) is not polynomial in the
dimension d (their “constant” term C' = C' (M, d) has an unspecified dependence on the manifold and its dimension).
Finally, we note that|Lou et al.|(2024)); Huang et al.|(2022) do not provide guarantees on the accuracy or runtime of
their sampling algorithm. Improving the dependency on d in Theorem 2.2]remains an open problem.



3 DERIVING THE TRAINING AND SAMPLING ALGORITHMS

Given a standard Brownian motion W; in R?, a z1 : R? — R? and R : R? — R?*4, a stochastic process X satisfies
the SDE dX; = pu(X;)dt + R(X;)dW; with initial condition z € R if X; = x + fot w(Xs)ds + fot R(X)dWs.
Lemma 3.1 (Ito’s Lemma). Let ¢ : R — R* be a second-order differentiable function, let By be a Brownian motion,
and let X (t) € R? be an Ito diffusion process. Then

d(Xe)[i] = (Vo(X)[i]) TdX, + 3(dXy) T (V2(X)[i])dX,  VE>0, ie{l,...,k} )

The transition kernel py|.(y|z) is the probability (density) that X will take the value y at time ¢ conditional on X taking
the value  at time 7. Given an initial distribution 7, the probability density at time ¢ is p;(z) = [, pejo(x|2)7(2)dz.
For any diffusion process X, t € [0, 7], one can define its time-reversal Y; to be the stochastic process such that
Y; = Xp_ fort € [0,T). Y; is also a diffusion, and its evolution is governed by an SDE. In the special case where X
has identity covariance, dX; = b(X;)dt + d B, the reverse diffusion satisfies | Anderson| (1982)

One can also define diffusions on Riemannian manifolds, in which case d B, corresponds to the derivative of Brownian
motion on the tangent space (see Hsu|(2002))). Below we show the key steps in the derivation of our diffusion model,
training algorithm (Algorithm I]), and sampling algorithm (Algorithm 2).

Forward diffusion. Let {Z;};>( be a diffusion on R? with initial distribution gy = (7). We choose Z; to be the

Ornstein-Uhlenbeck process, defined by the SDE dZ; = —%tht + d B, which has a stationary distribution N (0, I).
The process is easy to sample from and has a closed-form Gaussian transition kernel:

L exp(—Lly=ze 2TVI2/0_c—e=n))  Vr,y e RLE> T > 0. 3)

wrWl?) = =
Let X; := ¢(Z;), the projection of Z; onto M. X, is the forward diffusion of our model.
Reverse diffusion SDE. Let Y; := X1_; denote the time-reversed diffusion of X;. Y; is a diffusion on M, with its
distribution at time 7" equal to the target distribution 7. The reverse diffusion follows the SDE:
for some functions f*(z,t) : M x [0,T] — T,M and g*(x,t) : M — T, M x T, M. Here dB; is the derivative of
standard Brownian motion on M’s tangent space. We write dB; = dB} when x € M is clear from context.

We cannot directly apply (2)) to obtain a tractable expression for the SDE for the reverse diffusion Y; on M since we do
not have a closed-form expression for the transition kernel of p; of the forward diffusion X; on M. Instead, we first
apply (2) to obtain an SDE for the reverse diffusion of Z; in RY.

dH; = (%Ht +2v10qu_t(Ht)> dt + dB; )
We use Ito’s Lemma to project this SDE onto M, giving an SDE for the reverse diffusion on M (see Appendix [B.I)
dY; = E[Vo(H;) TdH; + §(dHy) T (VZp(Hy))dHy |(Hy) =Y. (6)

Objective function of training algorithm. From (6), we show one can train a model f and g for f*, g* by solving an
optimization problem (Lemma B.2). Here, f, g € C(R%, R?) be continuous functions from R? to R and ¢ ~ Unif[0, 1].

— b(be- T
ming By (Vo)) O L9202 ) — Sel 0, 0120 =y, )

ming BBy r [[|(Vo(Z7-0)) TVp(Zr—t) — (9(0(Z1-1),1))* 1] Z0 = ¥ (b)]-

Sampling algorithm. To (approximately) sample from 7, one can approximate the drift and diffusion terms of the
SDE for the reverse diffusion (@) using the trained models f and § obtained by solving (7)) (in practice, we model these
functions with neural networks f@ and g4 where 0 and ¢ are the output of Algorithm . We initialize this SDE at
»(N(0, I4)), the pushforward of N (0, I;) onto M with respect to the map ¢.
AY; = f(Vi, t)dt + §(Vi, t)dB, Yo ~ @(N(0,11)). ®)

Since (unlike the forward SDE) the solution Y7 at time 7" is not a Gaussian or other easy-to-sample distribution, to
sample from Y one must instead numerically simulate the SDE (8). Towards this end, one can discretize the SDE in
with some small time-step size A > 0:

Zji—i—l :exp(yAi; f(glat)A+g(g77t)\/Z£z)7 (S {0717"'7T/A}7 )]
with initial condition o ~ @(N (0, I)).




Algorithm 1: Training algorithm

Input: An oracle for the “projection” map ¢ : RY — M, and for its gradient.
Input: An oracle for an “inverse” map ¢ : M — R such that p((z)) = z for all z € M.
Input: Dataset D = {z},..., 20"} C M.
Input: 7' > 0.
Input: Model f; : M x [0,T] — T M where f € R* denote trainable parameters.
Input: Model g; : M x [0,T] = TM x T M where 0 € R denote trainable parameters.
Input: Initial parameters 6y € R, ¢y € R*2.
Input: Hyperparameters: Number of stochastic gradient descent iterations r € N. Step size 7 > 0, batch size b.
1 Define, forall # € R 2 € R?, b,z € M, # € [0, T}, the objective function
1 t
F(0:b,2,,1) 1= | (Vip(2) T =207 + Su(V2e(2) - S0 D)

» Define for all § € R%2 5 € RY, bre M,te

0, T, the objective function

G(o:b, 2,3, 1) = [[(Vep(2)) T V(2) — (94(2.1)° 1%
3 Set 0 + 0
4 Set gf) «— ¢0
sfori=1,...,rdo
6 | Sample a random batch S C [m)] of size b
7 Sample ¢ ~ Unif ([0, T)
8 for j € S do
9 Sample £ ~ N(0, I)

end

end

Set z; + (ad)e 2 (T—0 £ /1 —e~T-0¢

Set z; < ¢(z;)

Compute I' « %Zjes VoF(0;2), 2, x,1)
0+ 6—nl

Compute YT < %ngs VoG(d; 2}, 25, 25,t)
¢ ¢—nT

Output: Trained parameters 60, ¢ for the models fp and g4

Algorithm 2: Sampling algorithm

Input: An oracle which returns the value of the exponential map exp(x, v) on some manifold M, for any x € M,
v E TpM.

Input: An oracle for the “projection” map ¢ : R — M.

Input: Model f; : M x [0,T] = TM where § € R%* denote trainable parameters.

Input: Model g : M x [0,T] = TM x TM where § € R denote trainable parameters.

Input: Trained parameters 6, ¢ (from output of Algorithm T])

Imput: 77 >0, N € N

Input: Discretization size A > 0 such that % € NZ.

