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ABSTRACT

Understanding how overparameterized neural networks generalize despite perfect
interpolation of noisy training data is a fundamental question. Mallinar et al.
(2022) noted that neural networks seem to often exhibit “tempered overfitting”,
wherein the population risk does not converge to the Bayes optimal error, but nei-
ther does it approach infinity, yielding non-trivial generalization. However, this
has not been studied rigorously. We provide the first rigorous analysis of the
overfitting behavior of regression with minimum norm (ℓ2 of weights), focusing
on univariate two-layer ReLU networks. We show overfitting is tempered (with
high probability) when measured with respect to the L1 loss, but also show that
the situation is more complex than suggested by Mallinar et al., and overfitting is
catastrophic with respect to the L2 loss, or when taking an expectation over the
training set.

1 INTRODUCTION

A recent realization is that, although sometimes overfitting can be catastrophic as suggested by our
classic learning theory understanding, in other cases overfitting may not be so catastrophic. In fact,
even interpolation learning, which entails achieving zero training error with noisy data, can still
allow for good generalization, and even consistency (Zhang et al., 2017; Belkin et al., 2018). This
has led to efforts towards understanding the nature of overfitting: how benign or catastrophic it is,
and what determines this behavior, in different settings and using different models.

Although interest in benign overfitting stems from the empirical success of interpolating large neu-
ral networks, theoretical study so far has been mostly limited to linear and kernel methods, or to
classification settings where the data is already linearly separable, with very high data dimension
(tending to infinity as the sample size grows)1. But what about noisy interpolation learning in low
dimensions, using neural networks?

1Minimum ℓ2 norm linear prediction (aka ridgeless regression) with noisy labels and (sub-)Gaussian fea-
tures has been studied extensively (e.g. Hastie et al., 2020; Belkin et al., 2020; Bartlett et al., 2020; Muthuku-
mar et al., 2020; Negrea et al., 2020; Chinot & Lerasle, 2020; Koehler et al., 2021; Wu & Xu, 2020; Tsigler &
Bartlett, 2020; Zhou et al., 2022; Wang et al., 2022; Chatterji et al., 2021; Bartlett & Long, 2021; Shamir, 2022;
Ghosh & Belkin, 2022; Chatterji & Long, 2021; Wang & Thrampoulidis, 2021; Cao et al., 2021; Muthukumar
et al., 2021; Montanari et al., 2020; Liang & Recht, 2021; Thrampoulidis et al., 2020; Wang et al., 2021; Don-
hauser et al., 2022; Frei et al., 2023), and noisy minimum ℓ1 linear prediction (aka Basis Persuit) has also been
considered (e.g. Ju et al., 2020; Koehler et al., 2021; Wang et al., 2022). Either way, these analyses are all in the
high dimensional setting, with dimension going to infinity, since to allow for interpolation the dimension must
be high, higher than the number of samples. Kernel methods amount to a minimum ℓ2 norm linear prediction,
with very non-Gaussian features. But existing analyses of interpolation learning with kernel methods rely on
“Gaussian Universality”: either assuming as an ansatz the behavior is as for Gaussian features (Mallinar et al.,
2022) or establishing this rigorously in certain high dimensional scalings (Hastie et al., 2019; Misiakiewicz,
2022; Mei & Montanari, 2022). In particular, such analyses are only valid when the input dimension goes to
infinity (though possibly slower than the number of samples) and not for fixed low or moderate dimensions.
Frei et al. (2022; 2023); Cao et al. (2022); Kou et al. (2023) study interpolation learning with neural networks,
but only with high input dimension and when the data is interpolatable also with a linear predictor—in these
cases, although non-linear neural networks are used, the results show they behave similarly to linear predic-
tors. Manoj & Srebro (2023) take the other extreme and study interpolation learning with “short programs”,
which are certainly non-linear, but this is an abstract model that does not directly capture learning with neural
networks.
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Mallinar et al. (2022) conducted simulations with neural networks and observed “tempered” over-
fitting: the asymptotic risk does not approach the Bayes-optimal risk (there is no consistency), but
neither does it diverge to infinity catastrophically. Such “tempered” behavior is well understood for
1-nearest neighbor, where the asymptotic risk is roughly twice the Bayes risk (Cover & Hart, 1967),
and Mallinar et al. heuristically explain it also for some kernel methods. However, we do not have a
satisfying and rigorous understanding of such behavior in neural networks, nor a more quantitative
understanding of just how bad the risk might be when interpolating noisy data using a neural net.

