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A DESCRIPTIONS OF IMPLEMENTATION
DETAILS

A.1 Mathematical Details of DDIM and DDIM
Inversion

Denoising Diffusion Implicit Models (DDIM). The denoising
process of diffusion models can be refactored as non-Markov, where
a skip-step sampling strategy [4] can be applied to accelerate the
generation process. Here, the forward diffusion is described by:

𝑥𝑡 =
√︁
𝛼𝑡𝑥0 +

√︁
1 − 𝛼𝑡𝑧 𝑧 ∼ 𝑁 (0, I) (1)

The denoising process can be represented as:

𝑥𝑡−1 =
√︁
𝛼𝑡−1 𝑓𝜃 (𝑥𝑡 , 𝑡) +

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝜎2
𝑡 𝑧 (2)

where 𝑓𝜃 (𝑥𝑡 , 𝑡) is the prediction of 𝑥0 by the model 𝜃 given 𝑥𝑡 :

𝑓𝜃 (𝑥𝑡 , 𝑡) =
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡)√

𝛼𝑡
(3)

Different samplers are adopted by changing the value of 𝜎𝑡 .
Especially, when 𝜎𝑡 is set to 0, the sampling process becomes deter-
ministic, which is DDIM sampling.
DDIM Inversion. For DDIM sampling (𝜎𝑡=0), Eq.2 becomes Ordi-
nary Differential Equation (ODE) [6] by rewriting it as follows:√︂

1
𝛼𝑡−1

𝑥𝑡−1 −
√︂

1
𝛼𝑡

𝑥𝑡 =

(√︂
1

𝛼𝑡−1
− 1 −

√︂
1
𝛼𝑡

− 1
)
𝜖𝜃 (𝑥𝑡 , 𝑡) (4)

Then the forward DDIM process (DDIM inversion) can be con-
sidered as a Euler method to solve the ODE, thus can be written
as:

𝑥𝑡+1 =
√︁
𝛼𝑡+1 𝑓𝜃 (𝑥𝑡 , 𝑡) +

√︁
1 − 𝛼𝑡+1𝜖𝜃 (𝑥𝑡 , 𝑡) (5)

Such inversion process in Eq.5 provides a deterministic transfor-
mation between an input image (𝑥0) and its latent (𝑥𝑇 ).

A.2 Details of Structural Similarity (SSIM)
SSIM [7] primarily considers three characteristics of images: lumi-
nance, contrast, and structure.
Luminance (l): SSIM assesses the luminance similarity of two
images x and y by comparing their average brightness at the pixel
level. If the brightness distributions of two images are similar, the
SSIM value for the luminance component will be higher.

𝑙 (𝑥,𝑦) =
2𝜇𝑥 𝜇𝑦 +𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 +𝐶1
(6)

where 𝐶1 is a constant and 𝜇 is a measure of average gray levels,
which is obtained by averaging the values of all pixels:

𝜇𝑥 =
1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 (7)

Contrast (c): Contrast measures the degree of difference between
light and dark regions in an image. If the contrast distributions of
two images x and y are comparable, the SSIM value for the contrast
component will be higher.

𝑐 (𝑥,𝑦) =
2𝜎𝑥𝜎𝑦 +𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 +𝐶2
(8)

where𝐶2 is a constant and 𝜎 is measured by the standard deviation
of gray levels:

𝜎𝑥 = ( 1
𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝜇 )2)
1
2 (9)

Structure (s): Structure focuses on the shapes and edge information
of objects within an image. If two images x and y exhibit similar
structural properties, such as similar object shapes and edge details,
the SSIM value for the structure component will be higher.