Sample zg ~ N (0, I)

2 Set go < ¢(20)

sfori=0,1,...,L£ —1do

4 Sample £ ~ N (0, I).

s | SetGiy1 < exp(i; f (i iA)A + §(9i,iA)VAE)

¢ end
Qutput: g

-

r
A




4 ILLUSTRATION OF OUR FRAMEWORK FOR THE SPHERE

Suppose we are given a dataset D C S;_1, which was sampled from an unknown distribution 7 with support on S;_.
The goal is to train a generative model which generates samples from a distribution v which is close to the target
distribution . We construct the generative model using our general framework outlined in the previous sections. We
first choose a projection map ¢ : R? — S;_; to be ¢(z) = ﬁ for x € Sg_1,and ¥ : Sq_; — R? to be the usual

embedding of the unit sphere into R¢,

Forward diffusion. Our model adds noise to the data by running a “forward” diffusion X; constrained to the sphere
initialized at the target distribution 7. We define our forward diffusion to be the projection X; = ¢(Z;) of the
Euclidean-space Ornstein-Uhlenbeck diffusion Z; onto the manifold M, where Z, is initialized at the pushforward
(7) of the target distribution 7 onto R?. Since the Ornstein-Uhlenbeck distribution Z; is a Gaussian process, each
sample from our forward diffusion to be computed by drawing a single sample from a Gaussian distribution, and
computing the projection map ¢ once.

The forward and reverse diffusion of our model on the sphere are different than those of prior diffusion models on the
sphere. The evolution of our forward diffusion X; on the sphere is goverened by the SDE d X; = a(X4, ) (—%Xtdt +
d B ) initialized at the target distribution 7, where the coefficient a(t) is given by the coniditonal expectation «( Xy, t) :=

E [m fgo(Zt) = Xt} . Our forward (and reverse) diffusions has a (time-varying and) spatially-varying covariance

term a(X¢, t)dB; not present in prior models De Bortoli et al.[(2022) Lou et al.[(2024). This covariance term, which
accounts for the curvature of the sphere, allows our forward diffusion to be computed as a projection of Euclidean
Brownian motion onto the sphere despite the sphere’s non-zero curvature.

Training the model. The SDE for the reverse diffusion of our model has both a drift and covariance term. To train
a model f for the drift term, we first sample a point b from the dataset D at a random time ¢ € [0, 7], and point 2
from the Ornstein-Uhlenbeck diffusion Z; initialized at v (b), which is Gaussian distributed. Next, we project this
sample £ to obtain a sample (%) from our forward diffusion X; on the manifold. Finally, we plug in the point

©(2), and the datapoint b into the training objective function for the drift term f, which is given by the closed-form

2
expression || L (1 — #%T)M — f(¢(2),1)|| . The model for the drift term f is trained by minimizin
2l B pLELuN - y g

|12 e—(T—t) 1

the expectation of this objective function over random samples of b ~ D and Z ~ Z;. To learn the SDE of the reverse
diffusion, we must also train a model for the spatially-varying covariance term, which is given by a d x d covariance
matrix. Learning a dense matrix model for this covariance term would require at least d? arithmetic operations. However,
as a result of the symmetries of the sphere, the covariance matrix has additional structure: it is a multiple a( X3, t) of
the d x d identity matrix. Thus, to learn this covariance term, it is sufficient to train a model & (X%, t) for (X, t). This
can be accomplished by minimizing the objective function (&(p(2),t) — H—iﬂ)z Evaluating our objective functions for

z
l=1>

which requires O(d log %) arithmetic operations to compute within accuracy ¢ > 0, when generating the input to our
training objective function, which is sublinear in the dimension d? of the covariance term.

the drift term and covariance terms can thus be accomplished via a single evaluation of the projection map ¢(x) =

In contrast, the forward diffusion used in prior diffusion models on the sphere De Bortoli et al.| (2022)) |Lou et al.|(2024)),
cannot be computed as the projection of a Euclidean Brownian motion and must instead be computed by solving an
SDE (or probability flow ODE) on the sphere. This requires a number of arithmetic operations which is a higher-order
polynomial in the dimension d and in the desired accuracy % (the order of the polynomial depends on the specific SDE
or ODE solver used). As their training objective function requires samples from the forward diffusion as input, the cost
of computing their objective function is therefore at least a higher-order polynomial in d and % (forDe Bortoli et al.
(2022)) it is exponential in d, since their training objective relies on an inneficient expansion for the heat kernel which
takes 27 arithmetic operations to compute).

Sample generation. Once the models f(z,t) and g(z, t) for the drift and covariance terms of our reverse diffusion are
trained, we use these models to generate samples. First, we sample a point z from the stationary distribution of the
Ornstein-Uhlenbeck process Z; on R?, which is Gaussian distributed. Next, we project this point z onto the manifold to
obtain a point y = ¢(z), and solve the SDE dY; = f(Y},t)dt + g(Y;, t)d B, given by our trained model for the reverse
diffusion’s drift and covariance over the time interval [0, T, starting at the initial point y. To simulate this SDE we can
use any off-the-shelf numerical SDE solver. The point y computed by the numerical solver at time 7" is the output of
our sample generation algorithm.



5 PROOF OUTLINE OF THEOREM [2.2]

In the following, for any random variable X we denote its probability distribution by Lx. As already mentioned,
previous works use Girsanov’s theorem to bound the accuracy of diffusion methods. However, Girsanov transformations
do not exist for our diffusion as it has a non-constant covariance term which varies with the position x. Thus, we
depart from previous works and instead use an optimal transport approach based on a carefully chosen optimal
coupling between the “ideal diffusion” Y; and the algorithm’s process ¢, Specifically, denoting by i, the distribution
of Y; and by v, the distribution of )A/t, the goal is to bound the Wasserstein optimal transport distance Wa (i, 1) :=

infeerc(u ) By, 17 [p2(Ys, Ya)] where K(j, v) is the collection of all couplings of the distributions 1 and . Towards
this end, we would like to find a coupling £ which (approximately) minimizes E [p2(Y;, Yz)] at any given

time ¢.

NIJ«t,YtNVt)

As a first attempt, we consider the simple coupling where we couple the “ideal” reverse diffusion Y3,
dY; = f*(V3, t)dt + g* (Y3, t)d By, (10)
and the reverse diffusion Y; given by our trained model f , 0
AV, = f(Vi, t)dt + §(Y;, t)dB,. (11)
To couple these two diffusions, we set their Brownian motion terms dB; to be equal to each other at every time t.

In a similar manner, we can also couple Y, and the discrete-time algorithm ¢j; by setting the Gaussian term &; in the
. o . . A(i+1 .
stochastic finite difference equation Equation to be equal to &; = ﬁ / Ai(“r ) dB;dt for every i (9).

Step 1: Bounding the Wasserstein distance for everywhere-Lipschitz SDEs. To bound the Wasserstein distance

Wa (Y, §:) < Wa(Ys, ?}) +Ws (Yt, 1), we first prove a generalization of Gronwall’s inequality to Stochastic differential
equations on manifolds (Lemma|B.3)). Gronwall’s inequality Gronwall| (1919) says that if R : [0, 7] — R satisfies the
differential inequality $R(t) < B(t)R(t) for all t > 0, where the coefficient 3(¢) : [0, 7] — R may also be a function

of ¢, then the solution to this differential inequality satisfies R(t) < R(0)eo 8()ds,
Towards this end, we first couple Y; and Y, by setting their Brownian motion terms d B; equal to each other and then

derive an SDE for the squared geodesic distance pQ(Yt, Y;) using Ito’s lemma. Taking the expectation of this SDE gives
and ODE for E[pQ (Xt7 Xt)],

dE[p*(X;, X;)] = E [vf(f(t,xtﬁ (@&?3)} dt

* T . *
(5 ) wrm (G5 §)fJe o

To bound each term on the r.h.s., we first observe that, roughly speaking, due to the non-negative curvature of the
manifold, by the Rauch comparison theorem, each derivative on the r.h.s. is at least no larger than in the Euclidean case

M =R In this case p?(X;, X;) = || X; — X;|| and hence that
ff(g(tvt)
f(Xtvt)

as long as we can show that f* is c- Lipschitz for some ¢ > 0 (see Step 2 below). Bounding the covariance term in a
similar manner, and applying Gronwall’s lemma to the differential inequality, we get that

Wy(Y1,Yy) < E[p? (Y, Y3)] < (0% (Yo, Yo) +€)ec. (13)

1
+§E TI'

Vo2 (Xe, X0) T < ) | < 20X — Xl x 15 (Xe,t) — f(Xe, t)]] < 201 Xe — Xol| x (el Xe — Xe|| +€),

Step 2: Showing that our diffusion satisfies an “average-case’ Lipschitz condition. To apply (13), we must first
show that the drift and diffusion terms f* and g* are Lipschitz on M. Towards this end, we would ideally like to apply
bounds on the derivatives of ¢ : R? — M which defines our diffusion Y;. Unfortunately, in general, ¢ may not be
differentiable at every point. This is the case for the sphere, where the map ¢(z) = H%H has a singularity at z = 0. This
issue also arises in the case of the unitary group and orthogonal group, since the derivative of the spectral decomposition
©(z) = U*AU has singularities at any matrix z which has an eigenvalue gap A; — ;11 = 0.