In this paper, we begin rigorously studying the effect of overfitting in the noisy regression setting,
with neural networks in low dimensions, where the data is not linearly interpolatable. Specifically,
we study interpolation learning of univariate data (i.e. in one dimension) using a two-layer ReLU
network (with a skip connection), which is a predictor fθ,a0,b0 : R → R given by:

fθ,a0,b0(x) =

m∑
j=1

aj(wjx+ bj)+ + a0x+ b0 , (1)

where θ ∈ R3m denotes the weights (parameters) {aj , wj , bj}mj=1. To allow for interpolation we do
not limit the width m, and learn by minimizing the norm of the weights (Savarese et al., 2019; Ergen
& Pilanci, 2021; Hanin, 2021; Debarre et al., 2022; Boursier & Flammarion, 2023):

f̂S = arg min
fθ,a0,b0

∥θ∥2 s.t. ∀i ∈ [n], fθ,a0,b0(xi) = yi where S = {(x1, y1), . . . , (xn, yn)}. (2)

Following Boursier & Flammarion (2023) we allow an unregularized skip-connection in equation 1,
where the weights a0, b0 of this skip connection are not included in the norm ∥θ∥ in equation 2.
This skip connection avoids some complications and allows better characterizing f̂S but does not
meaningfully change the behavior (see Section 2).

Why min norm? Using unbounded size minimum weight-norm networks is natural for interpo-
lation learning. It parallels the study of minimum norm high (even infinite) dimension linear pre-
dictors. For interpolation, we must allow the number of parameters to increase as the sample size
increases. But to have any hope of generalization, we must choose among the infinitely many zero
training error networks somehow, and it seems that some sort of explicit or implicit low norm bias is
the driving force in learning with large overparameterized neural networks (Neyshabur et al., 2014).
Seeking minimum ℓ2 norm weights is natural, e.g. as a result of small weight decay. Even without
explicit weight decay, optimizing using gradient descent is also related to an implicit bias toward
low ℓ2 norm: this can be made precise for linear models and for classification with ReLU networks
(Chizat & Bach, 2020; Safran et al., 2022). For regression with ReLU networks, as we study here,
the implicit bias is not well understood (see Vardi (2023)), and studying equation 2 is a good starting
point for understanding the behavior of networks learned via gradient descent even without explicit
weight decay. Interestingly, minimum-norm interpolation corresponds to the rich regime, and does
not correspond to any kernel (Savarese et al., 2019). For the aforementioned reasons, understanding
the properties of min-norm interpolators has attracted much interest in recent years (Savarese et al.,
2019; Ongie et al., 2019; Ergen & Pilanci, 2021; Hanin, 2021; Debarre et al., 2022; Boursier &
Flammarion, 2023).

Noisy interpolation learning. We consider a noisy distribution D over [0, 1]× R:

x ∼ Uniform([0, 1]) and y = f∗(x) + ϵ with ϵ independent of x, (3)

where x is uniform for simplicity and concreteness2. The noise ϵ follows some arbitrary (but non-
zero) distribution, and learning is based on an i.i.d. training set S ∼ Dn. Since the noise is non-
zero, the “ground truth” predictor f∗ has non-zero training error, seeking a training error much
smaller than that of f∗ would be overfitting (fitting the noise) and necessarily cause the complexity
(e.g. norm) of the learned predictor to explode. The “right” thing to do is to balance between the
training error and the complexity ∥θ∥. Indeed, under mild assumptions, this balanced approach leads
to asymptotic consistency, with f̂S

n→∞−−−−→ f∗ and the asymptotic population risk of f̂S converging to
the Bayes risk. But what happens when we overfit and use the interpolating learning rule equation 2?

2All our results should also hold for any absolutely continuous distribution with bounded density and sup-
port. Roughly speaking, this can be achieved by dividing the support into disjoint intervals such that the
distribution in each interval is well-approximated by a uniform distribution.
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Figure 1: Comparison between linear-spline (purple) and min-norm (green) interpolators.

