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Supplementary Material

In this document we provide the detailed proofs of results presented in the main manuscript. In
Section[A] we provide a proof for the Hoeffding expansion of the matrix product in Eq 5 of the main
document. We also provide the Hoeffding decomposition for the bootstrap in Proposition In
Section [B] we provide all results needed for a complete proof of Theorem 1. In Sections
and we provide the proof of Theorem 1, the adaptation of high dimensional CLT of [8] to our
setting and all supporting lemmas, respectively.

In Section [C] we provide all details of the proof of the Bootstrap consistency, i.e. Theorem
To be specific, Section [C.I] has the proof of Theorem 2; Section [C.2] has the proof of Lemma [T}
Section has the statement and proof of the Gaussian comparison lemma, and Section [C.4] has
all the supporting lemmas. Finally, in Section [D] we provide a proof of Proposition

A On the Hoeffding decomposition

We discuss Hoeffding decompositions for a function f of n independent random variables X1, ... X,
where the random variables take values in an arbitrary space and the function takes valuesﬂ in R4xd
or R The following exposition largely follows [6].

With Hoeffding decompositions, we project T'(X7, ..., X,,) onto spaces of increasing complexity
that are orthogonal to each other. In our setup, orthogonality means (f, g);2 = 0 where (f, g);2 =
[(f,g)dP. Here, {f,g) = Trace(fTg) in the matrix case and (f,g) = fg in the vector case. The
first-order projection, also known as a Hajek projection, involves projecting our function onto a
space of functions of the form

g(i) (X:)

!The math generalizes to Hilbert spaces due to the Hilbert projection theorem but we specialize to these cases for
concreteness.



where g satisfies E[g()] = 0. We will let H?)(X;) denote the corresponding projection. Since the
functions ¢, ¢\9) are mutually orthogonal for i # j, the sum of the projections is equivalent to the
projection onto the space spanned by functions of the form:

n .
> 9" (X))
i=1
The higher-order spaces have the form:
g (X;:i€b)

where S C {1,...,n} and the functions satisfy E[¢(®) | X; : i € R] = 0 for any R C S, including
R = (), which implies E[¢g(®)] = 0. If R ¢ S and S ¢ R, (g%, ¢} ;> = 0 since, by conditional
independence given {X; :i € RN S}:

E[E[(g®), ¢ | X;:i€e RNS] ] =E [<E[g(s) | X;:ie RNS), B¢ | X;:ie RN S] >} =0
(S.1)

Combining these projections leads to the following representation, known as the Hoeffding decom-
position:

T(Xy,...,.X) =Y Y HY(X;:ie8)
k=0 |S|=k

While the following proposition is stated for real-valued functions in [6][Lemma 11.11], it turns
out that the proof there generalizes to our setting without difficulty due to machinery for projections
in Hilbert spaces.

Proposition A.1 (Hoeffding projections). Let X1,..., X, be arbitrary random variables and let
suppose (T, T)r, < oco. Then the projection on the the space of functions of the form g (X;:1€9)
with B[g*S) | X; :i € R] =0 for any R C S has the form:

HE(T) =Y (-1 E[T | X;:i€R]
RCS

For completeness, we provide a proof of the proposition below.

Proof. We begin by verifying that the space of all random matrices (vectors) satisfying ||A||z2 < oo
forms a Hilbert Space. First, it is clear that (-,)2 is indeed an inner product. Linearity follows
from linearity of the inner product (-,-) and linearity of expectations and conjugate symmetry
follows from this property holding pointwise in €2 for (-,-). Positive definiteness again follows from
the fact that this property holds pointwise in €); then a standard contradiction argument yields
that if (x, )72 = 0, but z is not equal to 0 almost surely, there exists some M such that for some
§ >0, P(||lz|| > 57) > 0 and hence [(x,z)dP > §/M > 0, a contradiction.

One can again adapt standard arguments for completeness of Ly spaces to our setting; namely,
show that Cauchy sequences converging in Lo implies convergence almost everywhere, and then
invoke completeness of the Hilbert space over matrices/vectors along with integral convergence
theorems; see for example, the proof of Theorem 1.2, page 159 in [5].



Now to verify that this function is indeed the projection, we invoke the Hilbert Projection
Theorem; see for example, Lemma 4.1 of [5]. To use this theorem, we need to check that the space
spanned by functions of the form ¢(%) satisfying the condition E[¢(®) | X; : i € R] = 0 for any R C S
is a closed subspace. Linearity of the space follows from the fact that the sum of such functions
satisfies the constraint; therefore it is a subspace. To check closure, let ||f||?> = (f, f) and consider
some (convergent) sequence in this subspace (g((x ))azl where g((l ) ¢ and observe that, for any
RCS:

Elllg$ — ¢11°] = E[E[llg8” — ¢'F|I* | X;: i € R] ]
> E[IB[) - ¢ | Xi:i € RJ|?]
> E[IE[y® | X : i€ )|
where above we used the fact that E[ga | X;:i€ R] =0 for all @ by assumption. Since the LHS
converges to 0, it follows that E[¢g(®) |X; : i € R] must be equal to 0 almost surely. Since the limit
satisfies E[g®) |X; :4 € R] =0 for all R C S, it belongs in the space, proving closure.

Now, we show that the stated expression is indeed the Hoeffding projection. First, to show that
belongs in this space, we have, following analogous reasoning to [6], for any C' C A,

EHWT) | X;:ieCl= Y () PET | X;:ie BNC)

BCA
|Al-=IC]
=Y Y (- |D+J)<|A !C|) 7| X i€D)
DCC j=0 j
=) (-)IWPIRT | X;:ie D] (1 - A9 =
DCC

where the last line follows from the Binomial Theorem. Now as a consequence of the Hilbert
Projection Theorem, it suffices to show that H (4) (T') satisfies the property:

(T = HW(T),g"W) 2 = 0

for any ¢4 in the space. In the matrix case, we have

d d
(T — HO(T 2 =Y S E[(Tjx —ETy | Xici € A)- gl
j=1k=1
d d
+3 % E[ 1)A=IBIR[T, | X; i€ B]- [gj(’,j)|Xi:i€B]]
j=1k=1BCA

The first term above is 0 since conditional expectations may be viewed as an orthogonal projection in
the Hilbert Space with inner product [ fg dP into the closed subspace of (X, : ¢ € A)-measurable

functions. The second term is zero since E[gj(’,j) | Xi:i€ B] =0 for any B C A. The vector case
is analogous.

Since this property holds, it must be the unique (up to measure 0 sets) minimizer and projection.
O



Now an immediate corollary for our setting follows.

Proposition A.2 (Orthogonality of Hoeffding projections). Let:

where A is the Hoeffding projection corresponding to the set S C {1,...,n}. Then,

E[IB.02] = > 3 E[I143]

k=0 |S|=k

E[|Bal?] =3 3 E[14C|?]

k=0 |S|=k

where the last inequality holds for all x € R?.

Proof. Letting ¢\ = H®) and ¢ = H®) in Eq we have that (HS), H®),, = 0 for all
R # S and the result follows. O

It remains to be shown that Hoeffding decomposition has the form stated in Eq Deriving
all projections in the Hoeffding decomposition for a general function is typically non-trivial, but
the product structure facilitates our proof below. Before establishing the Hoeffding decomposition,
following for example, [I] observe that the following inverse relation holds:

Proposition A.3 (Conditional expectation and Hoeffding projections).