To tackle this challenge, we show that, for the aforementioned symmetric manifolds, the forward diffusion Z; in R4
remains in some set ; C R? with high probability 1 — «, on which the map ¢ (Z;) has derivatives bounded by poly (d)
(Assumption [2.T|and Lemma [B.4). We then show how to “remove” the rare outcomes of our diffusion that do not fall
inside €2;. As our forward diffusion X; (and thus the reverse diffusion Y; = Xp_,) remains at every ¢ inside {2; with
probability > 1 — «, removing these “bad” outcomes only adds a cost of « to the total variation error.

Showing that ¢ has poly(d) derivatives w.h.p. (showing that Assumption holds). We first consider the sphere,
which is the simplest case (aside from the trivial case of the torus, where the derivatives of ¢ are all O(1) at every
point). In the case when data is on the sphere, which we embed as a unit sphere in R, one can easily observe that
e.g. |[Vo(2)|| < O(1) for any z outside a ball of radius r > (1) centered at the origin. As the volume of a ball of
radius r = av is rid, one can use standard Gaussian concentration inequalities to show that the Brownian motion X; will

remain outside this ball for time 7" with probability roughly 1 — O( 7).

We next show that the Lipschitz property holds for the unitary group U(n). Similar techniques can be used for the
case of the special orthogonal group, and we omit those details. We first recall results from random matrix theory
which allow us to bound the eigenvalue caps of a matrix with Gaussian entries. Specifically, these results say that
roughly speaking, if X is any matrix and X; = Xy + B(t), where B(t) is a symmetric matrix with iid N (0, ¢) entries
undergoing Brownian motion, one has that the eigenvalues v, (t) > - -+ > v, (t) of X} satisfy (see e.g. |/Anderson et al.
(2010); [Mangoubi and Vishnoi| (2023)))

P(infepsy,r)(vis1 (1) = 7(t) < so5ds2) < O(s2) Vs >0, (14)
Thus, if we define Q; to be the set of outcomes of such that ;1 (t) — v;(t) < aQW, we have that P(X,; €

Qt YVt € [tO,T]) Z 1— .

Our high-probability bound on €2; allows us to show that ¢ satisfies a Lipschitz property at “most” points €2;. However,
if we wish to apply (13)), we need to show that drift term f* and covariance term ¢* in our diffusion satisfy a Lipschitz
property at every point in R%. Towards this end, we first make a small modification to the objective function which
allows us to exclude outcomes { X; };¢[o,7) of the forward diffusion such that X; ¢ Q; for some ¢ € [0, T'. Specifically,
we multiply the objective function by the indicator function 1, (z). As determining whether a point z € Q;
requires only checking the eigenvalue gaps (when M is the unitary or orthogonal group), computing L, (z) can be
done efficiently using the singular value decomposition.

Bounding the Lipschitz constant of f* and g*. Recall that (when, e.g., M is one of the aforementioned symmetric
manifolds) we may decompose any z € R% as z = z(U, A) where U € M. Note that 1, (2) is not a continuous
function of z. However, we will show that, as 1q, (2(U, A)) depends only on A, multiplying our objective function by
1g, does not make f* and ¢g* discontinuous (and thus does not prevent them from being Lipschitz). This is because
f* and g* are given by conditional expectations conditioned on U, and can thus be decomposed as integrals over A.
Towards this end we express f* as an integral over the parameter A,

fr(Ut) =
Cu fAGA [th(z(U, A))Tv IOg QTftIO(Z(U7 A))"’%ter(p(z(Uv A))} QT—t(Z(Uv A))IQ(A)dAa

where cy = ([ 4 ar—+(2(U, A))IIQ(A)dA)_1 is a normalizing constant. Differentiating w.r.t. U,

d ,, d
@f (U,t) =E.u,A)~gr— [@((mﬂ(z(Ua A))) "V log gr_so(2(U, A))
+ 5tr(V2p(2(U, M) La(A)|V = Ul + -+, (15)
where “- - -7 includes three other similar terms that we omit due to space constraints. To bound the terms on the r.h.s. of

(T3], we apply Assumptionwhich says that the operator norms of Vi, V2, %Vgp and %V%ﬁ are all bounded
above by poly(d) whenever z € ;. To bound the term V log gr_40(2(U, A)) we note that V log g4 (2(U, A))

is the drift term of the reverse diffusion in Euclidean space. This term was previously shown to be dC?-Lipschitz
for all ¢t > Q(%) when the support of the data distribution in R? lies in a ball of radius C (see, e.g., Proposition 20
of |Chen et al.| (2023b))). Thus, plugging in the above bounds into (I3]) we have that || %f*(U, t)||2—2 < poly(d). A
similar calculation shows that || % 9% (U, t)||2—2 < poly(d). This immediately implies that f*(U, t) and g* (U, t) are
poly(d)-Lipschitz at every U € M.



Step 3: Improving the coupling to obtain polynomial-time bounds. Now that we have shown that f* and g*
are poly(d)-Lipschitz, we can apply (I3) to bound the Wasserstein distance: Wa(Yiir, Yiir) < (p?(Y3,Y:) +
g)e” Y1 > 0, where ¢ < poly(d).
Moreover, with slight abuse of notation, we may define 3., to be a continuous-time interpolation of the discrete
process §. Applying (T3) to this process we get that, roughly, Wa (Y r, Gr1r) < (0% (91, Y2) + € + A)ec™ for 7 > 0.
Thus, we get a bound on the Wasserstein error,

Wo(Yisr, Grar) < Wa(Yigr, Yigr) + Wa(Yegr, iar) < (0°(00, Y2) + €+ A)e™ 7> 0. (16)

Unfortunately, after times 7 > 1 = %, this bound grows exponentially with the dimension d.

poly

To overcome this challenge, we define a new coupling between Y; and Y, which we “reset” after time intervals of length
T = % by converting our Wasserstein bound into a total variation bound after each time interval. Towards this end, we
use the fact that if at any time ¢ the total variation distance satisfies ||Ly, — Ly, ||[Tv < «, then there exists a coupling

such that Y; = Y; with probability at least 1 — . In other words, w.p. > 1 — «, we have p(J¢4r, Yi4-) = 0, and we
can apply inequality (I6) over the next tlme interval of T without incurring an exponential growth in time. Repeating
this process L times, we get that || Ly, — Ly, || < a x L, where the TV error grows only linearly with T.

Converting Wasserstein bounds on the manifold to TV bounds To complete the proof, we still need to show how
to convert the Wasserstein bound into a TV bound (Lemma [B.7). Towards this end, we begin by showing that
the transition kernel p, | At +-(+|Hyr) of the reverse diffusion H; in R? is close to a Gaussian in KL distance:
DiL(N(Hyyr + AVpr_+(Hyypr), AL | PitriAlerr (- [Hirr)) < 5. One can do this via Girsanov’s theorem,
since, unlike the diffusion Y; on the manifold, the reverse diffusion in Euclidean space H; does have a constant diffusion
term (see e.g. Theorem 9 of |Chen et al.| (2023b))).

