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Abstract

Two-sided marketplaces are standard business models of many online platforms
(e.g., Amazon, Facebook, LinkedIn), wherein the platforms have consumers, buy-
ers or content viewers on one side and producers, sellers or content-creators on
the other. Consumer side measurement of the impact of a treatment variant can
be done via simple online A/B testing. Producer side measurement is more chal-
lenging because the producer experience depends on the treatment assignment
of the consumers. Existing approaches for producer side measurement are either
based on graph cluster-based randomization or on certain treatment propagation
assumptions. The former approach results in low-powered experiments as the
producer-consumer network density increases and the latter approach lacks a strict
notion of error control. In this paper, we propose (i) a quantification of the quality
of a producer side experiment design, and (ii) a new experiment design mechanism
that generates high-quality experiments based on this quantification. Our approach,
called UniCoRn (Unifying Counterfactual Rankings), provides explicit control
over the quality of the experiment and its computation cost. Further, we prove
that our experiment design is optimal to the proposed design quality measure. Our
approach is agnostic to the density of the producer-consumer network and does
not rely on any treatment propagation assumption. Moreover, unlike the existing
approaches, we do not need to know the underlying network in advance, making
this widely applicable to the industrial setting where the underlying network is
unknown and challenging to predict a priori due to its dynamic nature. We use
simulations to validate our approach and compare it against existing methods. We
also deployed UniCoRn in an edge recommendation application that serves tens of
millions of members and billions of edge recommendations daily.

1 Introduction

Learning via experiments is one of the most powerful and popular ways to improve in many domains
of life. In the tech industry, experiments are very commonplace to better understand user preferences
and how to serve them best. Such experiments, known as A/B testing or bucket tests [5, 6, 16, 19],
are performed by randomized allocation of a treatment and control variant to some population and
measuring the average treatment effect (ATE) [1, 4] relative to control. The populations receiving
treatment and control are statistically identical since they were randomly selected.

A/B testing is a powerful tool because of its design simplicity and ease of setup. It is accurate in
applications where the behavior of a measurement unit (e.g., a user) is unaffected by the treatment
allocated to any other measurement unit. This principle is called “Stable Unit Treatment Value
Assumption” or SUTVA [11–13]. The SUTVA principle is reasonably accurate for experiments in
35th Conference on Neural Information Processing Systems (NeurIPS 2021).



several viewer side applications of recommender systems (e.g., newsfeed ranking, search), where
each viewer acts independently based only on what is shown to her.

In marketplace settings, the SUTVA condition is often violated. A bipartite graph1 is a common
abstraction for two-sided marketplaces. Let us consider the example of content recommendation in
a newsfeed ranking application with content viewers and producers. While the effect of a ranking
change (e.g., showing more visual content) conforms to SUTVA on the viewer side, the effect on the
producer side (i.e., the impact on producers who post more/less visual content) does not. A producer’s
experience is affected by the allocation of treatment to all her potential viewers. For instance, a
producer who primarily posts images will get more exposure (which directly affects her behavior)
as more viewers are allocated to the new treatment. Sellers and buyers are an identical analogue to
producers and consumers. Violations of SUTVA, especially on the producer or seller side experience,
are commonplace in many marketplace experiments [8, 17] and form an important area of study,
especially as marketplaces gain greater prominence.

A popular approach in experiment design for marketplaces is to partition the graph into near separable
clusters [10, 14, 18]. Then each cluster is considered an independent mini-graph, and randomized
treatment allocation is done at the cluster level (i.e., all nodes in that cluster are allocated the same
treatment). This works well in sparse graphs where many such clusters can be found without ignoring
too many edges. A different approach [2, 7], relevant especially in the advertising world, “creates”
multiple copies of the universe by splitting the limited resources (e.g., daily budget) of entities on one
side of the graph (e.g., advertisers). This works when the ecosystem has a periodic reset.

Another recent approach [9] designs an experiment by identifying a modified version of the treatment,
which is allocated to a proportion of a node’s network to mimic the effect on the node that allocating
the original treatment to the node’s entire network would have had. This works well for denser
networks but makes assumptions on how the treatment effect propagates. Many of these approaches
require knowing the network structure a priori, and hence do not work for dynamic graphs.

In this work, we propose a novel and simple experiment design mechanism to generate high quality
producer side experiments, where the quality is defined by a design inaccuracy measure that we
introduce (see Definition 1). The mechanism also facilitates choosing a desired trade off between
the experiment quality and the computational cost of running it. Our experiment design is shown
to be optimal with respect to the inaccuracy measure. Our solution is applicable to any ranking
system2, which forms the viewer side application in most marketplace problems. The key insight
is that there is a unique viewer side ranking corresponding to each producer side treatment when
all producers are allocated to that treatment. When producers are allocated to different treatment
variants (e.g., to run treatment and control variants simultaneously), there are multiple possibly
conflicting “counterfactual” rankings. By unifying the different counterfactual rankings (hence

“UniCoRn”) based on treatment allocation on the producer side, and careful handling of conflicts, we
obtain a high quality experiment. A recent work [3] is a specific instance of our generalized design,
relying on small producer ramps, which minimize chances of conflict between the counterfactual
rankings.

Our solution is designed to work at ramps of any size (higher ramps are often necessary for sufficient
power). Furthermore, it improves upon the limitations of most prior approaches. It is agnostic to the
density of the graph, does not depend on any assumptions on how the treatment effect propagates, and
we do not need to know the structure of the graph a priori. One downside is the online computation
cost of running an experiment using our design, and we provide a parameter to control this cost.

The key contributions of our work are as follows:

• An inaccuracy based metric to quantify the quality of an experiment and a novel producer
side experiment design mechanism that unifies multiple counterfactual rankings.

• We prove the optimality of our experiment design, as well as bias and variance bounds.

• We show through extensive simulations how the method performs in various synthetic
scenarios and against multiple existing approaches [3, 9].

• A real-world implementation of the proposal in an edge recommendation problem.

