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A GENERALIZATION OF INFORMATION CONSERVATION LAWS

We propose the following iformation theoretic relations:

Proposition 1 Let (Xn, Y n) ∼ PXn,Y n and let k < n. Then :

1. TE decomposition of DI: I(D ◦Xn → Y n) =

n−1
∑

i=1

TX→Y
i+1 (i, i). (6)

2. TE conservation: I(Xn;Y n) =

n−1
∑

i=1

TX→Y
i+1 (i, i) + TY→X

i+1 (i, i) + Iinst(X
n, Y n). (7)

3. DI chain rule: I(Dk ◦Xn → Y n) = I(Dk+1 ◦Xn → Y n)+
n
∑

i=1

I(Xi−k;Yi|Y
i−1). (8)

The visual proof is given separately for each equation:

Transfer entropy decomposition of directed information (equation (6) Note that an X → Y
(Y → X) TE term corresponds to a sub-column (row), whose length, orientation and starting in-
dex are determined by (k, l, n). Specifically, TX→Y

i+1 (i, i) corresponds to a sub-column of length
i that begins on the (i + 1)th column. The proof therefore follows simply from decomposing the
subtriangular matrix that corresponds to I(Xn → Y n) into column elements along the first row.
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(9)

I(D ◦Xn → Y n) = TX→Y
2 (1, 1) + TX→Y

3 (2, 2) + · · ·+ TX→Y
n (n− 1, n− 1)

We have a similar decomposition of I(D ◦ Y n → Xn) in terms of TY→X , which corresponds to
decomposition of the corresponding lower subtriangular matrix into rows.

2. Conservation of transfer entropy (equation (7)): The proof utilizes the observation of Propo-
sition 1. We decompose MI, which is given by the entire matrix, into the upper and lower sub-
triangulars (excluding the main diagonal), and the main diagonal. As noted in the main text,
Iinst(X

n, Y n) corresponds to the main diagonal (black), TX→Y
i+1 (i, i) corresponds to a sub-column

and TY→X
i+1 (i, i) corresponds to a sub-row. We therefore have
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(10)

I(Xn;Y n) =
(

TX→Y
2 (1, 1) + TX→Y

3 (2, 2) + · · ·+ TX→Y
n (n− 1, n− 1)

)

+ Iinst(X
n, Y n)

+
(

TY→X
2 (1, 1) + TY→X

3 (2, 2) + · · ·+ TY→X
n (n− 1, n− 1)

)

2. Directed information chain rule (equation (8)): The relation follows from noting that a delayed
DI term I(Dk+1 ◦ Xn → Y n) corresponds to a subtriangular element, which forms the one-step
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reduced DI element I(Dk ◦Xn → Y n) when combined with the appropriate sub-diagonal, which,
in turn, correspond to a ’delayed’ instantaneous MI term. For example, when k = 0, it is given by
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I(Xn → Y n) = Iinst(X
n, Y n) + I(D ◦Xn → Y n)

B NUMERICAL EXAMPLE - VISUAL PATTERNS

We demonstrate the utility of the InfoMat as a visualization tool for information flows in sequential
systems through the following example. We let (Xn, Y n) be jointly Gaussian, whose evolution is
determined by the following sequential relation

Xi =

i−1
∑

j=0

αX
j Xi−j + αY

j Yi−j +NX
i

Yi =

i−1
∑

j=0

βX
j Xi−j + βY

j Yi−j +NY
i ,

where (NX
i , NY

i )ni=1 are samples of independent Gaussian innovation processes. We visualize the

InfoMat structure for several settings of (αX
j , αY

j , β
X
j , βY

j )nj=1, large weight values (strong linear
connection) in Figure 2a and a small weight value (weak linear connection) in Figure 2a, considering
αX
j = βX

j = αY
j = βY

j = γ for j = 1, . . . , n. We note that the symmetric choice of weights
translated into a symmetric InfoMat, whose spread depends on the magnitude of γ.
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(a) Linear strong, γ = 0.5
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(b) Linear weak, γ = 0.12

Figure 2: Visualization of the InfoMat under the sequential linear relation with n = 25.

Next, we consider a case in which the influence in one direction is bigger than the other, by changing
the magnitude of the weights. By choosing bigger values for (αX , βX), we increase the effect in
the direction X → Y , which is then translated into bigger values in the upper triangular of IX,Y .
Similarly, while increasing (αY , βY ) increases the effect in Y → X , with a similar effect on I

X,Y

for the lower triangular. In Figure 3a we consider a simple delayed relation Yi = γXi−3 + Ni,
resulting in a single shifted diagonal, whose shift is determined by the delay value. In Figure 3b
we consider increasing weights that form a trade-off with the inherent decay in dependence, i.e.,
αX
i = βX

i = 3i/10 and αY
i = βY

i = i/100, resulting in bigger transfer in the direction Y → X .
This confirms that the underlying information transfer can be visualized through the InfoMat.
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(a) Xn are i.i.d. and Yi = γXi−3 +Ni
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(b) Linear dependence, increasing weights.

Figure 3: InfoMat under asymmetric linear relations.

C VISUALIZATION ON PHYSIOLOGICAL DATA

We demonstrate the utility of the visualization tool on physiological data that consists of 34, 000
heart and breath rate samples Rigney et al. (1993). We divide the long sequence into overlapping
subsequences of length n = 20 and estimate the InfoMat elements via Gaussian MI approxima-
tion. We consider Xn and Y n to be the heart and breath rates, respectively. As seen in Figure 4,
most information transfer occurs in the lower triangular, which corresponds to a bigger effect in the
direction ‘breath’→‘heart’. This can be also verified by straightforward calculation

Î(D ◦Xn → Y n) = 0.14 < 0.41 = Î(D ◦ Y n → Xn), Îinst(X
n, Y n) = 0.034

This further demonstrates the power of the InfoMat as a visualization tool, while providing a finer
granularity to information transfer than previous tools.
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Figure 4: Physiological data. Larger effect in observed in ‘breath’→‘heart’ direction.
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