Next, we use the fact that with probability at least 1 — a7 the map ¢ in a ball of radius 1 Doy (@) about the point H - has c-
Lipschitz Jacobian where ¢ = poly(d), and that the inverse of the exponential map exp( ) has O(1)-Lipschitz Jacobian,
to show that the transition kernel p; of Y; = ¢(Hy) satisfies Dxr,(v1 | Py, Ajper (- [Yesr)) < (1 + Ac)der <297

if we choose A < O(4), where vy = expy,,  (N(Yitr + Af*(Yigrt +7), Ag2(Yiyr, t +7)13)).

Next, we plug in our Wasserstein bound W (Y-, §r4-) < O(e) into the formula for the KL divergence between two
Gaussians to bound || Ly —L; |lrv. Specifically, noting that £, = expy,, . (N (Ge+r + A f (Gt4r, T+

t+r+A Yirr4+A
7), Ag?(§4r, t + 7)14)), we have that
Dy (v1, E@t+r+A|Qt+T) = (Tr( (Y;5+T7 t+ T)) (yt+‘ra t+ 7—))

d Yiir, _
fd+10g%m +w  (Ag*2(Yiyr, 1) w,

Dpprpalde —

where w := Y47 — Yrgr + A(f*(Y,ngT7 t+7)— f(Jt4r,t+7)). Since with probability > 1 — a7 we have g*(Y;1,) =
poly(d), plugging in the error bounds || f*(Yi4r,t) — f(Yisr,t)|| < cand [|[g*(Yigr,t) — 9(Yiir, t)||F < € and the

c-Lipschitz bounds on f* and ¢g*, where ¢ = poly(d), (Assumption , we get that Dky,(v1,Ly,, ) < O(g2c?).
Thus, by Pinsker’s inequality, we have

1Ly, .a = Lopprialltv =1Ly, = Ly llTv

< ¢DKL(V1 1Ppr s agr (- [Verr)) + \/DKL<V1|\£gt+T+A|@t> < O(ec). (17)

Step 4: Bounding the accuracy. Recall that ¢, is the distribution of the forward diffusion Z; in Euclidean space after
time ¢, which is an Ornstein-Uhlenbeck process. Standard mixing bounds for Ornstein-Uhlenbeck process imply that,
llge — N(0,Iy)|lrv < O(Ce™") forall t > 0 (see e.g. Bakry et al.[(2014)), where C' < poly(d) is the diameter of the

support of ¥ (7). Thus, it is sufficient to choose T' = log(%) to ensure || Ly, — 7|[tv = |lgr — N(0, Ia)[|rv < O(e).
As holds for all ¢ € TN, the distribution v = Ly, of our sampling algorithm’s output satisfies, since 7 = %,

I = vllrv = [[1Lyy = 7llvv + [|£y7 — vllTv < O(e + ecL) = O(ec?log(%€)) = O(e x poly(d)).

Step 5: Bounding the runtime. Since our accuracy bound requires 7" = log( ), and requires a time-step size of

A=cd< poly( L the number of iterations is bounded by & x=cdl' <0 (poly(d) X log (%)) .
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A

ILLUSTRATION OF OUR FRAMEWORK FOR THE EUCLIDEAN SPACE, TORUS, SPECIAL
ORTHOGONAL GROUP, AND UNITARY GROUP

1. Euclidean space R?. In Euclidean case, our algorithm (with the above choice of ¢, 1) recovers the algorithms

of diffusion models on R¢ from prior works . The forward diffusion is the Ornstein-Uhlenbeck process with
SDE dZ; = —%tht + dB; initialized at the target distribution 7, where B; is the standard Brownian motion.

.. L . AT 2—be—3(T—1) N
The training objective for the drift term f(z,t) of the reverse diffusion is given by ||(2 T % —f(5, )2

where b is a point sampled from the dataset and Z is a point sampled from Zr_|{Zy = b} which is Gaussian
distributed as N (be= 2T /1 — ¢=(T=H];) (see Section . The number of arithmetic operations to
compute the training objective is therefore the same as for previous diffusion models in Euclidean space.

. Torus T,. For the torus, the forward and reverse diffusion of our model are the same as the models used in

previous diffusion models on the torus De Bortoli et al.|(2022) [Lou et al.| (2024). The Forward diffusion is
given by the SDE d X; = — %Xtdt + d B, on the torus, initialized at the target distribution 7.

The only difference is in the training objective function. To obtain our objective function we observe that X is
the projection of the X; = ¢(Z;) of the Ornstein-Uhlenbeck diffusion on R? via our choice of projection map
o for the torus. The drift term f for the reverse diffusion can be trained by minimizing the objective function

N —L(r—+¢
||£TZ_‘5_(ZZ)T67_,){1) — f(p(2),8)]|2, where 2 ~ N(be= 2Tt /1T —e=(T=],). Our objective function can
be computed in O(d) arithmetic operations, improving by an exponential factor on the per-iteration training
runtime of |De Bortoli et al.|(2022)) which relies on an inefficient expansion of the heat kernel which requires
and exponential-in-d number of arithmetic operations to compute, and matching the per-iteration training
runtime of |Lou et al.|(2024) who derive a more efficient expansion for the heat kernel in the special case of the
torus.

. Special Orthogonal group SO(n) and Unitary group U(n).

For the Special Orthogonal group SO(n) and Unitary group U(n), the forward and reverse diffusion of our
model are also different from those of previous works, as our model’s diffusions have a spatially-varying
covariance term to account for the non-zero curvature of these manifolds. As a result of this covariance term,
our forward diffusion can be computed as a projection ¢ of the Ornstein-Uhlenbeck process in R = R™*™
(or C™*™) onto the manifold SO(n) (U(n)). This projection can be computed via a single evaluation of the
singular value decomposition of a n x n matrix, which requires at most O(n®) = O(d? ) arithmetic operations,
where w = 2.37 is the matrix multiplication exponent and d = n? is the manifold dimension.

The forward diffusion U(t) € SO(n) (or U(t) € U(n)) of our model is given by the system of stochastic
differential equations

dui(t) = Y aij(t)dBijuj(t)f% > Bitui(t)dt, (18)

JEln].g#i jeld],j#i

where o () == E | 515 |o(Z0) = U(t)] and B;;(t) == E [W\QO(ZQ = U(t)] for every i, j € [d].

A model for the drift term f for the reverse diffusion can be trained by minimizing the objective function
—Llr—y)
e 2

IR — $DU — f(¢(2),t)||% where R is the matrix with i’th column R; = S U (NI — A)YU*4(b)u;

for each i € [n], and D is the diagonal matrix with ¢’th diagonal entry D;; = > for each

Jj€[n],j#i /\iikg‘
i € [n], where 2 = be~ 2T 4 \/1 — ¢~ (T-H @G where G is a Gaussian random matrix with iid N (0, 1)
entries and and UAU™ denotes the spectral decomposition of 2 + 2*.

To learn the SDE of the reverse diffusion, we must also train a model for the covariance term, which is given
by ad x d = n? x n? covariance matrix. To train a model for this covariance term with runtime sublinear in
the number of matrix entries n*, we observe that as a result of the symmetries of the orthogonal (or unitary)
group, the covariance term in is fully determined by the n? scalar terms «;;(t) for 4, € [n] and the n x n
matrix U. Thus, to learn the covariance term, it is sufficient to train a model A(U,t) € R™*™ for these n?
terms, which can be done by minimizing the objective function || A(U, t) — Al|%., where A is the n X n matrix
with (i, j)’thentry A;; = /\fl)w for i, j € [n], and \; denotes the i’th diagonal entry of A.