1This paper is focused on two-sided marketplaces. For more than 2 sides, a multi-partite graph can be used.
2Including single-slot and multi-slot ranking applications
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The rest of the paper is structured as follows. Section 2 describes the problem setup in the context
of a bipartite graph. The UniCoRn algorithm is presented in Section 3 along with an example
demonstrating the different steps and certain theoretical properties of our method, including its
optimality. In Section 4, we demonstrate the robustness of our method through detailed simulation
studies, and we share our experience implementing UniCoRn in an edge recommendation application
in one of the biggest social network platforms in the world. Finally, we conclude in Section 5 with a
discussion of some extensions of our work and its general implications.

2 Problem setup

Let us consider a bipartite graph linking two types of entities - producers and consumers. A
recommender system recommends an ordered set of items generated by the producers to each
consumer, where items (e.g., connection recommendations, content recommendations or search
recommendations) are ordered based on their estimated relevance in that consumer session3. We
use the terminology “consumer (or producer) side experience” to refer to a measurable quantity
associated with a consumer (or producer) that depends on the rank assigned by the recommendation
system. One can get an unbiased estimate of the consumer-side impact (with respect to a metric,
outcome or response of interest) by randomly exposing two disjoint groups of consumers to the
treatment model and the control model respectively and measuring the average difference between
the treatment group and the control group.

This classical A/B testing strategy does not work for measuring the producer side impact since that
depends on the consumers’ treatment assignment and should be ideally measured by allocating the
same treatment to all the consumers connected to the producer in question. As illustrated in Figure
1a, satisfying this ideal condition simultaneously for all (or many) producers is not possible. For
instance, consumer 3 is connected to producer 2 (in control) and producer 3 (in treatment).

Notation and terminology: We consider an experimental design D with mutually exclusive sets
of producers P0, . . . , PK corresponding to treatments T0, . . . , TK respectively. We refer to T0 as
control model (or recommender system) and all other Tk as treatment model(s). The size of Pk is
determined by the ramp fraction (i.e., treatment assignment probability) of the corresponding models.
Let pk, k = 1, . . . ,K denote the ramp fractions satisfying

∑K
k=0 pk = 1. An online experiment

typically spans over a time window, in which each consumer can have zero to more than one sessions
and each producer can produce zero to more than one items. We denote the set of all sessions and
the set of all items by S and I respectively. In each session s, the set of items under consideration
is denoted by Is, which is a subset of I. The counterfactual rank Rk(i, Is) is the rank of item i in
consumer session s with items Is when all items are ranked by treatment Tk. We denote the rank of
item i in the experimental design D by RD(i, Is). We use the notation i ∈ Pk to denote that item
i belongs to a producer in Pk. We reserve the use of the letters k, i and s for indexing a treatment
variant, referring to an item and denoting a session.

Design accuracy and cost: An experimental design to accurately measure the producer side ex-
perience should also have a reasonable computational cost (hereafter just “cost”) of running the
experiment. As Section 3 will show, the accuracy and the cost are conflicting characteristics of
our experimental design. Thus, having the flexibility to explicitly trade-off accuracy against cost is
desirable. To this end, we provide a quantification of these characteristics in terms of counterfactual
rankings. To define accuracy, we compare the design rankings RD(i, Is) with the ideal (but typically
unrealizable) ranking R∗(i, Is) that equals Rk(i, Is) if i ∈ Pk. An example is shown in Figure 1b.

Definition 1. The inaccuracy of the experimental design D is given by

Inaccuracy(D) := E (RD(i, Is)−R∗(i, Is))2 , where R∗(i, Is) =
K∑
k=0

Rk(i, Is) 1{i∈Pk}.

When no treatments are being evaluated online, each i ∈ Is is scored only by the control model T0.
Section 3 shows that each item might be scored multiple times using different treatment models in an
experiment design. We quantify this computational expense as the cost of the design.

3A session encapsulates the context of the recommendation request such as a news feed visit (in case of
content recommendations) or a search query (in the case of search recommendations).
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(1a) Bipartite graph of producers and con-
sumers. Due to shared consumers between
producers, it is infeasible to ensures all con-
sumers connected to a producer get the same
treatment as the producer.

(1b) Counterfactual Rankings. In (i), there are two mutually ex-
clusive sets of producers P0 and P1, each of size 4. In (ii), giving
each item their ideal position in a unified ranking is not possible
since there are conflicts. In (iii), there are no such conflicts and the
ideal unified counterfactual ranking is realizable.

Definition 2. Let ND(i, Is) denote the total number of times a scoring function (i.e. one of Tk’s)
needs to be applied to to obtain a ranking of the items in Is according to D. The cost of an
experimental design D is given by Cost(D) := E (ND(i, Is)) .

Now that we have an inaccuracy measure and a cost metric, we can define an experiment design
algorithm that allows us to choose a desired balance between the two.

3 UniCoRn: Unifying Counterfactual Rankings

A typical recommender system comprises of a (possibly composite) model (machine learnt or
otherwise) that assigns a relevance score to each candidate item. Items are then ranked according to
their scores (higher the score, lower the rank; ties broken randomly). We want to measure the impact
of a new recommender system (T1) compared to the control recommender system (T0) on producers
(or sellers) in a two-sided marketplace via online A/B testing. Many recommender systems in industry
have two phases: (i) a candidate generation phase, which considers a much larger set of candidates,
followed by (ii) a ranking phase using a more sophisticated model with higher computation cost
and hence often scoring much fewer items. Minor modifications needed to handle such multi-phase
systems are covered in Section 4.3. Until then, we focus on single phase ranking systems. We also
assume one treatment and one control for now, and extend to multiple treatments in Section 3.2.

3.1 The UniCoRn algorithm

For given disjoint producer sets P0 and P1 corresponding to T0 and T1 respectively, we present a
class of experimental designs UniCoRn(P0, P1, α) parametrized by the tuning parameter α ∈ [0, 1]
controlling the cost of the experiment. Recall that {Rk(i, I ′)} denotes a ranking of the items in I ′
according to Tk in descending order (i.e. Tk(i) ≥ Tk(j) implies Rk(i, I ′) ≤ Rk(j, I ′)) for k = 0, 1.

