Supplementary Material: Appendices

² A Information-theoretic Analysis of DNA/RNA Tokenization

1

In this section, we compare the information content of a nucleotide token and a BPE token inspired by
key empirical observations in the training data. Information-theoretic analysis of biological sequences
is a well-studied field of research where the key challenges include determining the prior distribution
of nucleotides or k-mers, the fact that only a fraction of possible biological sequences occurs in nature
and the difficulty in comparing results from biological sequences with those from linguistics due to
significant differences morphology.

Information content of a Nucleotide token We consider each nucleotide in a sequence as an
 independent variable that carries some amount of information. We wish to quantify the maximum
 amount of information for each new nucleotide in a sufficiently long sequence. We can derive the
 per-token upper bound of the Shannon Entropy of a DNA/RNA sequence as follows.

$$H(X_{NUC}) = -\sum_{i=1}^{4} P(x_i) \log_2 P(x_i)$$

$$\leq -\left(4 \cdot \frac{1}{4} \log_2 \frac{1}{4}\right)$$

$$= 2 \text{ bits}$$
(1)

Figure 1: Fitting the exponential function $C \cdot 2^{-ai}$ to the empirically observed BPE token probabilities on pretraining datasets. Since the index assigned to a token is arbitrary, we reverse sort by probability/frequency and reindex tokens to represent the probability as a function of the index. We determined best-fit when $C \approx 0.005086$ and $a \approx 0.011909$.

Information content of a BPE token As before, we consider each BPE token in a sequence as
 an independent variable that carries some amount of information. Let the size of the vocabulary be
 N. On our pretraining datasets, we observe that the frequency of the BPE tokens is exponentially
 distributed, and as a result, the probability of a token can modeled by an exponential function.

$$P(x_i) = \frac{C}{2^{ai}} \tag{2}$$

Since the index assigned to a token is arbitrary, tokens can be sorted by descending probability and reindexed without issue. Under this formulation, the token with the index i = 1 is the most frequent 19 (the GGG token in our pretraining dataset) and i = 4095 is the least frequent (the TTGTCGGGTAAG

20 token).

$$\sum_{i=1}^{N} \frac{C}{2^{ai}} = C \sum_{i=1}^{N} \frac{1}{2^{ai}} = 1$$

$$\Leftrightarrow \frac{C}{2^{a}} \cdot \frac{1 - \left(\frac{1}{2^{a}}\right)^{N}}{1 - \frac{1}{2^{a}}} = 1$$

$$\Leftrightarrow \frac{C \left(1 - \frac{1}{2^{aN}}\right)}{2^{a} - 1} = 1$$

$$\Leftrightarrow C = \frac{2^{a} - 1}{1 - \frac{1}{2^{aN}}}$$
(3)

When the vocabulary size N is large, we can approximate $C \approx 2^a - 1$ and $a \approx log_2(C+1)$. Now we can derive a general expression for the entropy of BPE tokens as,

$$H(X_{BPE}) = -\sum_{i}^{N} P(x_{i}) \log_{2} P(x_{i})$$

$$= -\sum_{i=1}^{N} \frac{C}{2^{ai}} \log_{2} \left(\frac{C}{2^{ai}}\right)$$

$$= -\sum_{i=1}^{N} \frac{C}{2^{ai}} (\log_{2} C - ai)$$

$$= -\log_{2} C \sum_{i=1}^{N} \frac{C}{2^{ai}} + aC \sum_{i=1}^{N} \frac{i}{2^{ai}},$$

$$= -\log_{2} C + aC \sum_{i=1}^{N} \frac{i}{2^{ai}},$$

$$\approx -\log_{2} C + aC \frac{2^{a}}{(2^{a} - 1)^{2}}, \qquad \text{When } N \text{ is large}$$

$$= -\log_{2} C + \log_{2} (C + 1)C \frac{C + 1}{(C)^{2}}$$

$$= -\log_{2} C + \log_{2} (C + 1) \left(\frac{C + 1}{C}\right)$$

$$= \log_{2} \left(\frac{(C + 1)^{(C + 1)/C}}{C}\right).$$
(4)