Linear Splines. At first glance, we might be tempted to think that two-layer ReLUs behave like
linear splines (see Figure 1). Indeed, if minimizing the norm of weights wi and ai but not the
biases bi in equation 2, linear splines are a valid minimizer (Savarese et al., 2019; Ergen & Pilanci,
2021). As the number of noisy training points increases, linear splines “zig-zag” with tighter “zigs”
but non-vanishing “amplitude” around f∗, resulting in an interpolator which roughly behaves like
f∗ plus some added non-vanishing “noise”. This does not lead to consistency, but is similar to a
nearest-neighbor predictor (each prediction is a weighted average of two neighbors). Indeed, in
Theorem 1 of Section 3, we show that linear splines exhibit “tempered” behavior, with asymptotic
risk proportional to the noise level.

From Splines to Min-Norm ReLU Nets. It turns out minimum norm ReLU networks, although
piecewise linear, are not quite linear splines: roughly speaking, and as shown in Figure 1, they are
more conservative in the number of linear “pieces”. Because of this, in convex (conversely, concave)
regions of the linear spline, minimum norm ReLU nets “overshoot” the linear spline in order to avoid
breaking linear pieces. This creates additional “spikes”, extending above and below the data points
(see Figures 1 and 2) and thus potentially increasing the error. In fact, such spikes are also observed
in interpolants reached by gradient descent (Shevchenko et al., 2022, Figure 1). How bad is the
effect of such spikes on the population risk?

OUR CONTRIBUTION

Effect of Overfitting on Lp Risk. It turns out the answer is quite subtle and, despite considering
the same interpolator, the nature of overfitting actually depends on how we measure the error. For a
function f : R → R, we measure its Lp population error and the reconstruction error respectively as

Lp(f) := E
(x,y)∼D

[|f(x)− y|p] and Rp(f) := E
x∼Uniform([0,1])

[|f(x)− f∗(x)|p].

We show in Theorems 2 and 3 of Section 4.2 that for 1 ≤ p < 2,

Lp(f̂S)
n→∞−−−−→ Θ

(
1

(2− p)+

)
Lp(f

∗). (4)

This is an upper bound for any Lipschitz target f∗ and any noise distribution, and it is matched
by a lower bound for Gaussian noise. That is, for abs-loss (L1 risk), as well as any Lp risk for
1 ≤ p < 2, overfitting is tempered. But this tempered behavior explodes as p → 2, and we see a
sharp transition. We show in Theorem 4 of Section 4.3 that for any p ≥ 2, including for the square
loss (p = 2), in the presence of noise, Lp(f̂S)

n→∞−−−−→ ∞ and overfitting is catastrophic.

Convergence vs. Expectation. The behavior is even more subtle, in that even for 1 ≤ p <

2, although the risk Lp(f̂S) converges in probability to a tempered behavior as in equation 4, its
expectation is infinite: ES [Lp(f̂S)] = ∞. Note that in studying tempered overfitting, Mallinar et al.
(2022) focused on this expectation, and so would have categorized the behavior as “catastrophic”
even for p = 1, emphasizing the need for more careful consideration of the effect of overfitting.

I.I.D. Samples vs. Samples on a Grid. The catastrophic effect of interpolation on the Lp risk with
p ≥ 2 is a result of the effect of fluctuations in the spacing of the training points. Large, catastrophic,
spikes are formed by training points extremely close to their neighbors but with different labels
(see Figures 2 and 5). To help understand this, in Section 5 we study a “fixed design” variant
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Figure 2: The min-norm interpolator for 30 random points with f∗ ≡ 0 and N (0, 1) label noise.

of the problem, where the training inputs lie on a uniform grid, xi = i/n, and responses follow
yi = f∗(xi) + ϵi. In this case, interpolation is always tempered, with Lp(f̂S)

n→∞−−−−→ O(Lp(f
∗))

for any constant p ≥ 1 (Theorem 5 of Section 5).

Discussion and Takeaways. Our work is the first to study noisy interpolation learning with min-
norm ReLU networks for regression. It is also the first to study noisy interpolation learning in
neural networks where the input dimension does not grow with the sample size, and to consider
non-linearly-interpolatable data distributions (see below for a comparison with concurrent work in
a classification setting). The univariate case might seem simplistic, but is a rich and well-studied
model in its own right (Shevchenko et al., 2022; Ergen & Pilanci, 2021; Hanin, 2021; Debarre et al.,
2022; Boursier & Flammarion, 2023; Williams et al., 2019; Mulayoff et al., 2021; Safran et al.,
2022), and as we see, it already exhibits many complexities and subtleties that need to be resolved,
and is thus a non-trivial necessary first step if we want to proceed to the multivariate case.