For each consumer session s, the UniCoRn(P0, P1, α) algorithm provides a ranking {RDU
(i, Is)}

of the items in Is such that the rank of item i ∈ Pk is close to Rk(i, Is) simultaneously for all i ∈ Is
and k = 0, 1. Please note that the underlying consumer-producer graph is not needed to apply
UniCoRn(P0, P1, α). The detailed steps of UniCoRn are provided in Algorithm 1 and Figure 2a
provides a visual walkthrough of UniCoRn using an example. The key components are:

• Initial slot allocation (Step 2): Identify positions allocated to all items using T0.

• Obtain mixing positions (Steps 3 - 5): Identify the slots L to mix up and accommodate the
two counterfactual rankings, and the slots that will not partake in this process.

– α determines the fraction of P0 items and slots that will be used in the mixing
– All items in P1 and their corresponding slots participate in the mixing

• Perform mixing (Steps 6 - 8): Obtain the relative rank of each item using the score
according to that item’s treatment assignment. Use these relative ranks to blend items (that
were selected for mixing) from different groups with ties broken randomly (see Figure 2a).
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Algorithm 1 UniCoRn(P0, P1, α)

Require: producer sets P0, P1, scoring models T0 and T1 and tuning parameter α;
Ensure: a ranking of items for each session s;

1: for Each session s with item set Is do
2: Get a ranking of all items {R0(i, Is)} according to T0;
3: Construct P ∗0 by randomly selecting producers from P0 with probability α;
4: Let Is,0, Is,1 and I∗s,0 be the sets of items with producers in P0, P1 and P ∗0 respectively;
5: Find the rank positions L = {R0(i, Is) : i ∈ Is,1 ∪ I∗s,0} of the items in Is,1 ∪ I∗s,0;
6: Obtain rankings {R0(i, Is,1 ∪ I∗s,0)} and {R1(i, Is,1 ∪ I∗s,0)} according to T0 and T1;
7: Compute the following rank-based score

rank_score(i) = R0(i, Is,1 ∪ I∗s,0) 1{i∈P∗0 } +R1(i, Is,1 ∪ I∗s,0) 1{i∈P1};

8: Rerank Is,1 ∪ I∗s,0 in the positions L based on rank_score(i) in ascending order (i.e.,
rank_score(i) ≤ rank_score(j) implies rank(i) ≤ rank(j)) while breaking ties randomly;

In Algorithm 1, we guarantee that in the final ranking (i) the ordering among the items in P0 respects
the T0 based ranking, (ii) the ordering among the items in P1 respects the T1 based ranking, and
(iii) the distribution of the rank of a randomly chosen item in P0 is the same as the distribution
of rank of a randomly chosen item in P1 (i.e., no cannibalization) and the common distribution is
Uniform{1, ...,K} if there are k slots. It is easy to see that (i) and (ii) hold by design and (iii)
follows from the fact that L is a uniform sample from {1, ...,K} as P0 and P1 are independent of the
ranking distributions generated by T0 and T1 (due to randomized treatment allocation).

(2a) Algorithm 1 with α = 0.5. (i) Complete rankings
under T0 and T1. (ii) P ∗

0 sampled as {Item 2, Item 3}.
(iii) Separate ranking of P ∗

0 using R0 and P1 using R1.
(iv) Unified ranking of L = P ∗

0 ∪ P1 with all ties broken
in favor of the orange items (P1). (v) Final ranking ob-
tained by placing items in P0 \ L in their R0 ranks, then
remaining slots filled with the unified ranking of L.

(2b) The impact of α. α ∈ [0, 1] is an algorithm
parameter that specifies the amount of flexibility in
combining the two counter-factual rankings, with
α = 0 being the least flexible and α = 1 being
the most. As a result, α = 0 incurs the highest
inaccuracy but has the lowest cost, while α = 1 is
the most accurate and computationally expensive.

The impact of α: We inserted α in our design to provide an explicit lever to control the balance
between accuracy and cost. The more items (i.e., |L|) we include in the mixing, the greater the
accuracy. However, the mixing step requires every eligible item in L to be scored by every model,
and hence the increased accuracy can come at a hefty cost. The implication of different choices of α
in shown in Figure 2b, using the same example. All ties are broken in favor of items in P1. Let ck
denote the computation cost 4 of scoring all items (from all producers, that is) using Tk, where the
scoring cost of each item is the same. Then the total cost is given by c0 + (αp0 + p1)c1.

3.2 Handling multiple treatments

Thus far, we have considered one treatment and one control. Simultaneous measurement of multiple
treatments (against a control variant) can be achieved with a simple extension to the mixing selection
step. The effect of each treatment can be observed by independently comparing the corresponding
treatment population to the control population. As a quick recap of critical notation, T0 denotes the
control model. With K treatments in total and pk denoting the ramp fraction of Tk,

∑K
k=0 pk = 1.

4Using Definition 2, c0 = c1 = Is. This refinement can handle variable model complexities.
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Greater mixing: This is the trivial extension of Algorithm 1. We first fix positions of 1− α fraction
of items from P0 and then mix the remaining P0 items with all items from each Pk for k = 1, · · · ,K.
This family of designs (by varying α) has higher cost and lower inaccuracy. Hence, it is suitable for
offline scoring applications and online applications without strict scoring latency constraints. The
total (computation) cost is given by c0 + (1− (1− α)p0)

∑
k≥1 ck.

Limited mixing: An alternative is to selectL by picking α fraction of items from each Pk including
k = 0. This reduces the cost in the mixing step since L is smaller and fewer items are scored by
all models under consideration, but increases inaccuracy (compared to greater mixing) since lesser
mixing happens. It is better suited for online applications with stricter latency requirements. The
total computational cost is given by c0 + α

∑
k≥1 ck + (1− α)

∑
k≥1 pkck.

Next, we analyze some theoretical properties of this design in the two treatment scenario. At α = 1,
“greater” and “lesser” mixing scenarios are identical and the amount of mixing is the maximum
possible. It is not surprising that this is also when the experiment design is provably optimal.