𝑠 (𝑥,𝑦) =
𝜎𝑥𝑦 +𝐶3

𝜎𝑥𝜎𝑦 +𝐶3
(10)

where 𝐶3 is a constant and 𝜎𝑥𝑦 is defined as:

𝜎𝑥𝑦 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇𝑥 ) (𝑦𝑖 − 𝜇𝑦) (11)

Overall, SSIM is defined as:

𝑆𝑆𝐼𝑀 (𝑥,𝑦) = 𝑙 (𝑥,𝑦)𝛼 · 𝑐 (𝑥,𝑦)𝛽 · 𝑠 (𝑥,𝑦)𝛾 (12)

where 𝛼 , 𝛽 , 𝛾 represent the proportions of different features in the
measurement of SSIM, respectively. When 𝛼 , 𝛽 , 𝛾 are all set to 1,
SSIM(x,y) becomes:

𝑆𝑆𝐼𝑀 (𝑥,𝑦) =
(2𝜇𝑥 𝜇𝑦 +𝐶1) (2𝜎𝑥𝑦 +𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 +𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 +𝐶2)
(13)

We follow Eq.13 to calculate the structural similarity between
the output image 𝑦 and the input image 𝑥 . By comparing the two
images’ structural similarity, we obtain a membership score for
𝑥 , which is used for membership inference. The more similar the
two image structures are, the higher the score is. A higher score
means that the input image 𝑥 is more likely to be a member of the
diffusion model’s training set.

A.3 Details of Image Pre-processing
To preprocess images for further experiments, each image is first
center-cropped to form the largest possible square using the min-
imal dimension of the image’s height or width. This ensures the
images are centered and maintain the most informative parts. After
cropping, the image is resized to a resolution of 256x256 or 512x512
pixels, using bi-cubic interpolation which helps in preserving the
image quality during resizing. Finally, the pixel values of the image
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are normalized to range between -1 and 1, a common practice for
preparing inputs for neural network models. This standardization
process streamlines the input data and is useful when dealing with
diverse datasets, facilitating consistent and effective image analysis.

B COMPARISON TO BASELINES
B.1 Calculation Methods for Metrics
Notations. The notations regarding the metrics are demonstrated
in Table 1.

Table 1: Notations regarding the metrics.

Notation Description
TP True Positives
FP False Positives
TN True Negatives
FN False Negatives

TPR@1%FPR True Positive Rate at 1% False Positive Rate
TPR@0.1%FPR True Positive Rate at 0.1% False Positive Rate

Attack Success Rate (ASR). The ASR is the ratio of correctly pred-
icated samples to the total samples, which measures the proportion
of successful attacks:

𝐴𝑆𝑅 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(14)

The threshold for determining successful attacks is calculated
as follows. We randomly select a subset of both members and non-
members, comprising 20% of the total, and compute an optimal
threshold from it. Then we apply this threshold to evaluate the ASR
for the remaining population of members and non-members.
Precision. The Precision is the ratio of correctly predicted posi-
tives to the total predicted positives, which measures the method’s
exactness:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(15)

Recall. The Recall is the ratio of correctly predicted positives to all
actual positive samples, which measures the method’s complete-
ness:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(16)

Area Under the ROC Curve (AUC). The AUC is used to evaluate
the ability to discriminate between positive and negative samples.
It is calculated by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings, and then
computing the area under the resulting curve.
TPR@1%FPR, TPR@0.1%FPR. TPR@1% and TPR@0.1% measure
the true positive rate when the false positive rate is fixed at 1% and
0.1%, which signify the accuracy in identifying true positives at
high confidence.

B.2 Detailed Descriptions of Baselines
PIA [2] utilizes the training loss of diffusion models as a metric for
membership inference, specifically by comparing the pixel-level
difference between added noise and the predicted noise. The dif-
fusion model’s output at time t=0 is used as the added noise. The
membership score is computed at timestep 200. A higher score

indicates that the probability that the image belongs to the training
set is higher:

𝑠𝑐𝑜𝑟𝑒 = −||𝜖0 − 𝜖𝜃 (
√
𝛼200𝑥0 +

√
1 − 𝛼200𝜖0, 𝑡 = 200) | |24

𝜖0 = 𝜖𝜃 (𝑥0, 𝑡 = 0)
(17)

Naive Loss [3] also uses the training loss of diffusion models as
a metric for membership inference. What sets it apart from PIA is
that it incorporates random Gaussian noise to images and compares
it with the predicted noise at the pixel-level. The membership score
is computed at timestep 350. A higher score indicates that the image
is more likely to be a member of the training set:

