
Supplementary Material: Appendices1

A Information-theoretic Analysis of DNA/RNA Tokenization2

In this section, we compare the information content of a nucleotide token and a BPE token inspired by3

key empirical observations in the training data. Information-theoretic analysis of biological sequences4

is a well-studied field of research where the key challenges include determining the prior distribution5

of nucleotides or k-mers, the fact that only a fraction of possible biological sequences occurs in nature6

and the difficulty in comparing results from biological sequences with those from linguistics due to7

significant differences morphology.8

Information content of a Nucleotide token We consider each nucleotide in a sequence as an9

independent variable that carries some amount of information. We wish to quantify the maximum10

amount of information for each new nucleotide in a sufficiently long sequence. We can derive the11

per-token upper bound of the Shannon Entropy of a DNA/RNA sequence as follows.12
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Figure 1: Fitting the exponential function C · 2−ai to the empirically observed BPE token proba-
bilities on pretraining datasets. Since the index assigned to a token is arbitrary, we reverse sort by
probability/frequency and reindex tokens to represent the probability as a function of the index. We
determined best-fit when C ≈ 0.005086 and a ≈ 0.011909.

Information content of a BPE token As before, we consider each BPE token in a sequence as13

an independent variable that carries some amount of information. Let the size of the vocabulary be14

N . On our pretraining datasets, we observe that the frequency of the BPE tokens is exponentially15

distributed, and as a result, the probability of a token can modeled by an exponential function.16

P (xi) =
C

2ai
(2)

Since the index assigned to a token is arbitrary, tokens can be sorted by descending probability and17

reindexed without issue. Under this formulation, the token with the index i = 1 is the most frequent18
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(the GGG token in our pretraining dataset) and i = 4095 is the least frequent (the TTGTCGGGTAAG19

token).20
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When the vocabulary size N is large, we can approximate C ≈ 2a − 1 and a ≈ log2(C + 1). Now21

we can derive a general expression for the entropy of BPE tokens as,22
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If the weighted average length of a BPE token is L̄ =
∑N

i=1 P (xi)len(xi), the average character-level23

entropy of BPE representation of a sequence will be Ĥ(XBPE) =
H(XBPE)

L . Since nucleotides are24

one character each, the per-character entropy is Ĥ(XNUC) = H(XNUC). The BPE tokenization25

will lead to less entropy if,26

Ĥ(XBPE)
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< 1

⇒ H(XBPE)
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< 1

⇒ log2
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When C << 1, we can approximate (C + 1) ≈ 1. Then the inequality in Equation 5 can be further
simplified as

1

C
< 4L̄ ⇒ C > 4−L̄.

Empirical Entropy Ratio On our pretraining data mixture, we determine that P (A) ≈ 0.2726,27

P (A) ≈ 0.2144, P (A) ≈ 0.26642, P (A) ≈ 0.2465, and averge BPE token length L̄ ≈ 6.0768. This28

yields the empirical entropy of nucleotide tokens He(XNUC) ≈ 1.9939 bits. As shown in Figure 1,29

the empirical value of C is 0.005086 when determined on 33 million sequences of our pretraining30

dataset.31

Plugging in this value in Eqn. 4, yields He(XBPE) ≈ 9.1044 bits. Therefore, the empirical
per-character entropy ratio is

Ĥe(XBPE)

Ĥe(XNUC)
=

He(XBPE)

L̄×He(XNUC)
≈ 9.1044

6.0768× 1.9939
≈ 0.7514 < 1.

The empirical per-character entropy ratio of 0.7514 indicates that the Byte-Pair Encoding (BPE)32

tokenization technique effectively compresses the input sequence. Although compressed information33

is likely more difficult for Language Models to process, it is well-compensated by the ability to34

process sequences up to 6 times longer than the original input with the same GPU memory constraints.35

This also partially explains why we observed BPE underperforming their NUC counterparts on36

short-sequence downstream tasks from an Information-theoretic perspective.37

Therefore, BPE tokenization is essentially a trade-off between information compression and computa-38

tional efficiency, which BiRNA-BERT can dynamically adjust depending on the hardware constraints39

and sequence length.40

Here, we assume tokens are independent and identically distributed random variables (i.i.d) to41

approximate the information content of NUC and BPE sequences. In reality, the information content42

of non-i.i.d sequences is much lower than Shannon Entropy due to the correlation between nearby43

symbols. Language entropy [Shannon, 1948] and Kolmogorov Complexity [Kolmogorov, 1998] take44

symbol correlation and order into account but are generally intractable.45

B Downstream Task Finetuning Methodology46

In this part, we describe the finetuning details for the RNA downstream tasks for the models RNA-FM,47