The training objective function for both the drift and covariance term can thus be computed via a singular
value decomposition of an n X n matrix (and matrix multiplications of n X n matrices), which requires at most
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O(n®) = O(d?%) arithmetic operations, where w ~ 2.37 is the matrix multiplication exponent and d = n? is
the manifold dimension.

In contrast, the training objectives in prior works including De Bortoli et al.[(2022) |[Lou et al.| (2024) require
an exponential in dimension number of arithmetic operations to compute as they rely on the heat kernel of the
manifold, which lacks an efficient closed-form expression. Instead, their training algorithm requires computing
an expansion for the heat kernel of these manifolds which is given as a sum of terms over the d-dimensional
lattice, and one requires computing roughly 2¢ of these terms to compute the heat kernel within an accuracy of

o(1).

B PROOF OF THEOREM

In the following, we denote by p(x, y) the geodesic distance between x,y € M, and by I';_,, (v) the parallel transport
of a vector v € T, from z to y.

For convenience, we denote ¢;(-) := o(-)[i].

Recall that we have assumed that ¢)(M) is contained in a ball of radius C' = poly(d). We will prove our results under
the more general assumption (Assumption w, 7, ('), which is satisfied whenever ¥(M) < C.

Assumption B.1 (Bounded Support (1, 7, C)). The pushforward of 1)(m) of T with respect to the map v : M — R
has support on a ball of radius C' centered at 0.

B.1 CORRECTNESS OF THE TRAINING OBJECTIVE FUNCTIONS

Lemma B.2. f* and g* are solutions to the following optimization problems:

Zr_y — h(b)e=2(T—D)
T 4T—t
(Totzn T A=

mingeera ra) Etvunit(o,17) Eornr {

2

+ %tr(V%O(ZTft)) — f(e(Zr-4), 1)

Zo = w@} , (19)

. 2
Mingec(ra,raxd) Btunit((0,1]) Evnr |:H((V<P(ZT—15))TVSO(ZT—75) — (9(e(Zr—), )|

Zo = z/)(b)] .

Proof. Step 1: Obtaining an expression for the reverse diffusion SDE in R%:

We cannot in general directly apply (2) to obtain a tractable expression for the SDE for the reverse diffusion Y; in M,
since we do not have a tractable formula for the transition kernel of p; of the forward diffusion X; on M. Instead, we
will first obtain an SDE for the reverse diffusion of Z; in R?, and then “project” this SDE onto M. Let H; := Zp_4
denote the time-reversed diffusion of Z;. H; is a diffusion in R%. From (@), we have that the SDE for the reverse
diffusion H, on R¢ is given by the following formula:

1
dHt = (2Ht + 2V IOg qT—t(Ht)) dt + th (20)
Equation (20) can be re-written as
1
dHt = (QHt + QEqu0|t(,|Ht)[v log QT—t|O(Ht|b)]) de + th (21)

The r.h.s. of (21) is tractable since we have a tractable expression for the transition kernel g _|o (it is just a time
re-scaling of the Gaussian Kernel, the trasition kernel of Brownian motion).

Step 2: Obtaining an expression for the reverse diffusion SDE in M:

Note that there exists a coupling between Z; and H; such that H; = Zp_; and that Y; = Xp_, for all ¢ € [0, T]. Thus,
under this choice of coupling, we have that Y; = X1, = o(Zr_;) = ¢(H;) for all t € [0,T]. In the special case
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when there is only one datapoint xg, the SDE for the reverse diffusion Y; on M can be obtained by applying Ito’s
lemma (Lemma[3.1) to Y; = ¢(H,):

AY;[i] = Vi(Hy) " dH; + %(dHt)T(VQ%(Ht))dHt Vi € [d]. (22)

In the following, to simplify notation, we drop the “4” index from the notation ; and dY;[i]. Unfortunately, the r.h.s. of
(22) is not a (deterministic) function of Y; = ¢(Hy;), since ¢ is not an invertible map. To solve this problem, we can

take the conditional expectation of with respect to Y; = ¢ (Hy):

1

aY, = ElAY,|Yi] = BldYilp(H)) = E[Ve(H)TdH, + S(AH) (Ve(H)AHIe(H).  @3)
The drift term on the r.h.s. of (23) is a deterministic function of Y;. Denote this function by f* : M x [0,T] — M
for any input x € M and output in the tangent space ¥, M at of M at x.

Moreover, by @]) the diffusion term on the r.h.s. of @]) must be the same as the diffusion term for the forward diffusion
Y, on M. This diffusion term can be obtained from the diffusion term dW; on R<, via Ito’s lemma, which implies
that the diffusion term is E[V¢(H;) " dW;|¢(H;)]. The diffusion term is also a deterministic function g* of Y;, where
g*(Y;) is a symmetric k x k matrix,

EN@(Hy) " dWy|p(Hy)] = g* (Ve t)dWs, (24)
where Wt is a standard Brownian motion on M.

Since dW; is the derivative of a standard Brownian motion in R?, and th is the derivative of a standard Brownian
motion on the tangent space of M, we have that

E[(Ve(Hy)) " Vo(Hy)le(Hy)] = (g" (Vi 1)) (25)
Thus, (23] can be expressed as:
1 ~

i = B[Vip(Hy) " dH, + 5 (dH:) T (V(H))AH|p(Hy)] = f*(Yi, )t + g* (Vi, )dW,. (26)

In the more general setting when there is more than one datapoint, generalizes to:

1

Yy = Eyor B[V(H) TdH, + o (AH,) T (V3(Hy))dHy | (Hy), Hr = b]] @7
= A (Ve t)dt + g* (Y, t)dW. (28)

Since Y; = @(H,), we can bring f*(Y;,t)dt and g*(Y;, t)dW; inside the conditional expectation:

1 .
Epr B[V (H;) T dH,; + §(dHt)T(V2cp(Ht))dHt — (Y, t)dt|(Hy), Hy = b]] = g* (Y3, t)dW;.
We can re-write this as
1
Epn Ep(11) (B (1) [V o (He) TdHy + §(dHt)T(V2s0(Ht))dHt — 7 (Y4, t)dt|Hy, Hp = b]]]
= g* (Y, t)dW;.

This simplifies to

Epr [V@(Ht)TdHt + %(dHt)T(V2cp(Ht))dHt — f*(V3, t)dt

Hp = b} = g* (Y}, t)dW,. (29)
where the expectation is taken over the outcomes of H;. Plugging in into (29), and separating the drift and the

diffusion terms on both sides of the equation (and noting that the higher-order differentials (d¢)? and dW;dt vanish),
we get that the drift terms satisfy

Eoon [(Vsa(Ht))T (H, + 2V log gr_gjo (HL|b)) dt

N |

L awy) T (V) aw, - f*(Yt,t)dt]HT - b} —o. (30)
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Noting that (dW;[i])? = dt and dW;[i]dW;[j] = 0 for all i # j, we get

B | (V)T (8 + 25 Yoo 1)
+ %tr(V2<p(Ht))dt - f*(}@t)dt‘HT = b} =0. (31)
Dividing both sides by d¢, we get an expression for the drift term f*
Epr {(W’(Ht))T (Hy + 2V 1og g0 (He|b))
+ %tr(v%p(Ht)) — f*(Y;,t)‘HT = b} =0. (32)
Finally, from (23)), we have that diffusion term g* satisfies

Epr [E [(Vw(Ht))TVw(Ht) - (g*(Y;,t))Q\so(Ht)} \HT - b} 0 (33)

Step 3: Training the drift term.

From (32)), we have that function f* is the solution to the following optimization problem:

. 1
m;nEt~Unif([0,1])Eb~7r { ‘(VQO(Ht))T (2Ht + 2V log QTtO(Ht|b)>

2

T %tr(VQSD(Ht)) - (Y1)

Hr = b} . (34)

where the inner expectation is taken over b ~ 7 and over the outcomes of H; at time ¢ conditioned on Hy = b (Note
that Y; = o(H,) is a deterministic function of Hy).