E[T|X;:ieS8)=> H®
RCS

Proof. Observe that:

E[T |X;:i€8] =) E[H"(T) | X;:ie 5]
k=0 |R|=k

Since the conditional expectation is zero for R ¢ S and for R C S, the Hoeffding projection is
fixed, the result follows. ]

Now we are ready to establish the form of the Hoeffding projection for any S C {1,...,n}. We
in fact prove a slightly stronger statement, which makes the induction argument more natural. In
what follows let S[i] denote the ith element in S. We will also use H®) instead of H®)(T) when
it is clear from the context.

Theorem A.1 (Hoeffding projections for Oja’s algorithm). Define:

n n
n n
;=[] <I+;”XZ-X1-T>, T:T_O:H(I—k;”XiXiT),
i=j+1 i=1



Then for any S C {1,...,n} and for all 0 < j < S[1], we have the Hoeffding projection of T_;
onto {X; : 1 € S} may be expressed as:

S e S S
g% =TT A2, 8 =n1%) (S.2)
i=j+1
where:
) _ (X, X]'-%) ies
! I41% i¢ S
Proof. We will conduct (strong) induction on k = |R|, where R C S. We will start with the base

case k = 1; k = 0 is simply the expectation. For the base case |R| = 1, a direct calculation is
possible, since:

R )
HY =E[T_; | X; i€ R - E[T_j],
which has the stated form. Now, we will suppose that the inductive hypothesis holds. In what

follows, let S[1] = k and define the conditional expectation for any set S as:

ET;| X :ies] = [] EY,
i=j+1

where:

i

20 _ I+x,XI' ieS
I+1% igS

We will now add and subtract a product where an entry corresponding to S[1] in E[T_; | X; : i € 5]
is replaced by (I + *X). Doing, so we have

BT | X;:icS| =RE[T | Xi:ic8 - (I+%"2)’H’ « I Y
i=k+1

n

n k—j S

Fr B [ B9
i=k+1

We recognize the second summand as E[T_; | X; : i € S_], where S_;, = {i € S,i # k}. Now for
the first summand, taking the difference we have the term

n
(I+ %"2)’“—3'—1 x %”(XkX,’{ - x [[ Y
i=k+1

— (I + %”2)’“*1'*1 x %"(XkaT ) xE[Ty | Xiti€ S_y]
By Proposition we may represent a conditional expectation as:

E[ly|X;cieSy)= Y HY (S.3)
RCS_,,



Furthermore, by the inductive hypothesis, each H (_7;) takes the form in Eq Now, combining
the two parts, we have

E[T;|X;cieS= Y (I+ %”2)’“—]'—1 x %”(ka,’f —5) x g%
RCS_,

MIn s\ k—j (R)
+ Z (I + nz) x H'
RCS_y,

C T A9 S a

For the last step, notice that with the exception of R = S_j in the first sum, each product in
the sum corresponds to a Hoeffding projection of some set of size less than k£ by the inductive
hypothesis. The first term must be the Hoeffding projection onto S (with S[1] = k > j) by the
same argument as Eq ie.

S _ TT 4(5)
ae = 11 47
i=j+1

proving the desired result. O

Now, since the Hoeffding decomposition is a sum of Hoeffding projections by definition, we have
the following corollary.

Corollary A.1 (Hoeffding decomposition for Oja’s algorithm).

k=0 |S|=k
where A is given by H®) in Eq .

It turns out that the bootstrap Hoeffding decomposition can be proved using the same strategy
in Theorem where X1, ..., X, is treated as fixed in the bootstrap measure. We state the result
below.

Proposition A.4 (Hoeffding decomposition for the bootstrap).

k=0 |S|=k

(S)

where %) = [T, ozl(-s) and o’ is given by:

n

‘ I+ %”XZ-XiT otherwise

NON {"W (XX - X X)) ifies



B Central limit theorem for Oja’s algorithm

B.1 Proof of Theorem 1

Proof of Theorem 1. Our strategy will be to approximate sin? distance for estimated eigenvector
with a quadratic form, and invoke a high-dimensional central limit theorem result. The remainder
terms will be bounded using an anti-concentration result for weighted x? random variables due to

[8].

Observe that sin?(?y,v1) has the representation:

- ( 7 Bnuo >2 _ ul BI(I — v1v])Bug
|| Bruol|®

Let VJ_VE =1- vlvlT. Clearly, VJ_VE is idempotent and is a projection matrix, implying that
it is also symmetric. Therefore,

T T T
n ) sinz(un, Ul) _ (\/ n/nnVJ_VJ_ BnUO) (\/ n/nnVJ_VJ_ BnUO) (S.4)

Tin HBNUOHQ

Let a1 = (vlTuo) denote the scalar projection of ug so that ug = ajv; + w, where w is in the
orthogonal complement of v;.

Our first reduction of is to approximate the denominator with a more convenient quantity.
By Lemma we have that may be written as

(Vn/mn - ViV Bouo)T (Vi/nn - ViV Buug)
CL%(I + %Al)Qn

| Bruo||* N n2Mylogd
=0 1 d LD PR\ InPaoR
i a%(l + %)\1)2” Op vd P ( 2 (A1 2)> t n

| Bruoll
la1[(1+22Ap )

Ry

where

While the aforementioned Lemma, is stated for , the relationship holds for the squared

quantity since with high probability for n large enough, ]%] <2and |22 — 12| < 3|z — 1]
for all =2 <z < 2. .

We will further approximate the quantity /n/n,, - VLVEBnuo. First we will bound the contri-
bution of VJ_VanVJ_Vf. By Lemma we have that:

n Vi VanVJ_ Vfuo nd n,%Mf logd
Ry = /—- =0p — exp{—mn(A1 — A2)} +{/ —F——

Now it remains to bound the term VLVEanl (vTug). First, by Corollary B,, can be decom-
posed as:

n
B, = Z T
k=0



where for S C {1,...,n}, T} is defined as:

Tp= Y A® (S.5)

IS|=k

with A®) taking the form in Eq
Since vy is orthogonal to V7 :

vV, VT
E X 1 1 0 Ulal — \/W . Slgn(al)(l — fUlfU?)’Ul = 0
Vo lan|(1+ nn/nAi)" In

3772
Furthermore, by Lemma since % — 0 by assumption,

n ViVE(B, —Ti)vias ng M7
. — Op
M Jar|(1 4 np/nA)” n

R3 := (S.6)

Now our term of interest is given by:

(Vn/mn - ViVETw) T (/g - VIVETi0) S7
1+ 22 (8:7)

Now, observe that (I + %) and v1vl share a common eigenspace and therefore commute. There-
fore, the terms in the product to the left of 77 may be written as:

v VT I n i—1 d 14+ N A . i—1
1 J_( + n ) — Z <n]> ijvT = Di—la say. (88)

I+ TAa)=t =L+ TN ’
Hence,
n ViVITiv T My ! T
n. L1101 [T N () —)\) Di1(X;XF - %
R - B () A -5
Tin -11 -
- Sn:\/ﬁ<1+7>\1) *ZU’L} say,
n n =
where

Ui =D 1(X; X! — Xy (S.9)

Observe that S, is a sum of independent but non-identically distributed random variables with
mean 0. Therefore, if the conditions of Proposition are satisfied, we may approximate S!S,
with Z!'Z,,, where E[Z,] = 0, Var(Z,) = Var(S,). Below define Z; to be a Gaussian vector with
Var(ZZ-) = Var((XiXiT — ¥)v1). Now define Z; = D;_1Z;. We now verify these conditions.



