
A Bias with practical estimations of meta-gradients
Recall the MAML objective defined in Eqn (1). The adapted parameter θ′ = θ+U(θ, g) is computed
with the expected policy gradient update U(θ, g) = ∇θV

πθ (x0, g). This makes it difficult to construct
fully unbiased estimates to the MAML gradient. We use a following example to show the intuitions.

Consider a scalar objective f(x) with input x. If it is possible to construct unbiased estimate to
x, i.e., with X such that E[X] = x. It is difficult to construct unbiased estimates to f(x) because
E [f(X)] ̸= f(x) unless f is linear.

Conceptually, we can think of the argument x here as the updated parameter resulting from expected
updates θ′ := θ + η∇θV

πθ (x0, g). It is convenient to construct unbiased estimate of this parameter
because it is convenient to build unbiased estimate to the policy gradient ∇θV

πθ (x0, g). However,
in our case, to compute the meta RL gradients, we need to evaluate the policy gradient at θ′:
∇θ′V πθ′ (x0, g), which is usually an highly non-linear function of θ′. Using the notation of the above
scalar objective example, we can construct a vector valued function: f : θ 7→ ∇θV

πθ (x0, g). Though
it is straightforward to construct unbiased estimates θ̂′ to θ′ with sampled trajectories, it is not easy to
estimate f(θ′) in an unbiased way, as a direct plug in f(θ̂′) would be biased.

B Proof on the bias of TMAML
Below, we adopt the trajectory-based notation of TMAML [20]. Let ρθt := πθ(at|xt)

sg(πθ(at|xt))
, where

the operation sg(x) removes the dependency of x on parameter θ. In other words, ∇θsg(x) = 0.
It is worth noting that the stop gradient notations are equivalent to the derivation that defines
ρθt = πθ(at|xt)

µ(at|xt)
with a fixed behavior policy µ, and later sets µ = πθ, as done in the main paper.

TMAML [20] proposed the following baseline objective in the undiscounted finite horizon case with
horizon H <∞,

J =

H−1∑
t=0

(
1−

(
Πt

s=0ρ
θ
s

))
(1− ρθt )b(xt),

where b(xt) is a baseline function that depends on state xt. The major claim from TMAML [20] is
that Eπθ

[
∇2

θJ
]
= 0, which implies that adding J to the original DICE objective [21] might lead to

variance reduction because it serves as a control variate term. However, below we show

Eπθ

[
∇2

θJ
]
̸= 0.

The proof proceeds in deriving the explicit expression for ∇2
θJ . We derive the same expression as

that in the Appendix C of the original paper [20], i.e.,

∇2
θJ = 2

H−1∑
t=0

∇θ log πθ(at|xt)

(
H−1∑
s=t

∇θ log πθ(as|xs)b(xs)

)T

. (11)

Following the proof of [20], it is then straightforward to show that

Eπθ

2H−1∑
t=0

∇θ log πθ(at|xt)

(
H−1∑
s=t+1

∇θ log πθ(as|xs)b(xs)

)T
 = 0. (12)

However, note the difference between Eqn (11) and Eqn (12) lies in the summation s = t instead of
s = t+ 1. Accounting for this difference, we have

Eπθ

[
∇2

θJ
]
= Eπθ

[
2

H−1∑
t=0

∇θ log πθ(at|xt) (∇θ log πθ(at|xt))
T
b(xt)

]
,

which in general does not evaluate to zero. In fact, the bias of∇2
θJ is clear if we take the special case

H = 1. In this case, it is more straightforward to derive

Eπθ

[
∇2

θJ
]
= Eπθ

[
2∇θ log πθ(a0|x0) (∇θ log πθ(a0|x0))

T
b(x0)

]
.

As a result, we showed that TMAML [20] might achieve variance reduction by introducing baselines
to the Hessian estimates of DiCE [21], but at the cost of bias.

14



C Further discussions on the assumptions
In this section, we examine if the assumptions (A.1) and (A.2) are realistic.

Both assumptions depend on particular functional form of the estimates V̂ πθ . In general, we might
assume that the estimates do not explicitly depend on θ. Instead, they depend on θ via πθ. This
involves a two-stage parameterization: θ 7→ πθ and πθ 7→ V̂ πθ . The two assumptions (A.1) and (A.2)
can be realized by imposing constraints on these two parameterizations, as well as the off-policyness
of πθ relative to µ, as discussed below.