Now, H|{Hy = b} has the same probability distribution as Z_;|{Zy = b} (and that Y;|{ Hr = b} has the same
probability distribution as Xr_:|{Zy = b}). Thus, we can re-write (34) as

mfinEthnif([O,l])EbNTr [ ‘(V@(ZT—t))T (Zr—1 +2V10g qr_tj0(Z711D))

2

1
+ 5tr(v%p(ZT,t)) — f(Xr—u,t)|| |Zo = b} (35)
Step 4: Training the diffusion term.
From (33) we have that g* is the solution to the following optimization problem:
. 2
i Brnti 0 B || (Vo (H) V(1) = (0005, i =]

where || - || r is the Frobenius norm. Since H;|{Hr = b} has the same probability distribution as Z7_;|{Zy = b} (and
that Y;|{ Hr = b} has the same probability distribution as Xr_|{Zy = b}), we can re-write as

. 2
InglnEtNUnif([O,l])Ebwﬂ |:H((V80(ZT—t))TV4P(ZT—t) — (9(Xr—e,)*||

Z=1].
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B.2 PROOF OF LEMMA B3]

In the proof of Theorem [2.2) we will use the following lemma.

Lemma B.3 (Gronwall-like inequality for SDEs on a manifold of non-negative curvature). Suppose that M is a
Riemannian manifold with non-negative curvature, and let p(x,y) denote the geodesic distance between any x,y € M.

Suppose also that X, and X, are two diffusions on M such that
dX; = b( Xy, t) + o (X, t)dWs,
and . o
dXy = b(Xy,t) + 0( Xy, t)dWy,
where b is C1(t)-Lipschitz and o is Cy(t)-Lipschitz at every time t € [0, T]. Moreover, assume that
lo(z, t) = bz, 1) < e

and
lo(x,t) —6(z,t)|% < e

for all x € M. Then there exists a coupling between X, and X, such that, forallt >0,

N N 5e2 t 2
]E 2 X X < ]E 2 X X . f f (2C1(8)+3CQ(S) +2d8.
™ (X, Xp)] < ( (™ (Xo, Xo)] + sér[%J,t] 201(8) +302(S)2 ¥ 2) €’

Proof of Lemma|B.3] We first couple X, and X, by setting their underlying Brownian motion terms dW, to be equal to
each other.

Next, we compute the distance pQ(Xt, X}) using Ito’s Lemma.

Letting h(z,y) := p*(z,y), we have

By Ito’s Lemma, we have

dp2(Xt, Xt) = dh(Xt, Xt)

Therefore,

+ 0. (36)

Now, since M has non-negative curvature, by the Rauch comparison theorem we have

’Vh(Xtht)T (28{%3)

< 20(%, X1) x (160K, t) = Ty, (X )| + (X, 1) = b X, 1))
< 2p(Xy, X1) % (Ch(8)p(X, Xi) +€) (37

< 2p(X4, X)  [[6(Xe,8) = Ty, 5, (0(Xe, )]
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where the last inequality holds since b is C (¢)-Lipschitz.

Moreover, since M has non-negative curvature, by the Rauch comparison theorem we also have that

| (G0 ) e (558 9)]
< |l6(Xit) =Ty, 5, (0(X0, ))H2
(s o] + -],
<8[o(Ret) ~ Ty, g, (0(Xet ))HF+3H&(Xt7t)—a(Xt,t)HzF
< 3Cy(t)2p* (X4, Xi) + 3¢2 (38)

Plugging (37) and (38) into (36), we have

d N N . N
dtIE[ 02 (X, X1)] < 2E[C(8)p*( Xy, Xi) + ep( Xy, Xi)] + 3C2(4)°E[p? (X, Xi)] + 32 VE>0.  (39)

Hence,
d

Bl PP (X X0)] < 2E[C1(8)p° (X, Xo) + p°(Xi, Xo)] + 3Ca(8) B[ (Xy, Xo)] + 5¢”

= QE[Cl (t)pQ(Xt, Xt) =+ p2(Xt, Xt)] —+ 302(t)2E[p2(Xt, Xt)] + 562
= (201(t) 4 3C2(t)? + 2)E[p? (X, X;)] + 5>

Let 7 € [0, 7] be some number, and define R(t) := E[p?(X;, X;)] + infeo,-] m forall t € [0, 7].

Then we have,
d

dtR( ) < (201(t) +3C(t)> +2)R(t)  Vt>0 (40)

Thus, plugging ([@0) into Gronwall’s lemma, we have, for all ¢ > 0,
Rt < RO)EHEO O 2

~ 562 . )
= [ E[p*(Xo, X, f [E20 (5)+3C2(s)2+2ds
( " (Xo, Xo)l + seH(lJ 0,71 201 (s) + 3C4(s)2 + 2) e’o

Thus,

A 5e?
E[p?(X:, X f
(X X+ e s T35 1 2

A~ 552 t 2
< (El2(X.. X inf [ 2C1(s)+3C2(s)*+2ds
< P (Xo, Xo)l + inf 201(s)+302(s)2+2>€ ’

Hence, forallt > 0,

. N 5e2 t 2
E 2 X X < ]E 2 X X f [‘ 2C1(S)+3Cz(8) +2ds.
(™ (X, Xy)] < < [p™(Xo, Xo)] + selﬁ)'r 20 (s )+302(S)2 +2> e

Plugging in 7 = ¢ in the above equation, we have, for all £ > 0,

. . 5e2 ¢ 2
[p ( t f)] > < [p ( 05 0)] JFSéI[Bt 201( )+302(S)2 + 2> e’
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B.3 PROOF THAT AVERAGE-CASE LIPSCHITZNESS HOLDS ON SYMMETRIC MANIFOLDS OF INTEREST (LEMMA

B.4)

Lemma B.4 (Average-case Lipschitzness). For the Unitary group, we have that Assumption(p, L1, Lo, o) 2.1 holds
for Ly = O(d**\/Ta~3) and Ly = O(d*T o~ %). For the sphere, it holds for Ly = Ly = O(a™ ). For the Torus it
holds for L1 = Ly = 1.

Proof. For the torus, the map () has V(x) = I, atevery x € R?, which implies that Assumption [2.1|is satisfied
for Ll = L2 =1.

Sphere. In the case of the sphere, which we embed via the map ) as a unit sphere in R, one can easily observe that e.g.
IVo(z )|| < O(1) for any z outside a ball of radius r > Q(1) centered at the origin. As the volume of a ball of radius
r = ais -7 times the volume of the unit ball, one can use standard Gaussian concentration inequalities to show that the

Brownlan mot10n X will remain outside this ball for time I" with probability at least 1 — 4 T}T.

Moreover, by standard Gaussian concentration inequalities Rudelson and Vershynin| (2013)), we have that || X;|| <
2v/T'dlog(+) with probability at least 1 — 2a for all ¢ € [0, 7.

This motivates defining the set Q, := {z € R? : (41-)7 < ||z|| < 2V/Tdlog(L)}, as we then have

Since [|z]| > (4 ) for any z € Q; and any ¢ € [0, T, we must have that

1 .2
Ve(2(U,A)) |22 < 3(4—) 7 = Ly,

oT

H—w L)) [l2ms2 < 3(4—T>% =L,

1 .3
IV2e(2(U, A))ll2m2 < B(4—5) 4 = Lo,
1 .3
H—w (U.M) 22 < 3(4—5)% = Ly,
d

|57 (U ADllz—2 < |zl

Unitary group. We next show that the Lipschitz property holds for the unitary group U(n). Similar techniques can be
used for the case of the special orthogonal group, and we omit those details. We first recall results from random matrix
theory which allow us to bound the eigenvalue caps of a matrix with Gaussian entries. Specifically, these results say
that, roughly speaking, if X is any matrix and X; = X, + B(t), where B(t) is a symmetric matrix with iid N (0, ¢)
entries undergoing Brownian motion, one has that the eigenvalues y; () > - - - > v, (t) of X satisfy (see e.g.|Anderson
et al.| (2010); Mangoubi and Vishnoi|(2023))

P( inf (visa(t) — () <s—————) <O(s}) Vs >0. (41)

s€lto.T] poly(d)v/t

Thus, if we define §; to be the set of outcomes of such that ;11 () — vi(t) < o?
Q Vt e [ty, T]) > 1—«a.