If the weighted average length of a BPE token is $\overline{L} = \sum_{i=1}^{N} P(x_i) \operatorname{len}(x_i)$, the average character-level entropy of BPE representation of a sequence will be $\hat{H}(X_{BPE}) = \frac{H(X_{BPE})}{L}$. Since nucleotides are one character each, the per-character entropy is $\hat{H}(X_{NUC}) = H(X_{NUC})$. The BPE tokenization will lead to less entropy if,

$$\frac{\dot{H}(X_{BPE})}{\hat{H}(X_{NUC})} < 1$$

$$\Rightarrow \frac{H(X_{BPE})}{\bar{L} \times H(X_{NUC})} < 1$$

$$\Rightarrow \log_2\left(\frac{(C+1)^{(C+1)/C}}{C}\right) < 2 \times \bar{L}$$

$$\Rightarrow \frac{(C+1)^{(C+1)/C}}{C} < 4^{\bar{L}}.$$
(5)

When $C \ll 1$, we can approximate $(C + 1) \approx 1$. Then the inequality in Equation 5 can be further simplified as

$$\frac{1}{C} < 4^{\bar{L}} \Rightarrow C > 4^{-\bar{L}}.$$

Empirical Entropy Ratio On our pretraining data mixture, we determine that $P(A) \approx 0.2726$,

P(\hat{A}) ≈ 0.2144 , $\hat{P}(A) \approx 0.26642$, $\hat{P}(A) \approx 0.2465$, and averge BPE token length $\bar{L} \approx 6.0768$. This

29 yields the empirical entropy of nucleotide tokens $H_e(X_{NUC}) \approx 1.9939$ bits. As shown in Figure 1,

the **empirical value of C is 0.005086** when determined on 33 million sequences of our pretraining dataset.

Plugging in this value in Eqn. 4, yields $H_e(X_{BPE}) \approx 9.1044$ bits. Therefore, the empirical per-character entropy ratio is

$$\frac{H_e(X_{BPE})}{\hat{H}_e(X_{NUC})} = \frac{H_e(X_{BPE})}{\bar{L} \times H_e(X_{NUC})} \approx \frac{9.1044}{6.0768 \times 1.9939} \approx 0.7514 < 1.$$

The empirical per-character entropy ratio of 0.7514 indicates that the Byte-Pair Encoding (BPE) tokenization technique effectively compresses the input sequence. Although compressed information is likely more difficult for Language Models to process, it is well-compensated by the ability to process sequences up to 6 times longer than the original input with the same GPU memory constraints. This also partially explains why we observed BPE underperforming their NUC counterparts on short-sequence downstream tasks from an Information-theoretic perspective.

³⁸ Therefore, BPE tokenization is essentially a trade-off between information compression and computa-

tional efficiency, which BiRNA-BERT can dynamically adjust depending on the hardware constraints
 and sequence length.

Here, we assume tokens are independent and identically distributed random variables (i.i.d) to
 approximate the information content of NUC and BPE sequences. In reality, the information content
 of non-i.i.d sequences is much lower than Shannon Entropy due to the correlation between nearby
 symbols. Language entropy [Shannon, 1948] and Kolmogorov Complexity [Kolmogorov, 1998] take

symbol complexity [Reinlegerov, 1990] to a source but are concretible

45 symbol correlation and order into account but are generally intractable.

46 **B** Downstream Task Finetuning Methodology

In this part, we describe the finetuning details for the RNA downstream tasks for the models RNA-FM,
 RiNALMo, and BiRNA.

49 miRNA-IncRNA Interaction

50	Embedding Strategy:
51	- Following Wang et al. [2023], we use frozen embeddings with a CNN head.
52	Parameter Grid Search:
53	- Learning Rate (LR): [1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6]
54	- Warmup Proportion: [0.05, 0.1, 0.3]
55	– Number of Epochs : [2, 3, 5, 10, 20, 30]
56	Default Selected Configuration:
57	- 3 convolutional layers, flatten, 2 dense layers
58	– Batch size: 32
59	– GPU: A6000 48GB
60	- 3 epochs, 5e-4 learning rate, 0.1 warmup proportion
61	Specific Selected Configurations
62	- 30 epochs; 1e-3 LR; 0.05 WarmUp: GMA-MTR: RNA-FM, RiNALMo, BiRNA
63	– 20 epochs: MTR-ATH: RNA-FM, RiNALMo, BiRNA
64	– 5 epochs: ATH-MTR: RiNALMo, MTR-ATH: RNA-FM
65	– 1e-3 LR; 0.05 WarmUp: GMA-MTH: RiNALMo

66 Torsion Angle Regression

67	• RNA-FM and BiRNA-BERT
68	– Batch size: 32
69	– Learning rate: 1e-5
70	– Epochs: 20
71	– Warmup ratio: 0.1
72	- Gradient accumulation steps: 1
73	• RiNALMo
74	– Batch size: 8
75	 Learning rate: 1e-5
76	– Epochs: 20
77	– Warmup ratio: 0.1
78	- Gradient accumulation steps: 2
79	RNA-Protein Interaction
80	• Learning rate: 1e-6
81	• Batch size: 64
82	• Epochs: 10
83	• Warmup ratio: 0.1
84	Single prediction head