Off-policyness. In general, we might want to assume the ratios are bounded ρθt < R for constant
some R < ∞. This is a common assumption. In our framework, we usually apply the estimates
within a trust region optimization algorithm [45, 46], this naturally proIS duces a bound on the ratios.

Parameterization θ 7→ πθ. We seek parameterizations where ∇θρ
θ
t are bounded. This can

be achieved by bounding ρθt and ∇θ log πθ(a|x). If we consider a tabular representation with
softmax parameterization π(a|x) ∝ exp(θ(x, a)). Under this parameterization, we can show
|∇m

θ log πθ(a|x)| < M are bounded for all (x, a) and all θ.

Parameterization πθ 7→ V̂ πθ . We want this parameterization to be sufficiently smooth. In the
examples we consider, TayPO-K clearly satisfies this assumption because it is a polynomial in πθ.
For DR, this assumption is satisfied when the MDP terminates within a finite horizon of H < ∞,
such that the estimator contains polynomials of πθ with order at most H .

D Proof of results in the main paper
Proposition 3.1. Assume (A.1) and (A.2) are satisfied. Further assume we have an estimator
V̂ πθ (x) which is unbiased (Eµ

[
V̂ πθ′ (x)

]
= V πθ′ (x)) for all θ′ ∈ N(θ) where N(θ) is some

open set that contains θ. Under some additional mild conditions, the mth-order derivative of
the estimate ∇m

θ V̂ πθ (x0) are unbiased estimates to the mth-order derivative of the value function

Eµ

[
∇m

θ V̂ πθ (x)
]
= ∇m

θ V πθ (x) for m ≥ 1.

Proof. The two assumptions along with the unbiasedness of the estimates, allow us to exchange
mth-order derivatives and the expectation, and hence leading to the unbiasedness of the derivate
estimates. The proof is similar to the exchange techniques used in [38] to show the unbiasedness of
the first-order derivatives of DR estimates.

We proceed the argument with induction. Assume we have

Eµ

[
∇i

θV̂
πθ (x0, g)

]
= ∇i

θV
πθ (x0, g),

for some i. To define the (i+ 1)-th order derivative, we differentiate further through the i-th order
derivative. Consider some particular component of the (i+ 1)-th order derivative, obtained by taking
the derivative with respect to variable θL. We now denote this component of the (i + 1)-th order
derivative as D(i+1)

L [θ] evaluated at θ. Let D(i)[θ] denote the i-th order derivative (a tensor) evaluated
at θ. Also define eL ∈ RD as the one-hot vector such as its L-th component is one. By definition,

D
(i+1)
L := lim

h→0

D(i)[θ + eL · h]−D(i)[θ]

h
,

we also denote the unbiased estimate to D(i)[θ] as D̂(i)[θ]. The new estimate is

D̂
(i+1)
L := lim

h→0

D̂(i)[θ + eL · h]− D̂(i)[θ]

h
.

Now we seek to establish that Eµ

[
D̂

(i+1)
L

]
= D

(i+1)
L . Note that this is equivalent to showing

Eµ

[
lim
h→0

D̂(i)[θ + eL · h]− D̂(i)[θ]

h

]
= D

(i+1)
L .

15



Note that with the RHS, we can use the definition along with unbiasedness of the i-th order derivatives

D
(i+1)
L = lim

h→0

Eµ

[
D̂(i)[θ + eL · h]

]
− Eµ

[
D̂(i)[θ]

]
h

Combining the new RHS into a single expectation, (A.1) entails the application of the mean value
theorem,

lim
h→0

Eµ

[
D̂(i)[θ + eL · h]− D̂(i)[θ]

h

]
= lim

h→0
Eµ

[
D̂(i+1)[θ + eL · h · η]

]
,

for some η ∈ (0, 1). Due to (A.2), we can use dominated convergence theorem to exchange the limit
and the expectation,

lim
h→0

Eµ

[
D̂(i+1)[θ + eL · h · η]

]
= Eµ

[
lim
h→0

D̂(i+1)[θ + eL · h · η]
]
= Eµ

[
D̂(i+1)[θ]

]
.