First, we derive a lower bound on an H - that will be used in all of the following bounds. Observe
that ||V, |, = 2 |32, AT"MA’!|| . and the kith entry of 3, A7""MA’ " is lower bounded by:

njz <1+77n)‘k+1/n>2 ' <1+77n>\£+1/n> Mk, €)

—\ 1+ NMnA1/n 1+ nA1/n
1 —exp(—2n, (A — (1 )
> Mi(k, £)
A — (Mog1 + >\k+1) (N AkAz) (S.10)
-2
1 —exp(—2n, (A — (1 )
> M(k, ¢
- 2\ + ’Z:/\% Mk 0
> — Mk, ¢
> £ Mk 0

for some ¢ > 0 and n large enough since exp(—n,(A1 — A2)) = 0
For the first term of L;, ¢ = 3 we have

1 E(UTY,U;)3/?
1, < L EUL VU2
1=Um i ([ValE

MY E|IVI(XXT — Sy ?
n AR

3
M3 HVleXleH)

< C' E(
\/ﬁ M|

Since ||V, || < Myn,, from Eq

Similarly, for the Gaussian analog, we have that:

E(ZTV,7,)3/?
L%, < max%
Vn IVall%
LY o VA

< max —=
N AT
3/2 3/2
M3 B 2|3
\/ﬁ IV, HF

- 3
< M (12
Vi \IMr

For the second term, using the definition of U; in Eq we have:

1 E|UU,?

ni<i Vi3

1 Ep{(XiX] = 2)Diy;j2(X;X] — D)oy |?
_ )

n i<y Va3

9



2 2
1 EVEXX = S)mlP)” _ niad BIVE(XGXT o)
L [Vnl[% Ton M1

For K3, we have:

1 < |UTU; — E(UTD) |?

: f
i=1
T77.\3 T77.\3 T77.\3
< o BULUD + (BULU)® | E(UTU)
: f i |[Vallg
Ty vT _ 6

[ty

Finally, for J; we have:

_ Z?:l Var(UZ-TUi) < Z?:1 E(UITUiF
B (nf)? - n? f2

< MmN E[|VL(X1 XT — Z)o ||

Ton M3,

In

B[V (G XT—S)en ] _
IR

The first makes L3 2, Kg’ /n and J, go to zero. The two conditions also imply

o(y/n), which implies L3 — 0.
Finally, we collect remainder terms and show that their contribution to the inner product is
negligible using anti-concentration. Observe that,

sup ‘P(n/nn Sin2(w,v) <t)-— P(Z,{Zn < t)‘

teR
3 T 3 ZTZn (S.ll)
:SupP<R1-(S + Ry + R3)" (S +R2+R3)§t>—P< o ﬁt)‘
teR f S
Now will will lower bound the above quantity. Observe that
T
P(Rl- (Sp 4+ Ra + R3)" (Sp + R2 + R3) §t>
!
rs, 2 2 : 2
oo S5 (1, 20Ra £ 2Rl | Ra-[Rot Rl _ S12)
f /573, f
STs,  ~
:P<R'-"—|—R<t>, say.
f
Now, for &, = o(v/f), we have that:
P (S8, <62) <sup|P(SE Sy <t)— P(Z) Zn <t)| + P(Z) Z, < 62) = 0 (S.13)

teR

Note that 6, = o(1) suffices since f is bounded away from zero under Eq [§ as shown in Eq[S.10}

10



3 2
Now, choose €, satisfying €, = o(1) €, = w <\/ 77”MiLlogd>, define the set:

G= {}R’—l\ <en, |R| < en}

so that P(G¢) — 0 with the choice of d,, in Eq. [S.13] By using the fact that, for any two sets A
and B, 1> P(A)+ P(B) — P(AN B) and hence P(AN B) > P(A) — P(B¢), we have that:

T o~
P(Rﬂs%&W+R§t>

!
:P(R’-s,fsn/f+ﬁgt N g)+P(R’-s,{sn/f+égt N gff) (S.14)
STS t
> n n< _ _ c
_P< 7 S 1+e €n> P(g)
Therefore,
.2 T
p <n/nnsm (w,v) < t) _p (ZnZn < t)
f f
SIS t zrz t
> n~n < _ _ n =n < — .1
_P< T lte 6n> P( T lte 6n> (5.15)

zrz t zrz
+ P n=n < —e, | - P2 <t —PGY=T+II—-1III
( f A 6) ( f _> (g)

Now, we may upper bound 1] — 0 arising from our choice of §,,, and I goes to 0 if the conditions
of Proposition are satisfied, and I — 0 due to Proposition
Now for the upper bound, since ||R;||, > 0, observe that we may bound Eq with:

T
P<R1, (Sn + Rz + R3)"(Sn + Ry + Rs) §t>
f
T .
<P (Rl st <1 2R +2 ngu) Ru Rl 1B _ t)

f V/STS, f

We may now lower bound the negative terms and arrive at an identical expression to the lower
bound. The result follows. O

With the central limit theorem in hand, we are now ready to give the proof for Corollary [I}

Proof of Corollary . Observe that the approximating distribution Z! Z,, has expectation trace(V,,)
and variance f = HVnH - Therefore, for any M > 0, it follows that:

p (n/nn sin?(d1,v1) — trace(V,,) - M)

f
T J—
< sup|P (n/nnsin®(dy,v1) > t) = P (28 Z, > )| + P (Zn Zn ;race( w o M)
teR

11



The first term goes to zero under the conditions of Theorem 1. Chebychev’s inequality implies that
there exists M > 0 such that the latter probability can be made smaller than /2 for any € > 0.
Hence,

n/n, sin? (01, v1) — trace(V,,)
f

Therefore, under the conditions in Theorem 1,

= 0p(1).

sin? (6, v1) = %n [trace(Vy,) + Op (||[Val| )]

We now derive bounds for trace(V,,) and HV"H - Let Ay be a diagonal matrix with Ay (i,i) =
(I +nphit1/n)/ (1 +nuA1/n), i =1,...,d — 1. Recall that:

M:=E [V (X{wn)*X:1X{ V.]. (S.16)

S Tin i—1 i—1 T
vV, =—V E AT MA Vv
n L< 1 L ) i

)

So now observe that,

7l = ™ |30 A A

(2

F

trace(V,,) = Mt race (Z AilMAil)
n -

)

A direct calculation shows that the k, /" entry of the sum ), AflMAfl is:

5 (1 + nnml/n)“ (1 + MmAcs1/ ”)HM(k,ﬁ)

i>1 1 +77n)\1/n 1 +nn>\1/n
_ nM(k, ) (14 e )2 (S.17)
- M 201 — (A1 + Akr1) + n;"()\% — AeAr)
n CM(k,?)
< 2T
M A1 — A2

for some 0 < C < o0.
Therefore, by Eq[7} we have

_ trace(M) My
t Vn) <C <C
race(Vn) < A=A T A A
_ M M,

Al — Ay A1 — A9
The last step is true since:

trace(M) = trace(E [V{ (X1 v1)2X1 X7 V1])

12



= trace(E [V{ (X1 X] — )orvf (X1 X — £)Vi])
=E (trace [V{ (X1 X{ — Z)orvf (X1 X{ — 2)V1])
=E[IV (X1 X{ = S)ui || < My

Similarly,
M| = [|B [V (X{01)* X1 X VA ||
= [[E [V (X, X7 = Syorof (0 XT =2V ]|,
<E|X,X{ — 2|, = My
where in the last line we used the fact that HchHop = HxxTHF for z € R since zz is rank 1. [

B.2 Adaptation of high-dimensional central limit theorem

Let Uy, ..., U,, be independent random vectors in R? such that E(U;) = 0 and Var(U;) = V;. Define
a Gaussian analog of Y;, denoted Z;, which satisfies E(Z;) = 0 and Var(Z;) = V;. Furthermore, let
V, = %Z?:l Vi, gi = Var(ULI'D;), f1 = trace(V,,), and f = HVnHF For0<d<1,gq=2+4, and
B > 2 define the following quantities:

o LR BOIWUN 1 o BUIO

! nis n5/2fq (TQL) 1<i<j<n néfq
v Ly BTz
q n — n§/2fq
1< |UFU; — E(UTU) |
KB —— 7 1 7 1
o n ZE‘ f
=1
J = e Yi
(nf)?