• Early stopping on best validation F1 score

86 N6-methyladenosine Site Prediction

- Learning Rate (LR): 0.005
- Warmup Proportion: 0.1
- Number of Epochs: 3

90 C BiDNA

- 91 We test dual tokenization on DNA sequences by training three more BERT models on the Human
- 92 Genome DNA Dataset similar to DNABERT. Similar to BiRNA, sequences are tokenized both with
- BPE and NUC when pretraining BiDNA. Pretraining details of DNA models are shown in Table 2.

we evaluate all three variants on human-genome-related downstream tasks from the GUE benchmark
 [Zhou et al., 2023]. The tasks are:

- 96 1. Promoter Site Detection: 3 datasets
- 97 2. Core Promoter Site Detection: 3 datasets
- 98 3. Transcription Factor Binding Prediction: 5 datasets

⁹⁹ We evaluate the performances on all versions of the pretrained BiDNA and provide performance

metrics from DNABERT-2 for reference. DNABERT-2 is pretrained with 66X more compute than
 BiDNA.

¹⁰² We see from Table 1 that, in promoter site detection task, BiRNA with NUC tokenization is compara-

¹⁰³ ble to DNABERT-2, within only 0.8% performance margin. In the core promoter site detection task,

104 BiDNA-NUC outperforms DNABERT-2 with 4.4% MCC. In the transcription factor binding site

task, BiDNA achieves a competitive performance within 1.2% margin.

Table 1: Comparison of BiDNA with DNABERT-2 on Three Downstream Tasks (MCC Metric)

Task	Promo	ter Site De	etection	Core F	Promoter Si	te Detection
Dataset	All	No tata	Tata	All	No tata	Tata
BPE-Only	0.916	0.954	0.799	0.806	0.824	0.765
BiDNA-BPE	0.918	0.954	0.789	0.812	0.828	0.758
NUC-Only	0.927	0.963	0.807	0.832	0.836	0.876
BiDNA-NUC	0.936	0.966	0.817	0.832	0.839	0.844
DNABERT-2	0.941	0.971	0.830	0.831	0.849	0.814

Table 1: Comparison of BiDNA with DNABERT-2 on Three Downstream Tasks (MCC Metric) (Continued)

Model	Transcription Factor Binding Dataset							
	tf0	tf1	tf2	tf3	tf4	Avg tf		
BPE-Only	0.847	0.852	0.807	0.738	0.847	0.818		
BiDNA-BPE	0.847	0.848	0.803	0.753	0.852	0.821		
NUC-Only	0.844	0.871	0.838	0.759	0.877	0.838		
BiDNA-NUC	0.850	0.874	0.843	0.770	0.874	0.842		
DNABERT-2	0.856	0.886	0.841	0.790	0.888	0.852		

106 D Compute Analysis

- 107 RiNALMo
- **GPU:** 7XA100 (80GB)
- **Training Time:** 14 days
- Peak FP16 Performance: 624 TFLOPS (Nvidia A100 Datasheet)
- 111 BIRNA-BERT
- **GPU:** 8×3090 (24GB)
- **Training Time:** 48.42 hours
- Peak FP16 Performance: 142 TFLOPS (Nvidia Ampere Datasheet)
- 115 Ratio Calculation:

$$\text{Ratio} = \frac{7 \times 624 \times 14 \times 24}{8 \times 142 \times 48.42} = 26.682$$

116 **DNABERT2**

- **GPU:** 8×2080Ti
- **Training Time:** 14 days
- Peak FP16 Performance: 113.8 TFLOPS (Nvidia Ada Datasheet)
- 120 BiDNA
- **GPU:** 1× 4090
- **Training Time:** 14 hours
- Peak FP16 Performance: 330.3 TFLOPS (Nvidia Ada Datasheet)
- 124 **Ratio Calculation:**

$$\text{Ratio} = \frac{8 \times 113.8 \times 14 \times 24}{330.3 \times 14} = 66.150$$

Model	Train Tokens	Train Time	Hardware
RNA-BPE only	4.384B	3 hours	8×3090
RNA-NUC only	27.87B	45.1 hours	8×3090
RNA-BiRNA	32.254B	48.42 hours	8×3090
DNA-BPE only	586.854M	2.42 hours	1×4090
DNA-NUC only	3.027B	12 hours	1×4090
DNA-BiDNA	3.614B	14.33 hours	1×4090