This proves the case for (i+ 1)-th order derivative. The base case holds for i = 0 and we have the
assumptions hold for all 0 ≤ i ≤ m− 1. This concludes the proof of the theorem.

Proposition 3.2. Define πt := πθ(at|xt) and let δt := rt + γV̂ πθ
DR (xt+1)−Q(xt, at) be the sampled

temporal difference error at time t. Note that∇θ log πt ∈ RD and∇2
θ log πt ∈ RD×D. The estimates

of higher-order derivatives can be deduced recursively, and in particular for m = 1, 2,

∇θV̂
πθ

DR (xt) = ∇θQ(xt, πθ(xt)) + ρθt δt∇θ log πt + γρθt∇θV̂
πθ

DR (xt+1), (4)

∇2
θV̂

πθ
DR (xt) = ρθt δt

(
∇2

θ log πt +∇θ log πt∇θ log π
T
t

)
+ γρθt∇θV̂

πθ
DR (xt)∇θ log π

T
t

+ γρθt∇θ log πt∇θV̂
πθ

DR (xt)
T +∇2

θQ(xt, πθ(xt)) + γρθt∇2
θV̂

πθ
DR (xt+1). (5)

Proof. Starting from the definition of the DR estimate in Eqn (3), which we recall here

V̂ πθ
DR (xt, g) = Q(xt, πθ(xt), g) + ρθt δt + γρθt

(
V̂ πθ

DR (xt+1, g)−Q(xt+1, πθ(xt+1), g)
)
.

Note that both sides of the equations are functions of πθ. Since the DR estimate holds for all πθ

(assuming µ has larger support than πθ), and both sides are differentiable functions of θ. We can
differentiate both sides of the equation with respect to θ, to yield its mth-order derivatives. This
produces the gradient estimates and the Hessian estimates accordingly, both in recursive forms.

Since [38] already provides a similar derivation in the first-order case, we focus on the second-order.
Given Eqn (4), we can further differentiate both sides of the equation by θ. The RHS has three terms
from Eqn (4). We rewrite the expression:

The first term. This term produces a single term∇2
θQ(xt, πθ(xt), g).

The second term. Note a few useful facts: ∇θρ
θ
t = ρθt∇θ log πt,∇θδt = γ∇θV̂

πθ
DR (xt+1, g). This

produces

∇θ

(
ρθt δt∇θ log πt

)
= ρθt∇θ log πtδt∇θ log π

T
t + γρθt∇θ log πt∇θV̂

πθ
DR (xt+1, g)

T + ρθt δt∇2
θ log πt.

The third term. Finally, the third term produces

γρθt∇2
θV̂

πθ
DR (xt+1, g) + γρθt∇θV̂

πθ
DR (xt+1, g)∇θ log π

T
t .

Combining all three terms produces the recursive form of the DR Hessian estimates.

16



Proposition 3.4. Assume (A.1) and (A.2) hold. Also assume ∥πθ − µ∥1 ≤ ε = (1− γ)/γ. For any
tensor x, define ∥x∥∞ := maxi |x[i]|. The K th-order TayPO objective produces the following bias in
estimating high-order derivatives,∥∥∥Eµ

[
∇m

θ V̂ πθ

K

]
(x0)−∇m

θ V πθ (x0)
∥∥∥
∞
≤

∞∑
k=K+1

∥∇m
θ Uπθ

k (x0)∥∞ . (9)

Hence the upper bound for the bias decreases as K increases. Importantly, when on-policy µ = πθ,
the K th-order TayPO objective preserves up to K th-order derivatives for any K ≥ 0,

Eµ

[
∇m

θ V̂ πθ

K (x0)
]
= ∇m

θ V πθ (x0),∀m ≤ K. (10)

Proof. We can express the residual of the derivatives as

Eµ

[
∇m

θ V̂ πθ

K (x0, g)
]
−∇m

θ V πθ (x0, g) = ∇m
θ

(
V̂ πθ

K (x0, g)− V πθ (x0, g)
)
= ∇m

θ

( ∞∑
k=K+1

Uπθ

k (x0, g)

)
.