The following proposition is an adaptation of [§], which is stated for IID random variables, to
independent but non-identically distributed random variables. While the changes are minor, we
provide a proof below detailing the adaptation for completeness.

Proposition B.1. Suppose that LqU — 0, Lg — 0, J, =0, nl_BKg — 0. Then,

sup’P(nUgUn §t) —P(nZg;Zn gt)] — 0
teR

Proof. Since a Lindeberg argument is easier with diagonals removed, we will show that the removal
of these terms is negligible. Observe that:

sup |P(n(_f;{(_]n <t)—P(nzrz, < t)|

teR
7T 77 T
f nf

13



L UTU: L gT7.
+ sup |P @St’ _P @ﬁt/
t'eR nf nf
7Tz, 7T 7
+ sup |P Zz;éj i 4] < _P<nZnZn 1 _t’)
t'eR nf /

=1+ 1I+1I1, say.

We will start by bounding I11. First note that % S Zi ~ N(0,V,). Let V,, = QT DQ denote
the eigendecomposition, with diagonal entries of D given by A; > ... > Ay and let g ~ N (0,1;). Tt
follows that:

TZZZ‘Zn i (QD1/2QT9)T(QD1/2QTQ)

d
= g¢" Dy
1yn o7,
Notice that V := ¢g" Dg ~ Zle A, where 1y, ..., ng ~ x?(1). Now define RZ = M
Notice that:
7T 7 7Tz,
P<nZnZn flgt)—P Zz;ﬁ] % Jgt
f S
7T 7 7T 7 S.18
—P<"Z"Z; flgt)—P<nZ”Zf" fl—ngt) (5.18)

< P(' <V <t +hy)+ P(RZ| > hy)

Under the conditions J,, — 0, nlfﬂKg — 0, Nagaev’s inequality implies that one may choose
hy, — 0 such that P(|R?| > h,) — 0. The desired anti-concentration for the first term in the
previous display follows from Lemma S2 of [8]. We may also derive the lower bound P(¢' <V <
t' 4+ hy) — P(|RZ| > hy,) in a similar manner.
To adapt 11, consider the smoothed indicator function:
Gy t(x) = [1 — min{1, max(x — ¢, 0)}4]4 .

This function satisfies:

"

max{|gy, o (2)] + |95 ()] + g ()]} < o0
Lo<t < gyt < To<ppyp1-

Therefore, we may bound the approximation error with smoothed indicator function by again using
anti-concentration of the weighted x2. In what follows, let:

v_ 1 T z_ 1 T
Sy :nf%;Ui U;, SZ :nfgzi Z;
We have that:
P(SY <t) - P(SZ <t)
< P(S;] <t) = P(S7 <t+9¢7 )+ P(S; <t+y¢71) = P(Sy <t)
< Bgyi(SY) — Egy (S + IIT + P(t <V <t+¢7h).
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An analogous argument establishes a lower bound of gy ¢(SY) — Egy+(SZ) — IIT — P(t — ¢! <
V < t). Choosing 1, — o0, the last term goes to zero. A Lindeberg telescoping sum argument
leads to the following bound for the leading term:

|Egypi(SY) = Egpa(SP)] < cq(BIAY + ET4|),
i—1
where:

n

Ur'H ZT'H;
H; = ZU,+3§Z£IZZ, Ai = f, D= =+

We may use analogous reasoning to bound these terms. Let £ ~ N(0,1). Conditioning on Uy = u;,
by Rosenthal’s inequality:

i—1 T n T N, q/2
E[|U ;9] E[|Z ;9] (u! Vyu,)
a0 77, J J q/2 Wi YnUi
EHAZ‘ | Ul] < 2 nd f4 T '2;1 nd f4 tn nd f4
Jj= j=i
~ (S.19)
g SEUUTUZI Z e (4 ) (] Vo)
= 2
= nd fa P nd fa na/2 fa
Taking expectations, it follows that:
E(UTU;7] 1 NE|UF,U|
ZE 1847 S 7 UfquJFZ‘ 15/zq}
5) 1<icj<n f Lt n2f
Now, for I';, we may use Rosenthal’s inequality so that:
— /2
E[UTV, 0|77 1 B |20z 1 2k (27,20)""

ZE [[T:]"] ZW+;Z 705 fa gg /2 fa

i=1 i=1

While omitted in the original proof, in the IID case, the latter terms may be bounded by using
an eigendecomposition along with properties of the Gaussian. However, since the Z; do not have
variance matrix V,,, we instead oppose the additional condition for LqZ . By the assumptions made
in theorem, it follows that IT — 0.

Finally, for I, we have that:

et (Sl
n

< P(SX <t+hy)— P(SY <t+h,)+ P(|RY| > hy)
+P(t <V <t+2hy) + P(ISZ] > hy)

Using bounds from I7 and II] along with anti-concentration properties, we may conclude that
I—0.
O
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B.3 Supporting lemmas for CLT

In several of our lemmas, we use the following technique from [4] that facilitates analysis for
initializations from a uniform distribution on S*! particularly when d is large.

Proposition B.2 (Trace trick). Suppose that u is drawn from a uniform distribution on S%1.
Then, for any A € R and v € R? satisfying ||v|| = 1, with probability at least 1 — C3, for some
C > 0 independent of A and 0 < 6 < 1,

uT AT Au log(1/9) trace(AAT)
(vTu)2 — 52

Proof. First, we recall the well-known fact that u = g/ ||g||, where g ~ N(0,1;). Therefore, | g||
cancels as follows:

ul'ATAu g7 AT Ag

(WTu)? — (vTg)?

Furthermore, observe that g7 A” Ag may be viewed as a weighted sum of independent y2(1)
random variables. In particular, by an eigendecomposition argument, for 7;,...7, ~ x?(1) and
A=VDVT,

g"(VDVT)(VDVT)g =g¢"VD*VTyg
d
=g D%
p
3 N =, sy
r=1
where above we used the fact that V7g ~ N(0, ;). Now observe that E[)] = 3P, X2 = | A||%

and that 7, is sub-Exponential. Therefore, by by Bernstein’s inequality (see for example Theorem
2.8.2 of [7]), for some K >0, Cy > 0,0 < < 1,

) _[log?(1/5) || Alls, log(1/0) || All%,
P@_EM><l°g(1/5)_1)”A‘F)Sexp{_mm( Al 2K AR, >}

- {_mm <log2(1/5) log(1/5)>} <5

4K? 2K

d

¢ s)UP where s, is the rth singular

where above [|-||g is the pth Schatten-Norm, defined as (3
value and satisfies [|-|s, < ||-[|s, for p < ¢. Now for the denominator, since vTg ~ N(0,1) and

(vTg)? ~ x2(1), Proposition yields:

The result follows. O

The following anti-concentration result for weighted x? distributions is also used in several
places.
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Proposition B.3 (Weighted x? anti-concentration, [§]). Leta; > - » > 0 such that Y "
1 and suppose that &1, ...,& ~ x*(1). Then,

P 4h
sup P t<Za,,£T§t+h —
T

teR r—1

rlz

We now present a concentration result for matrix products that follow immediately from Corol-
lary 5.4 of [3].