𝑠𝑐𝑜𝑟𝑒 = −||𝜖 − 𝜖𝜃 (
√
𝛼350𝑥0 +

√
1 − 𝛼350𝜖, 𝑡 = 350) | |22 𝜖 ∼ N(0, I)

(18)
SecMI [1] compares the distance between two adjacent noisy im-
ages, which are generated through the diffusion process and the
denoising process respectively. Specifically, it first applies DDIM
inversion with a fixed interval (𝑡𝑖 = 1) to an image x and obtains
𝑥100 at timestep 100. Then it diffuses 𝑥100 one step further then
reverses one step to get the reconstructed result 𝑥𝑟100. The member-
ship score is defined as the pixel-level distance between 𝑥100 and
𝑥𝑟100. A higher score indicates that the image is more likely to be a
member of the training set:

𝑠𝑐𝑜𝑟𝑒 = −||𝑥𝑟100 − 𝑥100 | |22 (19)

C DISTORTED SAMPLES FOR ROBUSTNESS
EVALUATION

To evaluate the robustness of our method, various distortions, in-
cluding additional noise, rotation, saturation change and brightness
fluctuation, are applied to both member and nonmember images.
Examples are shown in Figure 1.

Original Noise Rotation Saturation Brightness

Original Noise Rotation Saturation Brightness

Original Noise Rotation Saturation Brightness

Figure 1: Samples under various distortions: additional noise,
rotation, saturation change and brightness fluctuation.
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Original T = 200 T = 500 T = 800

(a) BLIP: "A white soccer shoe with a purple and white logo"

Original T = 200 T = 500 T = 800

(b) Empty prompt

Original T = 200 T = 500 T = 800

(c) Unrelated prompt: "A dog is walking on the grass"

Original T = 200 T = 500 T = 800

(a) BLIP: "A couple of hot air balloons flying in the sky"

Original T = 200 T = 500 T = 800

(b) Empty prompt

Original T = 200 T = 500 T = 800

(c) Unrelated prompt: "A dog is walking on the grass"

Figure 2: (a) Reconstruction results with a prompt extracted
by BLIP model. (b) Reconstruction results with an empty
prompt. (c) Reconstruction results with an unrelated prompt.

D MORE EXAMPLES OF TEXT GUIDED IMAGE
RECONSTRUCTION

To evaluate the impact of texts on our method’s performance, we
first corrupt a image in the diffusion process to a certain timestep T.
Then we restore it in the denoising process under three conditions:

captions from the BLIP model, empty prompts, and unrelated texts.
More results are shown in Figure 2.

E FUTUREWORK
A promising direction for future work involves exploring higher
levels of diffusion model’s memorization beyond the structural
aspects, such as semantic-level. By analyzing the semantic repre-
sentations learned by the model, we can enhance the understanding
and manipulation of deeper, more abstract associations between
texts and images. This line of inquiry could lead to the development
of more sophisticated attack strategies that target the semantic un-
derstanding of the model, potentially revealing vulnerabilities that
are less explored in current research. Additionally, exploring the
intersection of semantic-level memorization and diffusion model’s
structure could yield insights into designing more robust defense
mechanisms against membership inference attacks. This research
not only broadens the applicative scope of text-to-image models but
also deepens the theoretical foundations regarding how artificial
systems interpret and generate human-like semantic outputs.

F LIMITATIONS
Our method depends on the encoder and decoder components of
text-to-imagemodels, as it involves introducing noise into the latent
space and extracting image structures from the pixel space to avoid
noise interference. Consequently, our approach is not compatible
with diffusion models that lack these encoder and decoder elements,
i.e. DDPM[5].

G ETHICAL STATEMENT
This study enhances the fairness and inclusivity of AI by identify-
ing biases in text-to-image generative models. We undertake our
research with a firm commitment to ethical standards and trans-
parent practices. The aim of our method is to discern whether a
specific sample belongs to the training set. This functionality can
safeguard privacy rights by spotting unauthorized utilization of
personal information for training. Nevertheless, it’s necessary to
acknowledge that our approach may also pose a privacy threat. For
example, privacy could be compromised when anonymous data is
categorized by determining its membership in the training set.
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