RiNALMo, and BiRNA.48

miRNA-lncRNA Interaction49

• Embedding Strategy:50

– Following Wang et al. [2023], we use frozen embeddings with a CNN head.51

• Parameter Grid Search:52

– Learning Rate (LR): [1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6]53

– Warmup Proportion: [0.05, 0.1, 0.3]54

– Number of Epochs: [2, 3, 5, 10, 20, 30]55

• Default Selected Configuration:56

– 3 convolutional layers, flatten, 2 dense layers57

– Batch size: 3258

– GPU: A6000 48GB59

– 3 epochs, 5e-4 learning rate, 0.1 warmup proportion60

• Specific Selected Configurations61

– 30 epochs; 1e-3 LR; 0.05 WarmUp: GMA-MTR: RNA-FM, RiNALMo, BiRNA62

– 20 epochs: MTR-ATH: RNA-FM, RiNALMo, BiRNA63

– 5 epochs: ATH-MTR: RiNALMo, MTR-ATH: RNA-FM64

– 1e-3 LR; 0.05 WarmUp: GMA-MTH: RiNALMo65
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Torsion Angle Regression66

• RNA-FM and BiRNA-BERT67

– Batch size: 3268

– Learning rate: 1e-569

– Epochs: 2070

– Warmup ratio: 0.171

– Gradient accumulation steps: 172

• RiNALMo73

– Batch size: 874

– Learning rate: 1e-575

– Epochs: 2076

– Warmup ratio: 0.177

– Gradient accumulation steps: 278

RNA-Protein Interaction79

• Learning rate: 1e-680

• Batch size: 6481

• Epochs: 1082

• Warmup ratio: 0.183

• Single prediction head84

• Early stopping on best validation F1 score85

N6-methyladenosine Site Prediction86

• Learning Rate (LR): 0.00587

• Warmup Proportion: 0.188

• Number of Epochs: 389
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C BiDNA90

We test dual tokenization on DNA sequences by training three more BERT models on the Human91

Genome DNA Dataset similar to DNABERT. Similar to BiRNA, sequences are tokenized both with92

BPE and NUC when pretraining BiDNA. Pretraining details of DNA models are shown in Table 2.93

we evaluate all three variants on human-genome-related downstream tasks from the GUE benchmark94

[Zhou et al., 2023]. The tasks are:95

1. Promoter Site Detection: 3 datasets96

2. Core Promoter Site Detection: 3 datasets97

3. Transcription Factor Binding Prediction: 5 datasets98

We evaluate the performances on all versions of the pretrained BiDNA and provide performance99

metrics from DNABERT-2 for reference. DNABERT-2 is pretrained with 66X more compute than100

BiDNA.101

We see from Table 1 that, in promoter site detection task, BiRNA with NUC tokenization is compara-102

ble to DNABERT-2, within only 0.8% performance margin. In the core promoter site detection task,103

BiDNA-NUC outperforms DNABERT-2 with 4.4% MCC. In the transcription factor binding site104

task, BiDNA achieves a competitive performance within 1.2% margin.105

Table 1: Comparison of BiDNA with DNABERT-2 on Three Downstream Tasks (MCC Metric)
Task Promoter Site Detection Core Promoter Site Detection
Dataset All No tata Tata All No tata Tata
BPE-Only 0.916 0.954 0.799 0.806 0.824 0.765
BiDNA-BPE 0.918 0.954 0.789 0.812 0.828 0.758
NUC-Only 0.927 0.963 0.807 0.832 0.836 0.876
BiDNA-NUC 0.936 0.966 0.817 0.832 0.839 0.844
DNABERT-2 0.941 0.971 0.830 0.831 0.849 0.814

Table 1: Comparison of BiDNA with DNABERT-2 on Three Downstream Tasks (MCC Metric)
(Continued)

Model Transcription Factor Binding Dataset
tf0 tf1 tf2 tf3 tf4 Avg tf

BPE-Only 0.847 0.852 0.807 0.738 0.847 0.818
BiDNA-BPE 0.847 0.848 0.803 0.753 0.852 0.821
NUC-Only 0.844 0.871 0.838 0.759 0.877 0.838
BiDNA-NUC 0.850 0.874 0.843 0.770 0.874 0.842
DNABERT-2 0.856 0.886 0.841 0.790 0.888 0.852
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D Compute Analysis106