Lemma B.1 (Expectation bounds for operator norms of of matrix products). Let By, = H?Zl(I +
nanXjT/n). We have,

Mgen?(1 + 2logd)k

E| By, — EBy||> < — (1 + A1 /n)%k. (S.20)
For the expectation, we have, if (1+2log;l—d)M¢m3L <1:
k k
E|| By < exp < \/QMd Ui <2Md i ) logd)> (1+ nudr /)% . (S.21)

Proof. We invoke Corollary 5.4 in [3] with |E(I + n,/nX; XD)|| < 1+ n,\1/n, o? Md 1 and
v = Mdknij. Note that for a random matrix M with Schatten norm ||M||s,, E||M| <, /IEHMH‘QSP

and hence the same argument as in their proof invoking Eq 5.5 and 5.6 works.

Lemma B.2 (Concentration of the norm for the CLT). For some C > 0, and anye > 0,0 < § < 1,

P< [ Bruoll | _1‘Z€>

|a1|(1 4+ npA1/n)"

2 2
dexp (—nn(h —X2) + (AT + Md)) B Mg exp (7") | M1 +logd)
tlog ™! (1/6)522 (1 -+ ) ne’

+Co

Proof. Consider the bound:

|BaVi(VEup)]
[ar](1+ aAs /)"

|| Bruo| ‘ 'HB wviar || — [lar Tovs ||
la1|(1 + a1 /n)" la1|(1 + npA1/n)"

We will start by bounding the second term.
Using Proposition observe that, with probability at least 1 — C4,

(B, VL Vg < log(1/68)trace(V, B, B, VL))
ol g2(1 + naAa/n)?e = (1 + nuAi/n)?n

Let G denote the good set for which the upper bound above holds. Markov’s inequality on the good
set, together with Lemma 5.2 of [4] with V,, < M, yields that:

( 1B VLV gl
(1

+mhmw—/2“g>

17



dexp (—nn(A1 ~ o)+ (A2 Md)) + T M exp (%)
<

- 16210g71(1/0) ¢2 (1+ 121

Now we will bound the first summand. By Lemma[B.1] Eq[S.20, we have by Markov’s inequality,

B, —To)llo ZMy(1+1

(Be=Tolloy ) o € Ma1+ logd)
(14 nnA1/n)™ ne2

Combining the two bounds and the probability of G¢, the result follows.

O
Lemma B.3 (Negligibility of V| for the CLT). Let V| denote the matriz of eigenvectors orthogonal

to v1. Also let \; denote the ith largest eigenvalue of ¥. For some C > 0, and anye > 0,0 < § < 1,

p( [ IVVEBV. Vi
Tin ‘aﬂ(l + LT:\l)n

< ndlog(1/8) exp{—2nn (A1 — A2) + n2 (A} + My)/n} N eM3(1+ 2logd)nZe2log(1/8)5 2 s
= N €262 n2(M — A2) +n2 (A — A3 — My)

Proof. We consider bounding the squared quantity. We have, with probability at least 1 — C§,
using Proposition [B:2] this quantity is upper bounded by:

|V VI B VLV g
(0] 9)2(1 + nuAr/n)?n

< trace (V VI B, VL. VEY(V VI B,V V)T
On(v] 9)*(1 + A1 /n)?"
trace (VanVLVanVL)
N 03 (1 4+ npAy/n)?n

Now we will bound the expectation of the numerator.

We will denote n = = for simplicity. Let U; = I + nXiXiT and Y; = Xz-XZ-T — 3. We have that:

an =E(B,V, VI BL vV, V)
=E(B,.\V,\VIBL_,, U, V. VIU])
=(EB, 1V, VI Bl |,EU, vV, VIUL)

Now we have:

(S.22)
EUV VIUT =E(I +92) ViV (I +02)T + ?BY, V. VYT
< (14200 + XDV VE + 0 My(VLVE + o))
< (1420 + X2 + P’ MOV VE + Mool (S.23)
Finally, using Eqs and we have:
an < (14 20X +0*(A3 + My)) an—1 +n* Mg (EB,_1 VI VI B | viv]) (S.24)
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We will use the fact that,
(1 +02)" ViV + %) oref) = 0.

Thus, for some N such that the condition n2My(1 + 2logd)/n < 1 holds for all rows of the
triangular array with index n > N, we have by Lemma

(EBp1VLVI By _y,v107)

= (E(Bp-1— (I + )" YWV VI ( By — (T +02)" YT vio])
<NE(Bno1 — (I +n2)" YV (Byy — (T +0%)" ) |
<E|[Bn1— (I +7%)"

< Mdenzn(l +2logd)(1 + T]n)\l/n)2(”_1).

Thus, Eq gives:

an < (1+20X + 7*(A3 + My)) a1 + n*Mje(1 + 2logd) (n — 1)(1 + nAp)2m—

c1 (n—1)cy™*
= cran_1 +n*Mie(1+2logd)(n — 1)ch
= cfag +n'Mie(1+ 2logd) Y i (n — i)y~

i

M?2(1 + 2logd)n*
ch (d(61/02)n+6 d( + 2log )77 n>

Cy — C1
<1+ nnkl/n)%( (1= Xinn/n) exp{ =2 (M — A2) + 5 (A + M) /n}

eM3(1+ 2logd)n3 /n?
)

+
2(A1 = A2) + i /n(Af — A3 —

where above we used the fact e®(1 — ) (1+2)" <e” for |z| < n to bound (c1/cn)™.
O

Lemma B.4 (Negligibility of higher-order Hoeffding projections for the CLT). Let 3, = 77%# and
suppose that 0 < B, < 1. Then, for some C >0 and any € > 0,

\/ Tn VLV 3y Tivn ]| CBnin
>e| < s
(1+ 77" L)n (1—Bn)e

Proof. By Markov’s inequality, it follows that:

f HVJ—VJ_ > ks1 Tkle >e| < %E [HVLVLT 21 TkleQ]
(1+77n ) - 62(14-%)2”

Now, by submultiplicativity of the operator norm and the fact that E[(Ps, T)7 (Ps,)T] = 0 for any
two Hayek projections, the numerator is upper bounded by:
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()X ()" X (1em)
2n n k-1
<oy (14 1220) 7y (Mot

k=2

2n
< <1+ 77n>\1) 6n77nMd
1- ﬁn

The result follows.

C Consistency of the online bootstrap

In this section, we provide the detailed proof of Bootstrap consistency, i.e Theorem 2.