Above, the first equality comes from the unbiasedness of the estimates as well as the exchangability
between derivatives and expectations, following similar arguments as those in Proposition 3.1. The
second equality comes from the Taylor expansion equality in Proposition 3.3. By the assumption that
the MDP terminates within an horizon of H <∞, we deduce that the summation contains at most
H −K terms and it is valid to exchange derivatives and the summation. Eqn (9) is hence proved by
applying the triangle inequality.∥∥∥Eµ

[
∇m

θ V̂ πθ

K (x0, g)
]
−∇m

θ V πθ (x0, g)
∥∥∥
∞
≤

∞∑
k=K+1

∥∇m
θ Uπθ

k (x0, g)∥∞ .

When on-policy, we plug in πθ = µ. Since K + 1 > m, this implies that after differentiating
Uπθ

k (x0, g) for a total of m times, each term contains at least k−m terms of ρθt − 1 for some t. Since
K + 1 > m, this means Uπθ

k (x0, g) = 0 for all indices k within the summation. Hence we have
zeros on the RHS and this shows Eqn (10).

E Further details on sampled-based TayPO-K estimates
Please refer to the TayPO [29] paper for further theoretical discussions. By definition, the K th-order
increment is

Uπθ

K (x0, g) := Eµ


∞∑

t1=0

∞∑
t2=t1+1

...

∞∑
tK=tK−1+1

γtK
(
ΠK

i=1(ρ
θ
ti − 1)

)
Qµ(xtK , atK , g)

︸ ︷︷ ︸
Û

πθ
K (x0,g)

 .

Assume the trajectory is of finite length T (or we can use the effective horizon Tγ = 1/(1 − γ).
The naive Monte-Carlo estimate Ûπθ

K (x0, g) consists of O(TK) terms. Since we usually care about
K ≤ 2, computing such a term exactly might still be tractable, as is shown later in Appendix F. We
show in Algorithm 4 how to compute the estimates with complexity O(T 2).

However, in some applications, we might seek to construct the estimates with better time com-
plexity. The high-level idea is to achieve this through sub-sampling. Define pπγ (x

′|x) :=

(1 − γ)
∑

t≥0 γ
tPπ(xt = x′|x0 = x), where Pπ is the probability measure induced by π and

the MDP. We can rewrite the above into the following

Uπθ

K (x0, g) = Et1,t2...tK

[(
ΠK

i=1(ρ
θ
ti − 1)

)
Qµ(xtK , atK , g)

]
,

where the sequence of states are sampled as xti+1 ∼ p(·|x′
i, a

′
i), a

′
i ∼ µ(·|x′

i), x
′
i ∼ pµγ(·|xti) and

xt0 = x0. Note that the above procedure could be achieved by first generating a full trajectory under
µ, and then sub-sampling random times along the trajectory. As such, the estimate takes linear time
to compute, at the cost of potentially larger variance.

17



F High-level code for implementations of Hessian estimates and
meta-gradients

Below, we introduce a few important details on how to convert off-policy evaluation estimates into
Hessian estimates, with the help of auto-diff.

F.1 Implementing Hessian estimates with off-policy evaluation subroutines
In Figure 3, we show a high-level JAX implementation of estimating Hessians using off-policy evaluia-
tion subroutines. The pseudocode assumes access to some well-established off-policy evaluation
functions, as are commonly implemented in off-policy RL algorithms such as ACER [5], Retrace [44],
IMPALA [47], R2D2 [48] and so on. The function needs to be written in auto-differentiation libraries,
such that after the computations, value function estimates’ parameter dependencies are naturally
maintained. Then this pipeline could be directly implemented as part of a meta-RL algorithm.

Figure 3: JAX-based high-level code for the implementation of Hessian estimates. We can easily con-
vert any established trajectory-based off-policy evaluation subroutine into estimates of Hessian matrix,
by auto-differentiating through the estimates. This can be implemented in any auto-differentiation
frameworks.

F.2 Examples of off-policy evaluation estimates
The following off-policy evaluation estimates can be abstracted as functions that take as input:
a partial trajectory (xt, at, rt)

T
t=0 of length T + 1, the target policy πθ and a behavior policy µ.

Optionally, the function could also take as input some critic function Q. We detail how to compute
certain estimates below.