RiNALMo107

• GPU: 7XA100 (80GB)108

• Training Time: 14 days109

• Peak FP16 Performance: 624 TFLOPS (Nvidia A100 Datasheet)110

BiRNA-BERT111

• GPU: 8×3090 (24GB)112

• Training Time: 48.42 hours113

• Peak FP16 Performance: 142 TFLOPS ( Nvidia Ampere Datasheet)114

Ratio Calculation:115

Ratio =
7× 624× 14× 24

8× 142× 48.42
= 26.682

DNABERT2116

• GPU: 8×2080Ti117

• Training Time: 14 days118

• Peak FP16 Performance: 113.8 TFLOPS (Nvidia Ada Datasheet)119

BiDNA120

• GPU: 1× 4090121

• Training Time: 14 hours122

• Peak FP16 Performance: 330.3 TFLOPS (Nvidia Ada Datasheet)123

Ratio Calculation:124

Ratio =
8× 113.8× 14× 24

330.3× 14
= 66.150

Model Train Tokens Train Time Hardware

RNA-BPE only 4.384B 3 hours 8×3090
RNA-NUC only 27.87B 45.1 hours 8×3090
RNA-BiRNA 32.254B 48.42 hours 8×3090
DNA-BPE only 586.854M 2.42 hours 1×4090
DNA-NUC only 3.027B 12 hours 1×4090
DNA-BiDNA 3.614B 14.33 hours 1×4090

Table 2: Pretraining details for various models
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E Downstream Tasks Dataset Description125

miRNA-lncRNA Interaction Prediction For evaluation, one benchmarking dataset is used as the126

training set, and another dataset is used for validation following the strategy used in Wang et al. [2023].127

Thus, we have 6 train-test combinations and we report performance in all these combinations. The128

lengths of the sequences in the miRNA dataset are 10 to 50, whereas the lncRNA dataset ranges from129

200 to 4000. The length distributions of sequences for the miRNA-lncRNA Interaction Prediction130

task are shown in Figure 2.

Figure 2: Sequence length distribution for lncRNA and miRNA datasets

131

Table 3: Benchmark of miRNA-lncRNA Interaction Prediction
Benchmarks of

RNA–RNA
interactions

No. of miRNAs No. of lncRNAs No. of
molecule pairs

Arabidopsis thaliana
(Ath)

Interacting Pairs 331 2014 2500
Non-interacting

Pairs 266 1964 2500

Glycine max
(Gma)

Interacting Pairs 401 1770 2500
Non-interacting

Pairs 542 171 2500

Medicago truncatula
(Mtr)

Interacting Pairs 335 1986 2500
Non-interacting

Pairs 424 2442 2500

RNA-Protein Interaction Prediction (short-sequence task) This focuses on finding the binding132

sites and interactions between RNA molecules and proteins to understand post-transcriptional regula-133

tion. Benchmark dataset for RNA-protein interaction prediction is collected from RBPsuit available134

at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/. This database contains datasets for135

154 different proteins and a collection of interacting and non-interacting RNA sequences for each136

protein. We consider a subset of 5 datasets for our evaluation (AARS, AATF, AKAP1, AGGF1,137

ABCF1). The length of RNA sequences used for this task is 101 across all the datasets. The number138

of sequences used for training, validation, and testing is shown in Table 4.139

RNA N6-methyladenosine Prediction (short-sequence task) N6-methyladenosine (m6A) is a140

common and critical modification in eukaryotic mRNA, affecting various aspects of RNA metabolism.141

This includes stability, splicing, and translation. The prediction and detection of m6A sites are142
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Table 4: Dataset Specification for RNA-Protein Interaction Prediction
Dataset Train Valid Test
AATF 26283 6571 8214
ABCF1 28768 7193 8991
AGGF1 76800 19200 24000
AKAP1 76800 19200 24000
AARS 76800 19200 24000

essential for understanding how this modification influences gene expression and cellular processes.143

In our work, we utilized datasets from human, rat, and mouse tissues, specifically focusing on144

brain, kidney, and liver samples for each species. Data sets were derived from the iRNA-m6A145

study available at http://www.biolscience.cn/Deepm6A-MT/data/, employing an antibody-146

independent m6A-REF-seq protocol, which is both high-throughput and accurate for m6A detection.147

Positive samples were selected based on the presence of m6A at the center of 41 continuous nucleotide148

residues, while negative samples were randomly selected from the same tissues but without m6A149

sites. The length of the sequences across all the datasets is 41. Dataset specifications are shown in150