Table 2: Pretraining details for various models

125 E Downstream Tasks Dataset Description

miRNA-IncRNA Interaction Prediction For evaluation, one benchmarking dataset is used as the
 training set, and another dataset is used for validation following the strategy used in Wang et al. [2023].
 Thus, we have 6 train-test combinations and we report performance in all these combinations. The
 lengths of the sequences in the miRNA dataset are 10 to 50, whereas the lncRNA dataset ranges from

¹³⁰ 200 to 4000. The length distributions of sequences for the miRNA-lncRNA Interaction Prediction task are shown in Figure 2.

Figure 2: Sequence length distribution for lncRNA and miRNA datasets

131

Benchmarks of RNA–RNA interactions		No. of miRNAs	No. of IncRNAs	No. of molecule pairs
Arabidopsis thaliana	Interacting Pairs	331	2014	2500
(Ath)	Non-interacting Pairs	266	1964	2500
Glycine max	Interacting Pairs	401	1770	2500
(Gma)	Non-interacting Pairs	542	171	2500
Medicago truncatula	Interacting Pairs	335	1986	2500
(Mtr)	Non-interacting Pairs	424	2442	2500

Tuble 5. Deneminark of mint of mert of mertaculon requestor

RNA-Protein Interaction Prediction (short-sequence task) This focuses on finding the binding 132 sites and interactions between RNA molecules and proteins to understand post-transcriptional regula-133 tion. Benchmark dataset for RNA-protein interaction prediction is collected from RBPsuit available 134 at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/. This database contains datasets for 135 154 different proteins and a collection of interacting and non-interacting RNA sequences for each 136 protein. We consider a subset of 5 datasets for our evaluation (AARS, AATF, AKAP1, AGGF1, 137 ABCF1). The length of RNA sequences used for this task is 101 across all the datasets. The number 138 of sequences used for training, validation, and testing is shown in Table 4. 139

RNA N6-methyladenosine Prediction (short-sequence task) N6-methyladenosine (m6A) is a
 common and critical modification in eukaryotic mRNA, affecting various aspects of RNA metabolism.
 This includes stability, splicing, and translation. The prediction and detection of m6A sites are

Table 4: Dataset Specification for RNA-Protein Interaction Prediction

Dataset	Train	Valid	Test
AATF	26283	6571	8214
ABCF1	28768	7193	8991
AGGF1	76800	19200	24000
AKAP1	76800	19200	24000
AARS	76800	19200	24000

essential for understanding how this modification influences gene expression and cellular processes. 143 In our work, we utilized datasets from human, rat, and mouse tissues, specifically focusing on 144 brain, kidney, and liver samples for each species. Data sets were derived from the iRNA-m6A 145 study available at http://www.biolscience.cn/Deepm6A-MT/data/, employing an antibody-146 independent m6A-REF-seq protocol, which is both high-throughput and accurate for m6A detection. 147 Positive samples were selected based on the presence of m6A at the center of 41 continuous nucleotide 148 residues, while negative samples were randomly selected from the same tissues but without m6A 149 sites. The length of the sequences across all the datasets is 41. Dataset specifications are shown in 150 Table 5. 151

Species	Tissue	Training Pos	Training Neg	Test Pos	Test Neg
	Liver	2634	2634	2634	2634
Human	Brain	2302	2303	1150	1150
	Kidney	2287	2287	1144	1143
-	Brain	4013	4012	4013	4012
Mouse	Kidney	1977	1976	1976	1977
	Liver	2066	2067	2066	2067
	Brain	1176	1176	1176	1176
Rat	Kidney	1716	1716	1716	1716
	Liver	881	881	881	881

Table 5: Dataset Specification for RNA N6-methyladenosine Prediction

Multi Species RNA Splicing Site Prediction (short-sequence task) RNA splicing is a crucial 152 process in eukaryotic gene expression, where introns are removed from precursor messenger RNAs 153 (pre-mRNAs), and exons are joined together to form mature mRNAs. This process is essential for 154 generating functional mRNAs that can be translated into proteins. Identifying splice sites-the donor 155 sites at the 5' end of introns and the acceptor sites at the 3' end—is vital for accurately predicting 156 gene structure and location. For this task, we consider the dataset proposed by Scalzitti et al. [2021]. 157 Particularly we use the gold standard dataset GS_1 which contains an equal number of positive 158 and negative samples. The dataset consists of "confirmed" error-free splice-site sequences from a 159 diverse set of 148 eukaryotic organisms, including humans. We have tested the performance of the 160 trained model on three independent test datasets containing the samples from 3 different species 161 of fish (Danio rerio), fruit fly (Drosophila melanogaster), and plant (Arabidopsis thaliana). Here 162 the sequence length is 400 and the train and independent test tests have 20000 sequences each for 163 training and testing respectively. 164