DR estimates. In Algorithm 2, we provided the pseudocode for computing DR estimates. The
step-wise IS estimates could be computed as a special case by setting Q = 0.

TayPO-1 estimates. See Algorithm 3 for details.

TayPO-2 estimates. See Algorithm 4 for details.

18



Algorithm 3 Example: an off-policy evaluation subroutine for computing the TayPO-1 estimate
Require: Inputs: Trajectory (xt, at, rt)

T
t=0, target policy πθ, behavior policy µ, (optional) critic Q.

Initialize V̂ = Q(xT , πθ(xT ), g).
Compute IS ratio ρθt = πθ(at|xt)/µ(at|xt).
Compute Q-function estimates for all Qµ(xt, at). This could be done by computing Q̂µ(xt, at) =∑

s≥t rsγ
s−t + γT−tQ(xT , aT ).

Compute the estimate V̂ = Q̂µ(x0, a0) +
∑T

t=0 γ
t(ρθt − 1)Q̂µ(xt, at).

Output V̂ as an estimate to V πθ (x0, g).

Algorithm 4 Example: an off-policy evaluation subroutine for computing the TayPO-2 estimate
Require: Inputs: Trajectory (xt, at, rt)

T
t=0, target policy πθ, behavior policy µ, (optional) critic Q.

Initialize V̂ = Q(xT , πθ(xT ), g).
Compute IS ratio ρθt = πθ(at|xt)/µ(at|xt).
Compute Q-function estimates for all Qµ(xt, at). This could be done by computing Q̂µ(xt, at) =∑

s≥t rsγ
s−t + γT−tQ(xT , aT ).

Compute the first-order estimate V̂1 = Q̂µ(x0, a0) +
∑T

t=0 γ
t(ρθt − 1)Q̂µ(xt, at).

Compute the second-order estimate V̂2 =
∑T

t=0

∑T
s=t+1 γ

s(ρθt − 1)(ρθs − 1)Q̂µ(xs, as).
Output V̂1 + V̂2 as an estimate to V πθ (x0, g).

Truncated DR estimates. See Algorithm 5 for more details. Truncated DR is similar to DR except
that the IS ratio is replaced by truncated IS ratios min(ρθt , ρ) for some ρ. For the experiments we
set ρ = 1, inspired by V-trace [44, 47]. The main motivation for the truncation is to control for
the variance induced by IS ratios. However, this also introduces bias into the estimates, unless the
samples are near on-policy.

Algorithm 5 Example: an off-policy evaluation subroutine for computing the truncated DR estimate
Require: Inputs: Trajectory (xt, at, rt)

T
t=0, target policy πθ, behavior policy µ, (optional) critic Q.

Initialize V̂ = Q(xT , πθ(xT ), g).
for t = T − 1, . . . 0 do

Compute truncated IS ratio ρ̃θt = min(πθ(at|xt)/µ(at|xt), ρ) for some ρ > 0.
Recursion: V̂ ← Q(xt, πθ(at), g) + γρ̃θt (rt + γQ(xt+1, πθ(xt+1), g)−Q(xt, at)) + γρ̃θt V̂ .

end for
Output V̂ as an estimate to V πθ (x0, g).

F.3 Implementing meta-RL estimates
To implement meta-RL estimates in a auto-differentiation framework, the aim is to construct a single
scalar objective, the auto-differentiation of which produces an estimate to the meta-gradient.

Let V̂inner(θ,D) be an inner loop objective one can use to construct the inner loop adaptation steps.
In this case, V̂inner(θ,D) can take as input: the parameter θ and some data D. Here, for example, the
data D might consist of sampled trajectories and other hyper-parameters such as discount factors.
In our paper, this objective can be replaced by any off-policy evaluation estimates. The updated
parameter is computed as: θ′ = θ + η∇θV̂inner(θ,D).

The meta objective is defined as the value function, or equivalently some outer loop objective
V̂outer(θ,D) that also takes as input the parameter θ and some data D. The overall objective can be
defined as:

V̂outer

(
θ + η∇θV̂inner(θ,D)

)
.

Auto-differentiaing through the above objective can produce estimates to meta-gradients. This
objective is also easy to implement in auto-differentiation frameworks.