3.3 Theoretical results

We first prove the optimality of UniCoRn(P0, P1, 1) with respect to the design inaccuracy mea-
sure given in Definition 1. Next, in Theorem 2, we provide bias and variance bounds for
UniCoRn(P0, P1, 1) and we show that our bounds are tight in the sense that the equality can
be achieved in an adversarial situation. Proofs of all the results are given in the appendix.
Theorem 1 (Optimality of UniCoRn(P0, P1, 1)). Let DU be a design based on Algorithm 1 with
randomly chosen P0 and P1, and with α = 1. Then for any other design D

E (RDU
(i, Is)−R∗(i, Is) | Is)2 ≤ E (RD(i, Is)−R∗(i, Is) | Is)2 , (1)

where R∗ is as in Definition 1 with K = 1. Equation (1) implies the optimality of DU with
respect to the design inaccuracy measure given in Definition 1, i.e. Inaccuracy(DU , T0, T1) ≤
Inaccuracy(D, T0, T1) for all T0, T1 and for all design D. The same results hold for the multiple
treatment case described in Section 3.2.
Theorem 2 (Bias and Variance Bounds). Let DU be a design based on Algorithm 1 with randomly
chosen P0 and P1, and with α = 1. Then, for k ∈ {0, 1}, the conditional bias and the conditional
variance of the observed rank RDU

(i, Is) given As,k,i,r = {Is, R∗(i, Is) = r, i ∈ Pk} is given by

1. |E (RDU
(i, Is)−R∗(i, Is) | As,k,i,r)| ≤ c(k, p1), and

2. Var (RDU
(i, Is) | As,k,i,r) ≤ 2min(r− 1, |Is| − r) p1 (1− p1)+ c(k, p1) (1− c(k, p1)),

where p is the probability of assigning an item to the treatment group P1, R∗ is as in Definition 1
with K = 1, and c(k, p1) = {k(1 − p1) + (1 − k)p1}/2. The equality holds in both cases when
r 6= |Is|+1

2 and the treatment ranking {R1(i, Is)} is the reverse of the control ranking {R0(i, Is)}
with probability one.

For UniCoRn(P0, P1, α) with α < 1, for all i ∈ P0 \P ∗0 , we haveRD(i, Is) = R∗(i, Is), implying
zero bias and zero variance. For all i /∈ P0 \ P ∗0 , it is easy to see that RD(i, Is) can be written as

RD(i, Is) = X + (r − 1−X)×RD(i, Is,1 ∪ I∗s,0)
where X has a Binomial(r − 1, (1 − α)(1 − p1)) distribution, and X and RD(i, Is,1 ∪ I∗s,0) are
conditionally independent given the ordered set of items D0,[|Is|] according to T0. Therefore, the
bias and bounds can be derived using the results in Theorem 2. We leave detailed computations to the
interested reader. Next, we empirically evaluate the impact of α on design inaccuracy and implement
UniCoRn to evaluate the producer side impact of a large-scale recommender system.

4 Empirical Evaluation

We analyze various aspects of the design inaccuracy in Section 4.1, followed by an analysis of
the treatment effect estimation error with specific rank to response functions in Section 4.2. We
conclude this section by sharing our experience of implementing UniCoRn in a large-scale edge
recommendation application for one of the largest social networks with 750+ million members,
demonstrating the scalability of our algorithm.
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For Sections 4.1 and 4.2, we create a simulated environment with L = 100 positions to generate data
for the empirical evaluation of UniCoRn(P0, P1, α) (in short, UniCoRn(α)). First, we compare
the design accuracy and the cost of the variants of UniCoRn(α) based on a number of values of α.
Next, we compare the performances of UniCoRn(α) for α ∈ {0, 0.2, 1}, the counterfactual ranking
method of [3] (we will refer to this as HaThucEtAl) and a modified version of OASIS [9] for
estimating the average treatment effect. To the best of our knowledge, these are the only existing
methods that do not require the underlying network to be known a priori. We implemented5 the
Algorithms in R.

4.1 Impact of α

For a fixed treatment proportion TP = |P1|/(|P0|+ |P1|), the cost (Definition 2) of UniCoRn(α)
increases with α. We present the cost and inaccuracy results for different values of TP , while taking
the average over random choices P0 and P1. We also consider four different simulation settings
corresponding to different levels of correlation ρ ∈ {−1,−0.4, 0.2, 0.8} between treatment and
control scores for comparing the design accuracy. We generated the scores from a bivariate Gaussian
distribution. More data generation details are in Appendix A.2.

treatment_proportion: 0.1
error_type: MAE

treatment_proportion: 0.1
error_type: RMSE

treatment_proportion: 0.5
error_type: MAE

treatment_proportion: 0.5
error_type: RMSE
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(3a) Average ranking errors for two measures of inaccuracy (MAE and RMSE)
and for two different values of the treatment proportion (0.1 and 0.5) based on
NS = 50000 sessions with L = 100 slots each.
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(3b) Cost vs. (in)accuracy
trade-off at different treat-
ment proportions (TP).

We consider two measures of inaccuracy (see Appendix A.2 for detailed definitions): (i) mean
absolute error (MAE) and (ii) root mean squared error (RMSE). Figure 3a shows that the performance
of UniCoRn(0) and UniCoRn(1) are roughly similar (or slightly better for UniCoRn(0)) with
respect to MAE, but UniCoRn(1) outperforms UniCoRn(0) with respect to RMSE (validating
Theorem 1). This is because RD(i, Is)−R∗(i, Is) = 0 for all items in P0 for UniCoRn(0), but the
errors corresponding to the items in P1 are much larger for UniCoRn(0) compared to UniCoRn(1).
Note that the slightly better performance of UniCoRn(0) with respect to MAE does not contradict
the optimality result in Theorem 1, which is based on squared errors instead of absolute errors.
Another interesting finding from Figure 3a is that a smaller value of ρ (where -1 is the smallest value)
corresponds to a more challenging design problem due to the increasing number of conflicts in the
counterfactual rankings (cf. the last part of Theorem 2).