C.1 Proof of bootstrap consistency

Proof of Theorem [9. Similar to the CLT, we will establish the negligibility of remainder terms and
then use anti-concentration terms to argue that the contribution to the Kolmogorov distance is
small. We then show that the bootstrap covariance of the main term approaches the weighted x?
approximation in Theorem 1 with high probability. Let 77 denote the leading eigenvector estimated
from Oja’s algorithm and let X/}L denote its orthogonal complement. Again, we have that:

n (Byuo)TVLVT (Buo)

e sin? (v}, 1) =

M T | Bz ug||?
_ ( V n/nnVLVEB:LUO)T< V n/nnVJ_VlTB:LUO)
| Bjsuol|®

We aim to show that the bootstrap distribution conditional on the data is close to the weighted
x? approximation with high probability; therefore we may work the good set A,,. With the a slight
abuse of notation, in the remainder terms below, Op will be on the measure restricted to A,.

We first approximate the norm using Lemma Analogous to the CLT, the corresponding
remainder is given by:

* ||B*UOH2 Ui 772Md10gd TInCn,
Ri= a0l op (VA exp (= (0 = Ag)) +4/ 2
LT 201 T p|Vd exp( 5 (M1 2)) + - + Jn

Next, we bound the contribution of the higher-order Hoeffding projections. This step is different
from the CLT in the sense that we handle both v; and V), using the fact that on the good set,
even the Frobenius norm of certain terms are well-behaved. By Lemma we have that:

Ri = n VIVE(B: — T )ug _0p | exp CM3n2logd \ [ain3
M ar| (1470 /nAn)" n n
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Next, we bound the contribution of V| to the Héjek projection using Lemma [C.6] as long as
2
MM (log d)? ™2 — 0,

? Mo la|(1 4 1,/nA1)" n(AL — A2)
The final remainder term arises from the disparity between the orthogonal complements and the
residuals of matrix products from their expectation. By Lemma with A; = X; XT - X; 1 XT

Mya,m3 logd
Ry = |2 _on (,/W)
Tn n

Now, define:

‘//\l‘/}le*Ul (U{’LL())
o] wo| (1 + 1M1 /n)"

- %n Z WiDi—1Av1

§* — n VJ_VETl*Ul
TV (1 B

P {sup |P*(n/1n sin?(v},01) <t)—P(ZTZ < )] > e}

Consider the following bound:

teR
_p, {Sup P <R’{- (Sy + Ry + Ry + R)T(S; + R + Ry + R}) <t> _P<ZTZ <t)’ >6}
" Lter f B [
Py {Sup P (R,{‘ (Sy 4+ Rs + Ry + Ry)T(S; + R5 + Ry + R}) <t> _P<ZTZ <t>‘ - 6}
" Lier f - -

(S.25)

The second term is easily upper-bounded by P(AS) — 0, so we will bound the first term. To lower
bound the Kolmogorov metric, we may follow the same reasoning used in Eqs [S.12} [S.14] [S.15] to
deduce, on the good set A,,, we have the lower bound:

*T Q* T
P Sy SnS t )P ZZS t e
f 1+e, f 1+e€,

YANA t YANA
+P< 7 gl+€ —en>—P< 7 gt)—P*(GbootﬁAn):I*+II*+III*
n

where Gpoo satisfies P(Gy,,) = 0 and for some €, — 0, is defined as:
Gboot = {‘RT - 1’ < €, |R;‘7 |R§‘7 |RZ‘ < é€p }

For I, we may use Lemma which establishes that bootstrap version of the covariance matrix,
which consists of empirical covariances, is close to the Gaussian approximation, implying, by our
Gaussian comparison result Lemma [C.T}

I =0p S
n(Ar = A2) [M][

For IT*, we may use the anti-concentration result and P*(Gpoor NAy,) i) 0 by Markov’s inequality
since the Lemmas hold for the unconditional measure, which is the expectation of the bootstrap
measure. We may use analogous reasoning to the CLT for the upper bound and the result follows.

O]
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C.2 Proof of Lemma [1]
Proof. Let Y; := X,-XZ»T —X. Also let M; = E[D;_1Y;v1vf Y;D;_1]. First note that

E'22" — V= 553 Dia(Y; = Yie)ouo] (¥i = Yioa) Dicy
7

_ Z (Di—1Yivol YDy — M;) + (Di—1Yioqviv] Y1 Dimq — M)
n - 2
+ Z (Dz‘—1Yé’U1v1‘FYi—1D¢_1 + Di_lYi_lvlvlTYiDi_l) (S.26)
i
We first compute trace.
trace(E* 227 —V,) = I > (IDicaYiv||* = Bl Di-1Yivn||?)

2n £ ~
1
Uy

+ ;L” S (IDicrYiorvi|? — E| DioyYi %)

7
Us,i

+ %n Z 01YiDy(i—1)Yi101
(2

Us,;

The last step is true because Df_l = Dy(;j—1). We start with the first term.

1+ 77n)\2/n>4(i_1)

EU?, < E|D;_1Yv 4<]EY4<
g | Di—1Y;v1]| Y]] 1+%)\1/n

1+77n)\2/n (=1
VarZUU ) < E|vi|* Z<1+n N/
< -
77n(>\1—)\2)

n 1
< —E[|Yi|* mi
< Zg|y| mm<AlA2,nn)

n

Finally,

2

1+ A (i-1)
E[U3;] <E (01YiDyi_yyYiciv)” < M7 <+772/n>

1+77n/\1/n

Thus, we have

3 o E[[ya|*
n zi:Ul’Z =Orp ( n()\l — )\2)

We also have,
n o E[Y[*
n EZ: Uz’l - OP ( n(/\l — )\2)
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Also note that while Us ; terms are 1-dependent, they are in fact uncorrelated. Thus, we have:

M?n
V. Us,; <7d,
ar(zi: 34) < On — M)

and,

E|X: X[ - =|*
n(A — A2)

trace(E*ZZT ~V,)=0p \/

Now we bound the Frobenius norm. We will start with the expected Frobenius norm of the
first term of Eq [S.26]

2

1 n
A =E on ZDz‘—lyivwlTYz‘Dz’—l — M;
= F
E|vy|*
E||D;_1Y; D, (| < ——1 0
- 4 22 H i—1 vlvl 1 1HF — 4”77n(>\1 _)\2)
Similarly,
2
ZDZ 1Yiur0! Yio1 Dy
F
1
S — V)
= (M — Ag) ¢
Thus ,
E| X XT — y|4
o227 0, = 0 [N 23

n(/\1 — /\2)

C.3 The Gaussian comparison lemma

We use the following lemma to compare to Gaussian random variables with mean 0 and different
covariance matrices. Our result is related to [2], but our lemma below is easier to implement and
does not require that 3||2||? < [|2]|%.