19



G Experiment
Below, we introduce further details in the experiments.

G.1 Tabular MDP
MDPs. These MDPs have |X | = 10 states and |A| = 5 actions. The transition probabilities
p(·|x, a) are generated from independent Dirichlet distributions with parameter (α, ...α) ∈ R|X |.
Here, we set α = 0.001. The discount factor is γ = 0.8 for all problems.

Setups. The policy πθ is parameterized as πθ(a|x) = exp(θ(x, a))/
∑

b exp(θ(x, b)). The behav-
ior policy µ is uniform and θ is set such that θ(x, a) = log π(a|x) where π = (1 − ε)µ + επd for
some deterministic policy πd and parameter ε ∈ [0, 1].

Experiments. In each experiment, we generate a random MDP and initialize the policy. The agent
colelcts N trajectories of length T = 20 (such that γT ≈ 0) from a fixed initial state x0. We then
compute gradient and Hessian estimates of the initial state V πθ (x0) by directly diffrentiating through
various N -trajectory off-policy evaluation estimates: ∇m

θ V̂ πθ (x0) for m = 1, 2. We also calculate
the ground truth gradient and Hessian using transition probabilities of the MDPs.

Accuracy measure. Given an estimate x ∈ RL and a ground truth value y ∈ RL, we measure the
accuracy between the two tensors as:

Acc(x, y) :=
xT y√

xTx
√

yT y
.

Note that this measure is bounded between [−1, 1]. This advantage of this measure is that it neglects
the absolute scales of the tensors, i.e., if x = ky for some scalar k ̸= 0, then Acc(x, y) = 1.
This metric is used in a number of prior work [21–23] and is potentially a more suitable measure
of accuracy given that in large scale experiments, downstream applications typically use adaptive
optimizers.

Further results: effect of sample size. In Figure 1(a), we fix the level of off-policyness ε = 0.5
and show the estimates as a function sample size N . As N increases, the accuracy measures of most
estimates increase. Intuitively, this is because the variance decreases while the bias is not impacted
by the sample size. Comparing the step-wise IS estimate with the DR estimate, we see that the DR
estimate generally performs better due to variance reduction. This is consistent with findings in prior
work [22, 23]). Further, it is worth noting the first-order estimate performs quite well when the N
is small, outperforming the DR estimate. This implies the importance of controlling the number of
step-wise IS ratios for further variance reduction. However, as N increases, the performance of the
first-order estimate does not improve as much compared to other alternatives, and is finally surpassed
by the DR estimate mainly due to bigger bias.

Consider the second-order estimate. When N is small, the second-order estimate slightly underper-
forms the first-order estimate. This is expected because at small sample sizes, the variance dominates.
However, as N increases, its performance quickly tops across all different estimates, including the
DR estimate. Overall, we expect the second-order estimate to achieve a better bias-variance trade-off,
especially in the medium data regime. This should be more significant in large-scale setups where
estimation horizons are longer and variance dominates further.

G.2 Large scale experiments
In large scale experiments, including the continuous 2-D navigation environments and simulated
locomotion environments, we adopt the following setups.

Code base. We adopt the code base released by [24]. We make minimal changes to the code
base, such that the second-order estimate is comparable to other algorithms under the established
experimental setups. For missing hyper-parameters, please refer to the code base for further details.
Importantly, note that in the original code base as well as the paper [24], the authors suggest the
default learning rate of α = 10−3, which we find tends to destabilize learning. Instead, we use
α = 10−4, which works more stably.

Computational resources. All high-dimensional experiments are run on a computer cluster with
multiple CPUs. Each separate experiment is run with 12 CPUs as actors for data collection and
parallel computations of parameter updates. The run time for each experiment is on average 36 hours
per experiment. For small experiments, we run them on a single laptop machine with 8 CPUs.

20



(a) Gradient - sample size

Figure 4: Performance measure as a function of sample size . Each plot shows the accuracy measure
between the estimates and the ground truth. Overall, the second-order estimate achieves a better bias
and variance trade-off. Here, the plot shows results for estimating gradients.