The main takeaway from our work is that the transition from tempered to catastrophic overfitting
can be much more subtle than previously discussed, both in terms of the details of the setting (e.g.,
sampled data vs. data on a grid) and in terms of the definition and notion of overfitting (the loss
function used, and expectation vs. high probability). Understanding these subtleties is crucial before
moving on to more complex models.

More concretely, we see that for the square loss, the behavior does not fit the “tempered overfitting”
predictions of Mallinar et al. (2022), and for the L1 loss we get a tempered behavior with high
probability but not in expectation, which highlights that the definitions of (Mallinar et al., 2022) need
to be refined. We would of course not get such strange behavior with the traditional non-overfitting
approach of balancing training error and norm; in this situation the risk converges almost surely to
the optimal risk, with finite expectation and vanishing variances. Moreover, perhaps surprisingly,
when the input data is on the grid (equally spaced), the behavior is tempered for all losses even in the
presence of label noise. This demonstrates that the catastrophic behavior for Lp losses for p ≥ 2 is
not just due to the presence of label noise; it is the combination of label noise and sampling of points
that hurts generalization. We note that previous works considered benign overfitting with data on the
grid as a simplified setting, which may help in understanding more general situations (Beaglehole
et al., 2022; Lai et al., 2023). Our results imply that this simplification might change the behavior
of the interpolator significantly. In summary, the nature of overfitting is a delicate property of the
combination of how we measure the loss and how training examples are chosen.

Comparison with concurrent work. In a concurrent and independent work, Kornowski et al.
(2023) studied interpolation learning in univariate two-layer ReLU networks in a classification set-
ting, and showed that they exhibit tempered overfitting. In contrast to our regression setting, in
classification only the output’s sign affects generalization, and hence the height of the spikes do not
play a significant role. As a result, our regression setting exhibits a fundamentally different behavior,
and the above discussion on the delicateness of the overfitting behavior in regression does not apply
to their classification setting.

2 REVIEW: MIN-NORM RELU NETWORKS

Minimum-norm unbounded-width univariate two-layer ReLU networks have been extensively stud-
ied in recent years, starting with Savarese et al. (2019), with the exact formulation equation 2 in-
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Figure 3: An illustration of the linear spline interpolator ĝS (left), and of the variant ĥS where linear
pieces are extended beyond the endpoints (right).

corporating a skip connection due to Boursier & Flammarion (2023). Boursier & Flammarion,
following prior work, establish that a minimum of equation 2 exists, with a finite number of units,
and that it is also unique.

The problem in equation 2 is also equivalent to minimizing the “representation cost” R(f) =∫
R
√
1 + x2|f ′′(x)|dx over all interpolators f , although we will not use this characterization ex-

plicitly in our analysis. Compared to Savarese et al. (2019), where the representation cost is
given by max{

∫
|f ′′(x)|dx, |f ′(−∞) + f ′(+∞)|}, the weighting

√
1 + x2 is due to penalizing

the biases bi. More significantly, the skip connection in equation 1 avoids the “fallback” terms of
|f ′(−∞) + f ′(+∞)|, which only kick-in in extreme cases (very few points or an extreme slope).
This simplified the technical analysis and presentation, while rarely affecting the solution.

Boursier & Flammarion provide the following characterization of the minimizer3 f̂S of equation 2,
which we will rely on heavily:
Lemma 2.1 (Boursier & Flammarion (2023)). For 0 ≤ x1 < x2 < · · · < xn, the problem in
equation 2 admits a unique minimizer of the form:

f̂S(x) = ax+ b+

n−1∑
i=1

ai(x− τi)+ , (5)

where τi ∈ [xi, xi+1) for every i ∈ [n− 1].

As in the above characterization, it is very convenient to take the training points to be sorted. Since
the learned network f̂S does not depend on the order of the points, we can always “sort” the points
without changing anything. And so, throughout the paper, we will always take the points to be sorted
(formally, the results apply to i.i.d. points, and the analysis is done after sorting these points).