From the Matrix calculus formulas for V(U TAU), %V@(UTAU), Vo(UTAU), and %VQQD(UTAU), we have
that, for all z2(U,A) = UAU " € Q,

1
oV Ve have that P(X; €

d

1
VeV M)z < 30— <d"*Via™d = Ly,
i1 Vil T A
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d
1
||7V<P( (U, M))]l2=2 < ||A||2—>2Z FET

+1 —

(C—s—\/»dlog ZA <d1-5\/ia—% =L,

d
1 2
2 9, 2
||V ( (U A))H2H2§§ﬁ§d ta” 3 = Lo,

d
1
— A <A AU
I Vo(=(U, A2 < | HMZ o )
d
(C’erfdlog XZ SdztOf%:Lza
o i —

d
Iz (U, A)ll2-2 < [[All2—2

since Ajy1 — A\ < a0 —A~ ff for all i € [d] and ||A|2—2 < 2v/Tdlog(L) whenever z(U, A) €

B.4 PROOF OF LIPSCHITZNESS OF f* AND g* ON ALL OF M (LEMMA [B.6))

We will use the following Proposition of |Chen et al.| (2023b)):
Proposition B.5 (Proposition 20 of |Chen et al.|(2023b))). Suppose that 1»(r) has support on a ball of radius C' > 0.

For any o > 0, define the “early stopping time” to := min(g, 0‘72)

Then the drift term N log q,(+) of the reverse diffusion SDE in Euclidean space is O(-5dC?(min(C, Vd)?))-Lipschitz
at every time t > 1.

Moreover, Wa (g, ) < .

Denote by I';,_,,, (v) the parallel transport of a vector v from x to y.

Lemma B.6. Suppose that Assumption 2.I{¢, L1, Ly, o) and Assumption [B[v, w,C) both hold. Then for every
te [th T];

||f*($,t) _Fﬂiﬁy(f*(x’t))” SC X p(a?,y), Vl’,yGM (42)
and

19" (y:8) = Doy (97 (2, 1)) |7 < C X p(2,y) Yo,y € M (43)
l 2

where C := (C + VTdlog(2))* x L3 x L + (C + VTdlog(1))? x L3 x Ly and ty := min(g, %), and Ly =
O(%dC? (min(C, vd)?)).

Proof. Recall that (when, e.g., M is one of the aformentioned symmetric manifolds) we may decompose any z € R¢
as z = z(U, A) where U € M.

We have the following expression for f*(U,t)

(Vil=(U, M)V logar—jo(=(U, A)) + 5tx(V3p(=(U; A))
X qr—t(2(U, A))1q(A)dA,

(U1 :CU/

AcA

where cy = ([ 4 ar—+(2(U, A))]lQ(A)dA)_l is a normalizing constant.
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Then

d *
@f (Uat)
e [ [(W(z(U, ATV log g1 (+(U. 1)) + Str(T2 )}
X qr— t( (U A)) A
d T 2
e x [ 3y [(W(U,A))) Vlog gr((=(U. ) + Lx(¥ so(z(U,Am]

X qr—+(z(U,A)) Lo (A)dA

For the first term on the r.h.s. of (#4) we have,

)

~ax [ (& [(wmv,A)))Twoqu_xz(U,A))+ J(Vela(0,)]
)
)

d 1
—erx [ (G |(Telew ) Tiogar-a(w.a) + §tr<v2w<z<a A)))])
x qgr—t(z2(U, A)) 1o (A)dA,
e x [ (ToleU )TV 08 r-1 (U 0) + Jix(Tpla(0,4))|
AcA 2
x Vuloggr—i(2(U, A)) x gr—i(2(U, A))La(A)dA,

~ Eyear-. |t ( (Vo0 0) Vo ogar_go(+(07 1)

o,

+ 3U(G(0A) ) 1a)|V = U],
By (VoA Vo logar (o0 1)) + Jir(Ve(a(0 1)

x Vylog gr—(2(U, A))ﬂsz(A)'V = U]7
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For the second term on the r.h.s. of (@4) we have,

qrev = b | Gl U A) 1a(a)a

d
— C2U/ @(61082QTft(Z(UvA)))]]_Q(A)dA
AceA

& Vu log qr_i(z(U, A)) ('8 17—t WA 1o (A)dA

AcA

=c} Vulogqr—i(z(U,A)) x gr—+(2(U,A))Lo(A)dA
AcA

=cu X Eoua)mqr_, [Vulogar—i(2(U,A)1a(A) |V = U]

and hence,
(e x /A By [(V@(Z(U M)V log g7 (=(U,A)) + 5x(V%p(=(U; A)
X qr—+(z(U,A))Lo(A)dA
= Eow.a)~gr_, [Vulogar—i(2(U,A))1o(A) |V = U]
X Eet)mar . [(<w<z<U, A)))Tvmg ar (U, A))
+ St (V(a(U, A)))) Lo (A) ' V= U]
Thus

d *
@f (Ua t)
~ Eevnyear-. |t ( (Vo0 0) Vi oo (+(07 1)
+ 5tV (U, A)))) JIQ(A)‘V - U} ,
+Eutvayear. | ((Tol:(0.00) TV ogar-1((0,4)) + Jur(Vp(:(0,4)))

x Vuy loquft(Z(U, A))]]_Q(A)‘V = U:|
+ B Ay ~gr—s [VU log gr—+(2(U, A))1 |V U]

X Bt apmgr. K(V@(Z(U, A)))Tvmg a1 (=(U.A)

+ (V0. ) 1) |V = U]

(45)

(46)

(47)

Moreover, by standard Gaussian Concentration inequalities we have that ||z(U, A)|| r < C+ VTdlog(2). From
ProposmonEwe have that V log pr_o(2(U, A)) is Ls-Lipschitz where L3 := O(ZdC?(min(C, v/d)?)) and hence
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that

d
IVe log pr—ijo(2(U; A))llz—2 < |l 377 (2(U, A))ll2—2 x [V 1og pr—sjo(2(U; A)) 22

d 1
< 57 (U, M))ll22 > Ly > ||2(U, M| p < Ls x (C + ﬁdlog(a))
<(C+ ﬁdlog(é))g x Ls, (48)

where the last inequality holds by Assumption [B.T]and standard Gaussian concentration inequalities.

Thus, plugging Assumption [2.T)and (48) into #3), we have that

d 1 1

@f*(U, t) < (C 4 VTdlog(=))* x L3 x Ly + (C 4+ VTdlog(—))? x Lz x Ly (49)
252 a a

Replacing o with u in the above calculation, we also get that

1 1
—g*(U,t) < (C +VTdlog(=))* x L2 x Ly + (C 4+ VTdlog(=))? x Ls x Ly (50)
dU 949 a @
Thus, @9) and (30) imply that
17y 1) = Doy (f (2, )] < C % p(a,y), Yo,y € M (51
and

where C := (C' + VTdlog(1))* x L3 x Ly + (C + VTdlog(L1))? x L3 x Lo.