The cost (Definition 2) and inaccuracy (Definition 1) trade-off for a fixed value of ρ = 0.8 is shown
in Figure 3b for different values of the treatment proportion TP . For each value of TP , we obtain
the plot by varying α ∈ [0, 1]. Since we directly generated the scores from a bivariate Gaussian
distribution, the cost show in Figure 3b is a hypothetical cost according to Definition 2. As we see,
designing an experiment with a higher TP is more challenging than one with a lower TP due to the
increasing number of conflicts in the counterfactual rankings. Additionally, we see that experiments
with a lower TP are more sensitive to the choice of α.

4.2 Comparison with existing methods

Note that HaThucEtAl is designed for small ramp experiments. Following the authors’ guidelines
[3], we will be limiting ourselves to the case where 10% of the population is in control and 10% of
the population is in treatment. For UniCoRn(α) and OASIS, we consider two different settings,
namely (i) 10% treatment and 90% control and (ii) 50% treatment and 50% control.

5Code is available in the supplementary material.
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OASIS solves a constrained optimization problem to match each producer’s total counterfactual scores
and a post-experiment adjustment corrects for mismatches. However, we consider a modification
of OASIS which is a score-based counterpart of the rank-based UniCoRn(1) algorithm. We
assign a normalized counterfactual score to each item (i.e., no need for solving an optimization
problem or for post-experiment correction). Following Section 5 of [9], we define normalized scores
pk(s, i) = Tk(s, i)/

(∑L
i=1 Tk(s, i)

)
, for k = 0, 1. Then we define the counterfactual scores as

p∗(s, i) =
∑
k∈{0,1} pk(s, i)1{i∈Pk}.

We generate data from a simulated recommendation environment with L = 100 positions. Note that
the computation cost shown in Figure 3a is hypothetical (based on Definition 2), as we generated the
treatment and the control scores from (correlated) uniform distributions and hence we did not need to
apply any scoring function. More data generation details are given in Appendix A.3. We consider the
following two rank to response functions:

(avg_fn) Yi = Ê

[(
10

log(10+RD(i,Is))

)2]
and (max_fn) Yi = max

{(
10

log(10+RD(i,Is))

)2}
,

where the empirical average Ê and the max are over all items that appeared in a session and belong
to producer i. We chose the logarithmic decay function 10

log(10+r) to represent the value of a position
(attention given to an item placed at position r) in a ranked list. Then we aggregate (using the average
or the max function) the attention received by the items of a producer to define response functions.
The treatment effects corresponding to avg_fn and max_fn are 0.16 and -0.87.

treatment_proportion: 0.1 treatment_proportion: 0.5
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(4a) Errors in estimating the average treatment effect for two different
rank to response functions and for two different values of the treatment
proportion based on NS = 1000 sessions with L = 100 slots each.
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(4b) Hypothetical cost based on
Definition 2 for treatment propor-
tion (TP) equals 0.1 and 0.5.

Each iteration (based on 1000 sessions) including the data generation, reranking based on
UniCoRn(α) for α ∈ {0, 0.2, 1}, HaThucEtAl and OASIS, and the treatment effect estimation
took 36 seconds on average on a Macbook Pro with 2.4 GHz 8-Core Intel Core i9 proces-
sor and 32 GB 2667 MHz DDR4 memory. We repeat this 100 times and summarize the results
in Figure 4a. Both UniCoRn(α) outperform OASIS (even for α = 0) in terms of the treat-
ment effect estimation error, demonstrating the advantage of rank-based methods over score-based
methods. UniCorn(1) and Unicorn(0.2) outperform HaThucEtAl, as HaThucEtAl exhibits a
significantly higher variance due to its limitation to a 10% treatment and 10% control ramp. The
performances of the variants of UniCoRn(α) are roughly equal for treatment proportion (TP )
0.5, whereas UniCoRn(α) is more sensitive to the choice of α at TP = 0.1. This is consistent
with the findings in Figure 3b. Note that the sensitivity to the choice of α is more prominent when
the rank to response function is max_fn. This is consistent with Figure 3a, since avg_fn is a
sub-linear function of the ranks, but max_fn is not. While accounting for the computational cost
given in Figure 4b along with the estimation error in Figure 4a, the computationally cheapest method
UniCoRn(0) seems to be the best choice at TP = 0.5 whereas we need to choose the slightly more
expensive variant UniCoRn(0.2) to ensure an estimation quality as good as UniCoRn(1).

4.3 Social Network application

Edge recommendations in social media platforms enable members to connect or follow other mem-
bers. Edges also bring two sides of a marketplace together, e.g., content producers and consumers
where content propagates along existing edges. Thus, edge recommendation products (see Figure 5
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in the Appendix for a toy example) play a vital role in shaping the experience of both producers and
consumers. The consumers of edge recommendations are “viewers” and A/B tests can measure the
viewer side impact of any ranking change. The candidates (i.e., items) recommended are “viewees”,
because they are the members that are viewed and receive a connection request. Edge recommenda-
tions may have a large viewee impact, with number of viewees impacted often outnumbering viewers.
To measure the viewee side effect, we implemented UniCoRn in an online edge recommender
system that serves tens of millions of members, and billions of edge recommendations daily. We
chose α = 0 (i.e., UniCoRn(0)) to minimize the online scoring latency increase. Next, we discuss
two experiments conducted that cover candidate generation and scoring stage experiments. Key
metrics include (i) Weekly Active Unique (WAU) users, i.e., number of unique users visiting in a
week; and (ii) Sessions, i.e., number of user visits.

Candidate generation experiment: Large-scale recommender systems often have a candidate
generation phase, which uses a simpler algorithm to evaluate a much larger set of items. The best
few are then scored in the second ranking phase, which uses more sophisticated and computationally
intensive algorithms. The two phases together comprise the ranking mechanism and UniCoRn
handles such scenarios with a simple extension. For any item i selected by the control candidate
selection model C0 (or treatment C1) but not by C1 (C0), the second phase scoring by treatment
T1(i) (or control T0(i)) is set to −∞. The extension is detailed in the appendix (Section A.5).