Lemma C.1. [Comparison lemma for inner products of Gaussian random variables]
Suppose that Z ~ N(0,V), Z ~ N(0,V), f = ||[V|r, and A1 = tr(V — V). Then, there exists
some constant K > 0 such that for any e > 0,

. Ayl +e
PZTZ <t) - P(ZT7 <) < |12 —
up|P(272 <1) = P2 < 0] 5= 4o = | VIP/\KIIV v
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Proof. Let \y > ... > A, denote the eigenvalues V, v > ... > 7, denote the eigenvalues of V.
Recall that ZTZ ~ S P_ A\, Z1Z ~ S P_ | 1y, where 0, ~ x2(1). It follows that
P(ZTz <t)-P(Z7Z <t)
:P<Zp 1 A E _p S At + 2 (e = Ay — A1 _ = A
f f

<
f - f
t (I WoN t’—i—]AlH—e)
P~ =1 P
<P (s S < SR (

>§
Observe that >-F_ (A, — )2 < |V — V|2 by Hoffman-Wielandt inequality and max; |\, — | <
|V — V||op by Weyl’s inequality. Since x?(1) is sub-Exponential, by Bernstein’s inequality (see for
example Theorem 2.8.2 of [7]:

p< >e)<@@{—<va VW/\KNf‘W>}

C.4 Other supporting lemmas for bootstrap consistency

P
Z(% — X)) — Ap
r=1

p

Z(%‘ = Ar)ny — Aq

r=1

Before presenting our supporting lemmas, we present some events we will use frequently. Let Agp
denote the set

Agin 1= {1—( )2 < Z} (S.27)

Using Corollary (I, and the remark thereafter, we have

S.28
5sin ( )
where, under the assumptions of Theorem
Mdnn
in=03———— S.29
Vsin 371()\1 _ )\2) ( )
Also let,
A, = {11;1%)% 1 X513 < an} (S.30)
Lemma C.2. [Bounding the norm of bootstrap residual from Ty ] Let A; = X; X — X;1 XF | and
assume the conditions in Theorem Let D; = Vi AL VT, where Ay (k,0) = Lt Are1/n
For any €,6 > 0, we have:

R vy 1(k = 0).

> fna)

Vo VET o (o n
Py | s 2 S Wi A
M || o uol(L +mpAr/n)" - n 5

W Mgn3 log d
< C//a n
- ne2d

+90
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Proof.
VL‘/}Eval (v ug)
[of uol (1 + nnAl/n)"_l
= sign(vi ug) = Z WiD;—1Avq

+ Slgn(v{uo) (VJ_VL VJ_VL Z W;D;_1A;v1

T1

(1 + )\17771/”)

T2

n Rii14
—|—Sign(v1Tu0)% ZWl (lell>

Wil + A1 /n) T AiR; 1 W Ry 1AiR; 1
(L+XMma/m)" (1 Ag/n)"

r3 T4
Define
j n
— I v xT . Tin T
By, = 1:[1 (1 + XX ) Bin = 11 (1 + XX ) (S.31)
When j = 0, BLJ =1.
Using Lemma we have:
Ryi=Bi;— (I+n.%/n) Rin=DBin— (I+n,%/n)"" (S.32)
2 .
E|[Ryi_1|% < eMy(1 + 2log d)lgi (1 4 s /n)% (S.33)
2 .
E| R;, nH < eMy(1+ 2log d)—g(n —)(1+ nn)\l/n)Z(n—l) (S.34)

We have, on the good set Agip,

Vsin
(5sin

E*||r|* < no,
We also have:
E [E*|[r2[*1(A *anZE 1RT 1(An) %]
< eMy(1 4 2log d)o,n?
The last step is true because E[|| R} ;1(A,)[|?] < E[|| R} ,;[I?]. Similarly

E [E*HrgHQl(An)] < eMy(1+2log cl)Oznn?1
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and

E [E*||r4||21(An)] < 62M3(1 + 2log d)QOznnfL/n

Finally, we have:
n 2 Ui 2
Pl Zep nAn | <P {4 Y lnlP > e A,
J J

< 2> e ~ -
<3 ({1 2 g 0 Aun ) + s

< C Y E[Eril?1(An N Aan)] % + Bin

(@) ’ Vsin 2 TIn
<C nand + Mglogdaymn;, | X — 4+ dsin
i ne

s

(i) Myn3 logd

S C// n + 5sin

n€dsin

Step (i) is true because Mylogdn?/n — 0. Step (ii) is true because of Eq Now setting dgin to
any 0 > 0 gives the result.

O]

Lemma C.3 (Concentration of the norm for the bootstrap). Let ug be uniformly distributed on S

and a1 = ujvy and VlVlT is orthogonal complement. Suppose that (ap)n>1 satisfies 0 < W <1.
Then, for any e > 0,0 < <1 and some C > 0,
| Bjuoll

P({lam e 2 N )

dexp (=m0 = Aa) + B (3 + M) ) + T Myexp (12
8log~1(1/6)02 €2 (1 + %A?)

e Ma(1 +1logd) — CBjlog(1/6)
2ne? (1 - B;)5%

where (3 is defined in and A, is defined in Eq .

Proof. First note that we may reduce the problem as follows:

P({ | Bruoll . 1‘ Ze}ﬂAn>

|la1[(1 + A1 /n

-1

L O,

| Bxug — Bpuol|s | Bruol|, ’ } )
<P n + —1>epNA,
<{|a1|(1 +pA/n)" | lar[(1 + A /n)"
||B*u0 - BnuO”z 6) } < HBnUOHQ ‘ 6)
< E |P* n >— ) 1(A,)| + P -1 > =
< [ (\all(l Ty 2 ) A @I+ muA ) 2
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The bound for the second term follows from Lemma [B:2] For the first term, we invoke Proposi-
tion so that, with probability at least 1 — C4,

(B — Bn)gll> ~ log(1/9) [|B; — Bull%
(vl g)2(1 4+ nuAi/n)? = 82(1+nuAi/n)?"

Now, using the fact that for any two Hayek projections P} and Pj, E[(P)TP;] = 0 and for
any two matrices ||AB||r < ||A||r||Bllop, we have on the high probability set:

E*|| By, — Bul&

n k+1
< kz Z (%) HHXSZ]XS[Z] Xsti-1Xgp— 1H f{HBJ(? )
=1S|=k j=

9

op

where B( ) denotes a contiguous block of I + 1= X; X/ I only. More precisely, suppose |S| = k. Let
Sli] denote the ith element of S, with S[0] = 0 and S[k +1]=n—-1. Foreach1 <j<k+1if
S[j] > S[j — 1] + 1 define B, ,, as:

sljl-1
S Tin
gil= I (1+7xx7) (53
1=S[j—1]+1

otherwise, set B(S) = I. Now, we may repeat arguments in Lemma |C.4] equations (S.37)), (S.38),
and (| - ) to conclude that, for some C > 0,

log(1/6) || BL. — B2 Clog(1/6)8;
(ﬁummm%:>ﬂA> ~ B)are

The result follows. O

Lemma C.4 (Negligibility of higher-order Hoeffding projections for the bootstrap). Suppose o,
is defined so that 0 < 3% <1, where

CM?3n2logd \ 4n?a?
B =exp | 4 d'ln 08 Y (5.36)
n n

Then for any € > 0,0 < § < 1 and for some C > 0,

P TZk>1T1:“0H ﬂ 4
> €
jar|(1+ 220 ' '

CM2n2logd \ log(1/0) a2Bimn,
- 2 (- e

< exp + C9,

where A, is defined in Eq[S.30,
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Proof. Using the trace trick in Proposition [B.2 again, we have that, with probability at least 1 —C§
for some C' > 0,

2
T 2
D k> TI:Q‘ _ - log(1/6) (ks Tl
(o gp2(1+ 2y = g1 by

The Hoeffding decomposition (Proposition|A.4), together with the fact that [|AB|| < [|A| [ B|l,,

implies:

Do ITEE

k>1

ZTk

k>1

(S.37)
T k+1 () 9
Z >, <n> HHXSz]XS[z] Xs(i-1X 55 1” HHBj,n .
k=2 |S|=k j=1
Now, that expectation corresponding to a given summand is given by:
9 k+1 ()
T T
/ |05 = Xsu-1 X, TL|8
An j=1
/ H4a H HB P (S.38)
A

" g=1

|

2
} , we invoke Lemma [B.1| Eq [S.21} For some C' > 0 uniformly in S:

< HE[HB

where B! is defined in Eq|S.35

To bound E [HBJ(?