Table 5.151

Table 5: Dataset Specification for RNA N6-methyladenosine Prediction
Species Tissue Training Pos Training Neg Test Pos Test Neg

Human
Liver 2634 2634 2634 2634
Brain 2302 2303 1150 1150
Kidney 2287 2287 1144 1143

Mouse
Brain 4013 4012 4013 4012
Kidney 1977 1976 1976 1977
Liver 2066 2067 2066 2067

Rat
Brain 1176 1176 1176 1176
Kidney 1716 1716 1716 1716
Liver 881 881 881 881

Multi Species RNA Splicing Site Prediction (short-sequence task) RNA splicing is a crucial152

process in eukaryotic gene expression, where introns are removed from precursor messenger RNAs153

(pre-mRNAs), and exons are joined together to form mature mRNAs. This process is essential for154

generating functional mRNAs that can be translated into proteins. Identifying splice sites—the donor155

sites at the 5’ end of introns and the acceptor sites at the 3’ end—is vital for accurately predicting156

gene structure and location. For this task, we consider the dataset proposed by Scalzitti et al. [2021].157

Particularly we use the gold standard dataset GS_1 which contains an equal number of positive158

and negative samples. The dataset consists of “confirmed” error-free splice-site sequences from a159

diverse set of 148 eukaryotic organisms, including humans. We have tested the performance of the160

trained model on three independent test datasets containing the samples from 3 different species161

of fish (Danio rerio), fruit fly (Drosophila melanogaster), and plant (Arabidopsis thaliana). Here162

the sequence length is 400 and the train and independent test tests have 20000 sequences each for163

training and testing respectively.164

RNA 3D Torsion Angle Prediction (Nucleotide Level Task) There are seven torsion angles165

commonly referred to as α, β, γ, δ, ϵ, ζ, and χ. These angles describe the rotations around166

the bonds that connect the nucleotides within an RNA strand, influencing its overall structure167

and stability. These angles are mathematically represented as the dihedral angles between four168

consecutive atoms in the RNA backbone. For example, the α angle is measured as the dihedral169

angle between O5’-P-O3’-C3’. The dataset for RNA torsion angle prediction is collected from170

https://sparks-lab.org/server/spot-rna-1d/. The training (TR), validation (VL), and171

three test sets (TS1, TS2, and TS3) have 286, 30, 63, 30, and 54 RNA chains, with average sequence172

lengths of 122, 15, 30, 14, and 24 respectively.173
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F Detail Result Tables for Downstream Tasks174

Table 6: Mean Absolute Error of RNA 3D torsion angle prediction. Here we report the mean squared
error (MSE) between the predicted and actual RNA torsion angles. The “NUC-only” method refers
to tokenization at the nucleotide level without any additional processing. We show the average error
across different torsion angles for various methods. The best and second best results are shown in
bold and italic, respectively.

Data Method Avg
Error Alpha Beta Gamma Delta Epsilon Zeta Chi

VL

BPE-NUC 28.085 29.132 24.018 25.692 21.345 25.718 35.918 34.771
NUC-only 28.398 29.583 23.910 26.195 21.779 26.193 35.948 35.177
RNA-FM 28.333 29.357 24.412 26.109 21.983 25.451 35.027 35.994

RINALMo 27.888 28.861 23.188 25.866 22.486 25.078 35.132 34.603

TS1

BPE-NUC 28.181 30.223 21.856 19.553 29.193 34.232 26.764 35.449
NUC-only 28.760 31.002 22.887 19.793 29.415 34.607 27.980 35.637
RNA-FM 29.916 31.904 23.859 19.839 29.620 35.884 30.372 37.937

RINALMo 28.622 31.127 22.658 20.199 29.686 32.880 27.607 36.195

TS2

BPE-NUC 26.704 24.728 17.363 23.836 19.104 31.875 36.048 33.973
NUC-only 27.252 25.602 18.408 24.406 19.748 32.139 36.474 33.990
RNA-FM 27.710 25.464 17.842 23.829 19.823 35.864 37.754 33.391

RINALMo 25.915 22.677 16.964 20.958 18.356 31.906 38.238 32.304

TS3

BPE-NUC 31.979 34.728 17.363 23.836 19.104 31.875 36.048 33.973
NUC-only 32.174 34.856 19.606 30.324 37.531 36.589 35.374 30.938
RNA-FM 32.000 33.415 20.341 30.755 38.091 36.360 34.414 30.681

RINALMo 31.513 34.016 19.292 30.343 37.841 35.763 33.960 29.575
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