In edge recommendation problems, a popular candidate generation heuristic is number of shared
edges. This heuristic favors candidates with large networks. To neutralize this advantage, we tested
a variant based on a normalized version of shared edges (i.e., fraction of the candidate’s network
that are shared edges with the viewer) and measured the impact using UniCoRn(0). Thus, C0 uses
number of shared edges and C1 uses the normalized version to generate candidates. The second
phase ranking model was unchanged in this comparison, i.e., M = T0 = T1.

Metrics Delta % (candidate generation) Delta % (ranking model)
Weekly Active Unique users +0.51% +0.13%
Sessions +0.57% +0.11%

Table 1: Viewee side impact of a new candidate generation model (with the same ranking model as control) and
a new ranking model (with the same candidate generation model as control), measured with 40% viewer side
traffic. All results are highly significant with p-value < 0.001.

Ranking model experiment: The ranking stage scores all candidates based on the model assignment
of the viewers. Ranking models may be composite models optimizing for viewer and/or viewee side
outcomes. In one such experiment, the treatment model T1 optimized for viewee side retention, i.e., we
boosted viewees likely to visit if they received an edge formation request. Using UniCoRn(0)
and candidate set Is, we obtain the ranking {R0(i, Is)} according to T0 and find the positions
L = {R0(i, Is) : i ∈ Is,1}. Then, we rescore candidates in positions L according to T1 to obtain
rankings {R1(i, Is,1} and rerank them within L to obtain the final list. UniCoRn(0) is less costly
because we rescore only the subset of candidates that belong to P1.

UniCoRn(0)’s implementation: To generate the ranked list of viewees for a viewer, we first obtain
the viewer treatment. If the viewer is not allocated to UniCoRn, we score all items using the
allocated model (i.e., viewer treatment). This was also the flow prior to UniCoRn. If the viewer
is allocated to UniCoRn, we then obtain the viewee treatment allocations for all viewees. The
final ranking is obtained thus: (1) Score all items using a control model, (2) Obtain the viewee side
treatment assignment for all viewees (i.e., items), (3) Score each viewee with the necessary treatments
and blend using the scores (following Algorithm 1). The changes were implemented in Java in our
distributed, real-time production serving system with no statistically significant serving latency added
by this change.

Results: Table 1 shows viewee side results using 40% of the viewers6 with UniCoRn(0) for both the
candidate generation and ranking change experiments. For each viewee i (dest-member or producer),
we compute the response Yi defined as the total count of the metric of interest in the experiment
window (e.g., the number of visits in the experiment time window). The “Delta %” in Table 1 is the
relative percentage difference between the average responses of the treatment and the control viewee

6We were unable to have 100% viewers in our experiment due to other parallel experiments, resulting in
underestimation of the actual treatment effects corresponding to 100% viewer side ramps.
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groups under the UniCoRn(0) design. Both experiments showed a positive change in WAUs and
sessions as they brought in more viewees onto the platform. Although the exact measurement fidelity
could not be validated without the ground truth, we expected to observe a statistically significant
positive impact. This is because we observed in a source-side experiment that the viewers tend to
send invitations to more viewees under the treatment model than the control model, indicating a
positive impact of the treatment model on the viewees. Note that these source-side measurements can
be accurately obtained from a classical A/B testing setup on the viewer-side.

5 Discussion

A/B testing in social networks and two-sided marketplaces is extremely important to improve the
experiences offered to various stakeholders. Our proposed experimentation design mechanism,
UniCoRn, allows for high-quality producer side measurement with an explicit parameter to control
the cost of the experiment at the expense of accuracy (or quality) loss in the measurement. Our exper-
iment design is provably optimal, and our method has significant advantages over prior approaches:
(i) It is agnostic to graph density (unlike, e.g., [15]), (ii) It makes no assumption on how the treatment
effect propagates (unlike, e.g., [9]) or how the response depends on the treatment exposure (unlike,
e.g., [10]), (iii) It lowers the variance of measurement (unlike, e.g., [3]), and (iii) It does not depend
on knowing the graph structure a priori (unlike most existing methods, e.g., [9, 10, 15]).

Limitations and Future work: Our experiment design framework focuses on capturing the differ-
ence in exposure distribution of the producers in the treatment group and the producers in the control
group. Hence, the UniCoRn based treatment effect estimates would fail to capture some other types
of differences between the treatment and the control. For example, a treatment may have an impact
on a viewer’s attention (e.g., the amount of time a viewer is spending on each session or the total
number of viewer’s sessions). This impact would not be captured by the UniCoRn design, where all
viewers receive a mix of treatment and control ranking.

The design accuracy measurement framework based on Definition 1 does not directly translate to
the accuracy in the producer side treatment effect estimation without additional assumptions on
the ranking to response function. We deliberately refrain from making such assumptions to build a
more generally applicable experiment accuracy based framework. In the appendix, we discuss some
additional assumptions under which the optimality result given in Theorem 1 can be extended to the
treatment effect estimation problem. An interesting future direction could be to explore other types of
loss functions in Definition 1 and study their connections with treatment effect estimation accuracy.

While UniCoRn is designed to measure the producer side effect, sometimes the two sides of a
marketplace are the same set of users playing different roles (e.g., a content producer is also a content
consumer). In such scenarios, it may be important to measure the combined consumer and producer
side effect. Such a measurement can be obtained by having a small set of producers, who are allocated
to treatment, have their consumer experience ranked entirely based on that same treatment. This set
has to be relatively small since the producer side experience will only be accurate if a large fraction
of the consumers are on UniCoRn (instead of pure treatment or pure control).