CM22 logd . 2(n—k)
4" log 14 M1
n n

] < exp

e[
j=1
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Therefore, by Markov’s inequality,

P ) > €, ﬂ A,
(1 + 77nn 1 )n
. k
2 2
<" exp CM7n2logd Z 4n2a? exp CM7n2logd
532, n —~ n n
- i (S.39)
CM2n2logd \ = [ 4n2a2 CM3n2logd
< 04721?7715;3652 exp d"n 108 Tl %n exp d"ln 108
n n n
k=1
2,,2 2 Q%
< exp CMin; logd fo% nn,; !
n (1 - B:L)Enén
where the last line follows from a geometric series argument. O
Lemma C.5. . 0
AL — A ! 1
> (1= O N i ()
= L4+ /n n A1 — A2
Proof. This follows from the definition of a geometric series. O

Lemma C.6 (Bounding the leading Hoeffding projection for the bootstrap on V). Let A\ My(log d)Q% —
0, and ndexp(—nn(A1 — A2)) — 0. For any €,6 > 0, and C1,Cy > 0, we have:

v, T T 2
b \/W Vo VIT; VLVL;«)H ebna) < Cran Man, log(§/5) %
M (1 + npA1/n)™| vy ol n(A1 — A2)0 €

+ C99

Proof. Using Proposition with probability at least 1 — 6,

VAVIT VLV g | < log(1/9) HVLVLTTFVLVLTH;
(1 + 11 /)27 o] uol|? — §2(1 + mnA1/n)*"
B log(l/é)trace(fa?foVLVfo‘/}L‘/}J_T)
52(1 + nu1/n)?n
tog(1/0) [T 07TV ||
62(1 + npA1/n)2n

(S.40)

First note that,

IVLVE = VIV G = o] — 6107 |3 = 2(1 — (v] 91)?)
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Thus, we have
E*|VAVIT VLG

2
/]’] A~ o~
= 5D IVAVIBLa (XiXT = Xia X)Bia Vi |
7

2 6
n
<SS gl (S41)

i =1

where Bj; are defined in Eq @ and the residual vectors 7 ; are defined as follows. Recall the
definition of Ry ; and R;, from Eq Now define the following vectors which contribute to the
remainder.

ri=ViVIRL 1(Yi = Yis1)Riz1nVy

ro; = ViVIRy;_1(Yi = Vi) (I + 1 /nZ)" "V,

r3; = ViV 4 10/nS)" (Y — Yic1)Rig1n VL

ra; = ViVEI + 0, /n2)" (Y = Yic1) (I + 1 /nE)" V)

rsi = (VLVE = ViV (I 4 0 /n)" (Vi = Yio1) Risa VL

re; = VLV = ViV +00/mS)" 7 (Yi = Vi) (I + o /n%)" "'V

First we will bound ||r1;[|%. Recall the set A,, where the maximum norm is bounded from

= / Iril3dP < 2a, / | R |2l R ] 24P
A’)’L An

<20, [ 1B Rl 0P < 20, R PE| Riga (5.42)
Similarly,
By = / P24l 2P < 20 (14 muAa/n)* "D E|| Ry i1 || (S.43)
By, — /A a5 24P < 20 (14 mha/n) 20"V | iy a2 (S.44)
Similarly,
B 2 2(n—1)
o / Irasl[2dP < 20 (1 -+ naha/n) (S.45)

n

Recall the set A, from Eq With probability at least 1 — dgin,

Es;i= / IrsalldP < dan 2 (14 muda/n)* ) E| R ol
nMAsin

)
s
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Observe that, using Eq we have,

20,2 M2 (1 + 2log d)?nt _
£ ::ZEM < d( - g ) U (1+77n)\1/n)2(n 1)

daneMy(1 + 2log d)n3
n

& = Z(Ez,z‘ + E3;) <

i

&3 = Z E4,i < 2apn (1 + 7]n>\2/n)2n
7

With probability at least 1 — dg;,, we have

S

Foi = / IraillFdP < 20 5 (14 e /m) 0D (14 /)0
nMNAsin

. 1 e
min <77m >\1)\2> (1 + nnAl/n)2 !

£1:=) FEs5; <day, gsm eMy(1 4 2log d)n? (1 + nuip )2~V

&5 = ZEﬁ,i < QOéngsm -
i

sin Tn

. 1 2(n—1)
min (nn, N )\2) (14 npA1)

If My My(log d)2% — 0, then & < C1&; for some positive constant Cy. If nd exp(—21,(A1—A2)) — 0,

then 53 < 0255.
Thus, under these conditions,

&1,E < Cy&s
With probability at least 1 — dgin, for some positive constant C’,
5
> i1 Ei _< ' oy B2
(1 + 77n)\1/n) n (5sin
Finally, using Eq we get:
(|17 T 2
Jauria EIVAVETTVLIEAD o i
(1 + nn)\l/”)zn o "n Jsin
Let A; denote the set where Eq holds.

17 ATT* T 2
P n ViV 1VL2VJ_¥0H S > NA,
M (14 nnA1/n)*™ (v o)

AzEd -
<P (1 + nphi/n)2n ZlOg(l/é); NA,NA | +26
o,
= (1+77n/\1/n)2§ = log(1/6) n NAn VAN Asin
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(S.46)



~ o~ 2
* T s
E ViTiva|,  log(1/8)n
(1 + nn)\l/n)Qn 65277n

1(-/471 N Al N Asin) + 20 + 6sin

(4) C,/Oznnn IOg(l/(S) “Vsin

2 2 sin
- 551115 ! ’ " *

(i) M

& C OénMdnn IOg(l/é) — 4+ 26 + dgin

()\1 )\2)(551115 €

Step (i) follows from Eq Step (ii) follows from the definition of v, in Eq Now setting
Ysin = 0, we get the result. 0

D Proof of Proposition

Proof of Proposition[]]. Since 1 X15ly, < vj it follows that HXIQJ‘

2 2
" < v5. Observe that (le —

IEX%])/VJ2 is sub-Exponential with parameter at most 1 since H X12j - E[X%j /VZHw < HXleH;z; /V]2 =
1 1

1. By multivariate Holder inequality with p; = Z
of [7], for [A| < 1/(X{, v2):

i1 ]/1/ and property (e) of Proposition 2.7.1

v2

J
d 2 d 2
Xim1vi | 28l

d d = i

V2

Elexp [ A (X7 —EXZ) || <JIE [exp (MXT —EIXT)) 7
j=1 j=1

v2

o (Mz? ) (X, - EW%D)] AT

Il
Y
=

2
vi

<

IN
.zgﬂ

(KAQ(ZZ | VE)QV?)
exp

d
> it Viz

1

J

d 2
= exp{ K\? <Z Vf)

i=1

Therefore, < Z?:l v2. Since a subexponential random variable T satisfy the tail

d 2
‘Zi:l X1

o Y1
condition:

P(T —E[T] >t) < exp(—t/Kv)

for another umversal constant K > 0, the second claim follows by a union bound and noting that
E[||X1]3] < 2%, v? < Oy since absolute summability implies square summability. O
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