Agent details. The agent adopts a MLP architecture with [64, 64] hidden units. The agent takes in
a state x and outputs a Gaussian policy a ∼ N (µθ(x), σ

2(x)) where µθ, σθ are parameterized by the
neural networks. The agent collects samples n = 40 goals at each iteration to construct meta-gradient
estimates; the inner loop adaptation is computed with step size η = 0.1. Inner loop adaptations
are computed with B = 20 trajectories each of length T = 100. All outer loop optimizers use the
learning rate α = 10−4.

Algorithmic details. The PROMP and PROMO-TayPO-2 enforces a soft trust region constraint
through clipping

ρθt = clip(ρθt , 1− ε, 1 + ε),

where by default ε = 0.3. The PPO optimizers take 5 gradient steps during each iteration. All outer
loop gradient based optimizers use Adam optimizers [52].

Summary of baselines. The baselines include the following: TRPO-MAML uses TRPO as the
outer loop optimizer [45] and the biased MAML implementation [4]; TRPO-FMAML, which is short
for first-order MAML, approximates the Hessian matrix by an identity matrix [4]; TRPO-EMAML
augments the MAML loss function by an exploration bonus term, which effectively corrects for the
bias introduced by vanilla MAML [32, 33]; TRPO-DiCE, which uses the DR estimate to implement
the inner loop update, such that the Hessian estimates are unbiased [21–23].

Closely related to our new algorithm is the proximal meta policy search (PROMP) [24], which uses
PPO as the outer loop optimizer [46] and the first-order estimate (LVC estimate) as the inner loop
loss function [28, 29]. Our new algorithm is called PROMP-TayPO-2, which is a combination of
PROMP and TayPO-2. The only difference between PROMP and PROMP-TayPO-2 is that the inner
loop loss function is now implemented with the second-order estimate to alleviate the bias introduced
by the first-order term.

Practical implementations of second-order estimates. We denote V̂1 as value function estimate
based on the first-order approximation; and let V̂2 be the value function estimate. In practice, the
second-order estimate we implement is a mixture between the two estimates with β ∈ [0, 1]

V̂β = (1− β)V̂1 + βV̂2.

This overall estimate is a convex combination of the two estimates. By moving β = 0 to β = 1,
we interpolate between the first-order and the second-order estimate. Throughout the large-scale
experiments we find β = 0.3 to work the best. We also show in the next section the sensitivity of
performance to β on 2-D control environments.

21



(a) 2-D control: second-order coefficient (b) 2-D control: off-policy

Figure 5: Ablation study: (a) second-order coefficients; (b) off-policyness. The above two plots
show the sensitivity of the first and second-order estimate to hyper-parameters, for 2-D control. The
second-order estimate is generally more robust. All curves are averaged over 10 runs.

G.3 Ablation study
Sensitivity to the second-order coefficient on 2-D control environments. In Figure 5(a), we show
the sensitivity of the performance to the mixing coefficient β ∈ [0, 1]. Note that when β = 0, the
estimate is exactly the first-order estimate; when β = 1, the estimate recovers the full second-order
estimate. We see that on the 2-D control environment, as we increase β from 0 to 1, the performance
stably improves. When β ≈ 0.9, it seems that the performance reaches a plateau, indicating that
β = 0.9 potentially achieves the best bias and variance trade-off between the two extremes.

Sensitivity to off-policyness on 2-D control environments. In Figure 5(b), we study the sensitivity
of algorithms to off-policyness in high-d setups. In PROMP, the policies are optimized with behavior
policy µ, whose distance against the target policy is constrained by a trust region. The trust region is
enforced softly via a clipping coefficient ε (see Appendix G or [24] for details). When ε increases,
the effective level of off-policyness increases. We see that as ε increases, both first and second-order
estimates degrade in performance. However, the second-order estimates perform more robustly, as
similarly suggested in the toy example.

22


	Bias with practical estimations of meta-gradients
	Proof on the bias of TMAML
	Further discussions on the assumptions
	Proof of results in the main paper
	Further details on sampled-based TayPO-K estimates
	High-level code for implementations of Hessian estimates and meta-gradients
	Implementing Hessian estimates with off-policy evaluation subroutines
	Examples of off-policy evaluation estimates
	Implementing meta-RL estimates

	Experiment
	Tabular MDP
	Large scale experiments
	Ablation study