A related problem is to balance the power of the measurement (via higher producer side ramps) with
the risk (which increases with larger consumer side ramps). Also, our proposed methodology can be
extended to multi-partite graphs (i.e., marketplaces with more than two sides, such as food delivery
platforms that connect users with drivers with restaurants). Such an extension would depend on the
dynamics between the different graph partitions (i.e., entity types in the marketplace).
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A Appendix

A.1 Proofs

Proof of Theorem 1. For any design D,

E (RD(i, Is)−R∗(i, Is) | s)2

=
1

|Is|
∑
i∈Is

{RD(i, Is)}2 +
1

|Is|
∑
i∈Is

{R∗(i, Is)}2 −
1

|Is|
∑
i∈Is

2 RDU
(i, Is) R∗(i, Is). (2)

The first term of (2) is identical for all D since {RD(i, Is)} is a permutation of {1, . . . , |Is|}, and
the second term does not depend on D. Therefore, it remains to show that∑

i∈Is

RDU
(i, Is) R∗(i, Is) ≥

∑
i∈Is

RD(i, Is) R∗(i, Is) for all D. (3)

Without loss of generality, we assume Is = {1, . . . , |Is|} and RDU
(1, Is) ≤ · · · ≤ RDU

(|Is|, Is).
It is easy to see that for α = 1, the rank_score(i) defined in Step 7 of Algorithm 1 equals
R∗(i, Is). This implies DU ranks all items according to {R∗(i, Is)}. Therefore, we must have
RT
∗

1,s ≤ · · · ≤ RT
∗

|Is|,s. Hence, the result in (3) follows from the rearrangement inequality, which
states that n∑

i=1

xn+1−iyi ≤
n∑
i=1

xσ(i)yi ≤
n∑
i=1

xiyi

for every choice of real numbers x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, and for every permutation
xσ(1), . . . , xσ(n).

Finally, Inaccuracy(DU , T0, T1) ≤ Inaccuracy(D, T0, T1) follows directly from (1) by taking
expectations over s, and all arguments given in this proof hold for the multiple treatment case (since
we did not use K = 1 in the proof).

Proof of Theorem 2. Fix an item i with R∗(i, Is) = r. We only consider the case r ≤ (|Is|+ 1)/2
and i ∈ P1. The results for the other cases follow from the same arguments with appropriate
modifications.

For k ∈ {0, 1}, we define Ar−1,k to be the set of all items in Pk that appears before item i in the
ranking according to Tk, i.e.,

Ar−1,k := {` : Rk(`, Is) ≤ r − 1, ` ∈ Pk}.

Now it follows from the definition of RDU
that Ar−1,k is the set of all items in Pk that appears before

item i in the observed ranking {RDU
(`, Is)}.

Let
Dk,[|Is|] = (dk,1, . . . , dk,|Is|)

denote the ordered set of items ranked according to Tk for k ∈ {0, 1}. Furthermore, let Zr be the
indicator of the event that the ranking {R∗(`, Is)} contains two items, namely d0,r and d1,r, with
rank r:

Zr = 1{d0,r∈P0, d1,r∈P1, d0,r 6=d1,r}.

Therefore,
RDU

(i, Is) = |Ar−1,0 ∪Ar−1,1|+ 1 + Zr ×W, (4)
where W is an independent Bernoulli(0.5) random variable. To see this, note that the first term
counts the items that must come before item i and second term counts item i and the third term counts
an additional item with probability 1/2 whenever the ranking {R∗(`, Is)} contains two items with
rank r.

Next, we derive the conditional distribution of the right hand side of Equation (4) given
Er = {D0,[r], D1,[r], Is, i ∈ Pk, R∗(i, Is) = r}.

Step 1 (Independence of |Ar−1,0 ∪ Ar−1,1| and Zr): Note that |Ar−1,0 ∪ Ar−1,1| depends only
on the treatment assignment of items in D0,[r−1] ∪D1,[r−1], and Zr depends only on the treatment
assignment of {d0,r, d1,r}. Hence, |Ar−1,0 ∪ Ar−1,1| and Zr are independently distributed given
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Er.
Step 2 (Distribution of |Ar−1,0 ∪Ar−1,1|): We decompose the first term of the right hand side of
Equation (4) as follows:

|Ar−1,0 ∪Ar−1,1| = Qr−1 +N0,r−1 +N1,r−1, (5)
where Qr−1 = |D0,[r−1] ∩ D1,[r−1]| and Nk,r−1 is the number of items in Dk,[r−1] \ D1−k,[r−1]
that are in Pk for k = 0, 1.

Since (D0,[r−1] \D1,[r−1]) and (D1,[r−1] \D0,[r−1]) are disjoint sets, by the same argument as in
Step 1, N0,r−1 and N1,r−1 are independently distributed. Therefore, the conditional distribution of
|Ar−1,0 ∪Ar−1,1| can be written as sum of two independent binomial distributions and a constant:

(|Ar−1,0 ∪Ar−1,1|) | Er = Qr−1 +Binomial(r − 1−Qr−1, p1)
+Binomial(r − 1−Qr−1, 1− p1).

Step 3 (Distribution of Zr): By Definition 1, R∗(i, Is) = r and i ∈ P1 implies R1(i, Is) = r.
Therefore, d1,r = i and the conditional distribution of Zr given Er is Bernoulli with probability

P(Zr = 1 | Er) = P(d0,r ∈ P0)× 1{d0,r 6=i} = (1− p1)× 1{d0,r 6=i}.

By combining Steps 1-3 and Equation (4), we get
RDU

(i, Is) | Er = Qr−1 +B1(r − 1−Qr−1, p1) +B2(r − 1−Qr−1, 1− p1)
+ 1 +B3(1, (1− p1)× 1{d0,r 6=i})×B4(1, 0.5),

where Bj(nj , qj)’s are independently distributed binomial random variables with parameters nj’s
and qj’s. Therefore,
E (RDU

(i, Is) | Is, i ∈ Pk, R∗(i, Is) = r) = r + (1− p1)× P(d0,r 6= i) ≤ r + (1− p1) and
and

Var (RDU
(i, Is) | Is, i ∈ Pk, R∗(i, Is) = r)

= Var (E (RDU
(i, Is) | Er) | i ∈ Pk, R∗(i, Is) = r)

+ E (Var (RDU
(i, Is) | Er) | i ∈ Pk, R∗(i, Is) = r)

= (1− p1)2 P(d0,r 6= i) [1− P(d0,r 6= i)] + 2 (r − 1− E (Qr−1)) p1 (1− p1)

+

{
1− p1

2
− (1− p1)2

4

}
P(d0,r 6= i)

≤ 2 (r − 1) p1 (1− p1) +
1− p1

2

{
1− (1− p1)

2

}
.