RNA 3D Torsion Angle Prediction (Nucleotide Level Task) There are seven torsion angles 165 commonly referred to as α , β , γ , δ , ϵ , ζ , and χ . These angles describe the rotations around 166 the bonds that connect the nucleotides within an RNA strand, influencing its overall structure 167 and stability. These angles are mathematically represented as the dihedral angles between four 168 consecutive atoms in the RNA backbone. For example, the α angle is measured as the dihedral 169 angle between O5'-P-O3'-C3'. The dataset for RNA torsion angle prediction is collected from 170 https://sparks-lab.org/server/spot-rna-1d/. The training (TR), validation (VL), and 171 three test sets (TS1, TS2, and TS3) have 286, 30, 63, 30, and 54 RNA chains, with average sequence 172 lengths of 122, 15, 30, 14, and 24 respectively. 173

174 F Detail Result Tables for Downstream Tasks

Table 6: Mean Absolute Error of RNA 3D torsion angle prediction. Here we report the mean squared error (MSE) between the predicted and actual RNA torsion angles. The "NUC-only" method refers to tokenization at the nucleotide level without any additional processing. We show the average error across different torsion angles for various methods. The best and second best results are shown in bold and italic, respectively.

Data	Method	Avg Error	Alpha	Beta	Gamma	Delta	Epsilon	Zeta	Chi
	BPE-NUC	28.085	29.132	24.018	25.692	21.345	25.718	35.918	34.771
VL	NUC-only	28.398	29.583	23.910	26.195	21.779	26.193	35.948	35.177
V L	RNA-FM	28.333	29.357	24.412	26.109	21.983	25.451	35.027	35.994
	RINALMo	27.888	28.861	23.188	25.866	22.486	25.078	35.132	34.603
	BPE-NUC	28.181	30.223	21.856	19.553	29.193	34.232	26.764	35.449
TS1	NUC-only	28.760	31.002	22.887	19.793	29.415	34.607	27.980	35.637
151	RNA-FM	29.916	31.904	23.859	19.839	29.620	35.884	30.372	37.937
	RINALMo	28.622	31.127	22.658	20.199	29.686	32.880	27.607	36.195
TS2	BPE-NUC	26.704	24.728	17.363	23.836	19.104	31.875	36.048	33.973
	NUC-only	27.252	25.602	18.408	24.406	19.748	32.139	36.474	33.990
	RNA-FM	27.710	25.464	17.842	23.829	19.823	35.864	37.754	33.391
	RINALMo	25.915	22.677	16.964	20.958	18.356	31.906	38.238	32.304
	BPE-NUC	31.979	34.728	17.363	23.836	19.104	31.875	36.048	33.973
тс2	NUC-only	32.174	34.856	19.606	30.324	37.531	36.589	35.374	30.938
155	RNA-FM	32.000	33.415	20.341	30.755	38.091	36.360	34.414	30.681
	RINALMo	31.513	34.016	19.292	30.343	37.841	35.763	33.960	29.575

175 **References**

A. Kolmogorov. On tables of random numbers. *Theoretical Computer Science*, 207(2):387–395,
 1998. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(98)00075-9. URL https:

178 //www.sciencedirect.com/science/article/pii/S0304397598000759.

N. Scalzitti, A. Kress, R. Orhand, T. Weber, L. Moulinier, A. Jeannin-Girardon, P. Collet, O. Poch,
 and J. D. Thompson. Spliceator: multi-species splice site prediction using convolutional neural

C. E. Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27(3):
 379–423, 1948.

Y. Wang, Z. Pan, M. Mou, W. Xia, H. Zhang, H. Zhang, J. Liu, L. Zheng, Y. Luo, H. Zheng, et al. A
 task-specific encoding algorithm for rnas and rna-associated interactions based on convolutional
 autoencoder. *Nucleic Acids Research*, 51(21):e110–e110, 2023.

Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu. Dnabert-2: Efficient foundation model and
 benchmark for multi-species genome. *arXiv preprint arXiv:2306.15006*, 2023.

networks. *BMC bioinformatics*, 22:1–26, 2021.