B.5 WASSERSTEIN TO TV CONVERSION ON THE MANIFOLD (LEMMA [B.7))

Lemma B.7 (Wasserstein to TV conversion on the manifold). There is a number ¢ < poly(d) such that for every
t € [to, T) and any T < % we have

1Ly, x = Lo, alltv =Ly, = Ly, [Irv
< \/DKL(Vl ||pt+T+A\t+T( ’ D/H‘T)) + \/DKL(V1|‘£Q,‘+T+A|;}£) < O(EC)' (53)

Proof of Lemma|B.7] Now that we have shown that f* and g* are poly(d)-Lipschitz (by Lemmas and [B.6)), we
can apply Lemma|B.3[to bound the Wasserstein distance: Wo (Y4, Yiir) < (p2(Yy, Yy) + €)ec™ Y7 > 0, where
¢ < poly(d).

Moreover, with slight abuse of notation, we may define g;., to be a continuous-time interpolation of the discrete

process 3. Applying (T3) to this process we get that, roughly, Wa(Yiyr, Geir) < (02(91, Yi) 4+ € + A)ec™ for 7 > 0.
Thus, we get a bound on the Wasserstein error,

Wo(Yigr, Gar) € Wo(Yier, Yigr) + Wo(Yigr G4r) < (02 (50. Vi) + e+ A)e™ 720 (54)

Unfortunately, after times 7 > % = , this bound grows exponentially with the dimension d.

_ 1
poly(d)
To overcome this challenge, we define a new coupling between Y; and Y; which we “reset” after time intervals of length
T= % by converting our Wasserstein bound into a total variation bound after each time interval. Towards this end, we
use the fact that if at any time ¢ the total variation distance satisfies | Ly, — Ly, ||Tv < «, then there exists a coupling

such that Y; = f’t with probability at least 1 — «. In other words, w.p. > 1 — «, we have p(§;+-, Yi4r) = 0, and we
can apply inequality (34) over the next time interval of 7 without incurring an exponential growth in time. Repeating
this process L times, we get that || Ly, — Ly, || < a x £, where the TV error grows only linearly with T
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Converting Wasserstein bounds on the manifold to TV bounds. To complete the proof, we still need to show how to
convert the Wasserstein bound into a TV bound (Lemma|B.7). Towards this end, we begin by showing that the transition
kernel ﬁt+T+A|t+‘r( -|Hy ;) of the reverse diffusion H; in RY is close to a Gaussian in KL distance:

aT

DKL(N(Ht+T + AvﬁT—t—T(Ht+T)7 Ald) ||ﬁt+-,—+A‘t+7—( : ‘Ht—‘r‘r‘)) < ?

. One can do this using Girsanov’s theorem, since, unlike the diffusion Y; on the manifold, the reverse diffusion in
Euclidean space H; does have a constant diffusion term (see e.g. Theorem 9 of |(Chen et al.|(2023b))).

Next, we use the fact that with probability at least 1 — a7 the map ¢ in a ball of radius m about the point Hy .
has ¢-Lipschitz Jacobian where ¢ = poly(d), and that the inverse of the exponential map exp(-) has O(1)-Lipschitz
Jacobian, to show that the transition kernel p; of Y; = o(H;) satisfies

~ aT aT
DKL(Vl ||pt+7—+A\t+T(' |}/f+7')) < (1 + Ac)d? < 2?

if we choose A < O(4;), where vy := expy,, (N(Yigr + Af*(Yigr,t +7), Ag*2(Yigr,t +7)1a)).

Next, we plug in our Wasserstein bound W (Y-, §r4-) < O(e) into the formula for the KL divergence between two
Gaussians to bound || Ly L ||Tv. Specifically, noting that £ = expy,, . (N(Gt+r + Af (G147, t+

thr+A VegpriA

), AQQ(QHT, t + 7)14)), we have that

DKL(V17 £gt+T+A|Qt+T) = (Tr(g*Q(Y;_H, t+ T))_ng(gt+T7 t+ T))

*2 ~
—d+log % +w T (Ag*2 (Yigr, 1)) 1w,

t+r+A|Qt

where w := Y s —Gar+ A(f*(YtJrT7 t+7) — f(Jt4-,t+7)). Since with probability > 1 —a% we have g*(Y;1,) =
poly(d), plugging in the error bounds || f*(Yiir,t) — f(Yerr, )| < eand ||g* (YVitr,t) — 9(Yeir, t)||F < € and the

c-Lipschitz bounds on f* and g*, where ¢ = poly(d), (Assumption , we get that Dky,(v1,Ly,, ;) < O(e2c?).
Thus, by Pinsker’s inequality, we have
1Ly, = Lo, alltv =Ly, = Ly, [lrv
< DKL 1Py s (- Yern)) + 4/ Dic (L5, g15) < Olee). (55)
O

B.6 COMPLETING THE PROOF OF THEOREM [2.2]

Bounding the accuracy. Recall that g; is the distribution of the forward diffusion Z; in Euclidean space after time ¢,
which is an Ornstein-Uhlenbeck process. Standard mixing bounds for Ornstein-Uhlenbeck process imply that

la: = N(0,1a)|l7v < O(Ce™)
for all £ > 0 (see e.g. Bakry et al.|(2014)). Thus, it is sufficient to choose T' = log(é) to ensure that
[Lvy = 7llrv = llgr — N(0, Ia)|Irv < O(e)

As Lemma|[B.7]holds for all ¢ € 7N, the distribution v = Ly, of our sampling algorithm’s output satisfies
7 = vllrv = [|Lyy = 7llrv + [[Ly; = vrv < O(€) + O(ec x T) = O(e x poly(d)).

T

Bounding the runtime of the sampling algorithm. Since our accuracy bound requires T = log(%), and requires a
time-step size of A < ﬁ@l)’ the number of iterations is bounded by

% <0 (poly(d) « Tog <Edc)> .
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C CHALLENGES ENCOUNTERED WHEN APPLYING EUCLIDEAN DIFFUSION FOR GENERATING
POINTS CONSTRAINED TO NON-EUCLIDEAN SYMMETRIC MANIFOLDS

The following examples illustrate why using Euclidean diffusion models to enforce symmetric manifold constraints
may be insufficient.

Example 1: Consider the problem of generating points from a distribution p on the d-dimensional torus Ty =
S1 x - -+ x Sy, given a dataset D sampled from . A naive approach is to map the dataset D from the torus to Euclidean
space via the map 1) which maps each point on the torus to its angles in [0, 27r)¢ C R%. One can then train a Euclidean
diffusion model on the dataset ¢)(D).

However, the map ) can greatly distort the geometry of u. To see why, let i be a unimodal distribution on Ty with
mode cenetered near (0, ..., 0). The pushforward of z under ¢ consists of a distribution with 2¢ modes, each near
the 2¢ corners of the d-cube [0, 27)¢ (see Figure . Thus, a Euclidean diffusion model needs to learn a multimodal
distribution, which may be much harder than learning a unimodal distribution.

Example 2: Another example is the problem of generating samples from a distribution on the manifold SO(3) of
rotation matrices. There is a natural map % from SO(3) to R® which maps any M € SO(3) to its three Euler angles
(a,b,¢c) € [-m, 7] x [=5, 5] x [-m, 7] C R%. However, 1 has a singularity at b = %, which may make it harder to
learn distributions with a region of high probability density passing through this singularity, as 1) may separate this

region into multiple disconnected regions.

Additionally, it has been observed empirically that applying Euclidean diffusion models to generate Euler angles in R?
leads to samples of lower quality than those generated by diffusion models on the manifold SO(3); see e.g. [Leach et al.
(2022)), and |Watson et al. (2023)).

T, [0,2m)4 C R?

Figure 1: A probability density ; with one mode (blue) on the torus. The map 1/, which maps points in the d-dimensional
torus Ty to Euclidean space R?, may break up the single mode on the torus into up to 2¢ separated modes in R?. This
can make the task of learning the pushforward of the target distribution on R% much more challenging than the task of
learning the original target distribution on the torus, as the distribution in R may have exponentially-in-d more modes.
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