Finally, note that r 6= Is+1
2 and the treatment ranking {R1(i, Is)} is the reverse of the control ranking

{R0(i, Is)} with probability one implies P(d0,r 6= i) = 1 and E (Qr−1) = 0, and hence the equality
holds in both cases. This completes the proof.

A.2 Data generation for Section 4.1

We consider a recommendation environment with L = 100 positions. For each session s, we generate
L i.i.d. control and treatment score pairs {(T0(s, i), T1(s, i)) : i = 1, . . . , L} from a bivariate
Gaussian distribution with zero means, unit variances and correlation coefficient ρ. We consider
multiple ρ values, namely ρ ∈ {−1,−0.4,−0.2, 0.8}, to evaluate the effect of the (rank) correlation
between the control and the treatment score on the design accuracy. We use the following two
measures of inaccuracy:

1. Mean Absolute Error (MAE): Ê (|RD(i, Is)−R∗(i, Is)| | R∗(i, Is) = `) and

2. Root Mean Squared Error (RMSE):
√
Ê (RD(i, Is)−R∗(i, Is) | R∗(i, Is) = `)

2,

where R∗(i, Is) is the counterfactual ranking of item i in session s, and Ê denotes the empirical
average taken over NS = 50000 sessions.
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A.3 Data generation for Section 4.2

To create a simulation environment, we generate NP = 1000 producers with “quality" generated
from a Beta(2, 5) distribution. We consider a recommendation environment with L = 100 positions.
For each session s, we randomly choose L producers with replacement and for each chosen producer
i with quality q(i) we generate the control and treatment scores from Uniform[q(i), 1 + q(i)] and
Uniform[q(i), 2× q(i)] distributions respectively. We generate data corresponding to NS = 1000
i.i.d. sessions.

A.4 Edge Recommendation Product Example

Figure 5: A toy example for demonstrating UniCoRn based reranking in a sample edge recommendation product.
Ranking of candidates with scores on top right. Red indicating treatment candidates with treatment model scores
and blue the control candidates with control model scores. Sub-figure (a) shows ranking list without UniCoRn
whereas (b) shows ranking list with UniCoRn.

Figure 5 shows ranking without and with UniCoRn. P0 and P1 are exclusive and equally sized sets
(i.e., with 50-50 split)7. Candidates A, B and C (scores in red) are in P1 and scored by T1. D, E,
F (scores in blue) are in P0 and scored by T0. As T1 has an additional boost, the scores for P1 are
typically higher than those of P0 and would gain an unfair ranking advantage if combined without
UniCoRn (as shown in Figure 5(a)). UniCoRn balances exposure to P0 and P1 (Figure 5(b)).

A.5 Extension of UniCoRn to a combination of candidate generation model and a ranking
model

Algorithm 2 UniCoRnCandidateGeneration(P0, P1, α)

Require: producer sets P0, P1, candidate generation models C0 and C1, scoring models T0 and T1
and tuning parameter α;

Ensure: a set of ordered items for each session s;
1: for Each session s do
2: Generate two sets of candidate items Is,C0

and Is,C1
based on C0 and C1 respectively;

3: For k = 0, 1, define

TCk
(i) =

{
Tk(i) if i ∈ ICk

−∞ Otherwise;

4: Order the items in Is := Is,C0
∪ Is,C1

based on UniCoRn(P0, P1, α) with scoring models
TC0 and TC1 ;

7Actual reference to the platform on which we implemented is hidden in the Figure to preserve anonymity
during the review process. We will add back such information in the final submission.
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A.6 Discussion on the Optimality of UniCoRn

The optimality result presented in Theorem 1 does not guarantee the optimality of UniCoRn to
the average treatment effect estimation inaccuracy (ATE_inaccuracy), except for some special
cases. For example, the optimality result extends to ATE_inaccuracy(D) if ATE_inaccuracy =
f(Inaccuracy) for a monotonic function f(·). To see this, note that Inaccuracy(Du) ≤
Inaccuracy(D) implies f(Inaccuracy(DU )) ≤ f(Inaccuracy(D) for any monotonic function
f(·). Although we cannot guarantee the optimality of UniCoRn in a non-monotonic case, we can
provide bounds on the ATE_inaccuracy in terms of Inaccuracy for a class of smooth functions.
For example, if ATE_inaccuracy = f(Inaccuracy) for a Lipschitz continuous function f(·) with
f(0) = 0, then |ATE_inaccuracy| ≤ c×|Inaccuracy| where c is the (smallest) Lipschitz constant
for f(·). The results follows from the definition of Lipschitz continuity, i.e., |f(x)−f(y)| ≤ c×|x−y|
with x = Design-inaccuracy and y = 0.

For another example, suppose the expected response of the i-th a producer equals Y (i) =
∑
s gs(Ri,s)

where gs(·) is a session-specific monotonic function, then we can show optimality of UniCoRn
with respect to ATE-inaccuracy. To see this, note that the rearrangement inequality used in Eq. (3)
in the proof of Theorem 1 would also hold for gs(Ri,s)’s and gs(R∗i,s)’s when gs(·) is a monotonic
function. An interpretation of gs(r) can be the attention given by a viewer in session s at the position
r in the ranked list of items, which is often a monotonically decreasing function in most real-world
recommendation systems. If Y (i) is a nonlinear function of the gs(Ri,s)’s, then the optimality of
UniCoRn might not hold and the optimal design might depend on the functional form. We study
this nonlinear case (with a max(.) function) in one of our simulation settings in Section 4.2 with
gs(Ri,s) = [10/log(10 +Ri,s)]

2, and observed reasonably good (and better than existing methods)
performance of UniCoRn.
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