3 WARM UP: TEMPERED OVERFITTING IN LINEAR-SPLINE INTERPOLATION

We start by analyzing tempered overfitting for linear-spline interpolation. Namely, we consider
the piecewise-linear function obtained by connecting each pair of consecutive points in the dataset
S ∼ Dn (see Figures 1 and 3 left) and analyze its test performance.

Given a dataset S = {(xi, yi)}ni=1, let gi : R → R be the affine function joining the points (xi, yi)
and (xi+1, yi+1). Thus, gi is the straight line joining the endpoints of the i-th interval. Then, the
linear spline interpolator ĝS : [0, 1] → R is given by

ĝS(x) := y1 · 1{x < x1}+ yn · 1{x ≥ xn}+
n−1∑
i=1

gi(x) · 1{x ∈ [xi, xi+1)}. (6)

3If the biases bi are not included in the norm ∥θ∥ in equation 2, and this norm is replaced with
∑

i(a
2
i +w2

i ),
the modified problem admits multiple non-unique minimizers, including a linear spline (with modified behavior
past the extreme points) (Savarese et al., 2019). This set of minimizers was characterized by Hanin (2021).
Interestingly, the minimizer f̂S of equation 2 (when the biases are included in the norm) is also a minimizer of
the modified problem (without including the biases). All our results apply also to the setting without penalizing
the biases in the following sense: the upper bounds are valid for all minimizers, while some minimizer, namely
f̂S that we study, exhibits the lower bound behavior.
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Note that in the intervals [0, x1] and [xn, 1] the linear-spline ĝS is defined to be constants that corre-
spond to labels y1 and yn respectively. The following theorem characterizes the asymptotic behavior
of Lp(ĝS) for every p ≥ 1:
Theorem 1. Let f∗ be any Lipschitz function and D be the distribution from equation 3. Let S ∼
Dn, and ĝS be the linear-spline interpolator (equation 6) w.r.t. the dataset S. Then, for any p ≥ 1
there is a constant Cp such that

lim
n→∞

P
S
[Rp(ĝS) ≤ Cp Lp(f

∗)] = 1 and lim
n→∞

P
S
[Lp(ĝS) ≤ Cp Lp(f

∗)] = 1.

The theorem shows that the linear-spline interpolator exhibits tempered behavior, namely, w.h.p.
over S the interpolator ĝS performs like the predictor f∗, up to a constant factor. To understand why
Theorem 1 holds, note that for all i ∈ [n−1] and x ∈ [xi, xi+1] the linear-spline interpolator satisfies
ĝS(x) ∈ [min{yi, yi+1},max{yi, yi+1}]. Moreover, we have for all i ∈ [n] that |yi−f∗(xi)| = |ϵi|,
where ϵi is the random noise. Using these facts, it is not hard to bound the expected population loss
of ĝS in each interval [xi, xi+1], and by using the law of large numbers it is also possible to bound
the probability (over S) that the loss in the domain [0, 1] is large. Thus, we can bound the Lp loss
both in expectation and in probability.

Delicate behavior of linear splines. We now consider the following variant of the linear-spline
interpolator:

ĥS(x) := g1(x) · 1{x < x1}+ gn−1(x) · 1{x > xn}+ ĝS(x) · 1{x ∈ [x1, xn]}. (7)

In words, ĥS is exactly the same as ĝS in the interval [x1, xn], but it extends the linear pieces g1
and gn−1 beyond the endpoints x1 and xn (respectively), as illustrated in Figure 3 (right). The
interpolator ĥS still exhibits tempered behavior in probability, similarly to ĝS . However, perhaps
surprisingly, ĥS is not tempered in expectation (see Appendix A for details). This delicate behavior
of the linear-spline interpolator is important since in the next section we will show that the min-norm
interpolator has a similar behavior to ĥS in the intervals [0, x1], [xn, 1], and as a consequence, it is
tempered with high probability but not in expectation.

4 MIN-NORM INTERPOLATION WITH RANDOM DATA

In this section, we study the performance of the min-norm interpolator with random data. We first
present some important properties of the min-norm interpolator in Section 4.1. In Sections 4.2
and 4.3 we use this characterization to study its performance.

4.1 CHARACTERIZING THE MIN-NORM INTERPOLATOR

Our goal is to give a characterization of the min-norm interpolator f̂S(x) (equation 5), in terms of
linear splines as defined in equation 6. Recall the definition of affine functions g1(x), . . . , gn−1(x),
which are piece-wise affine functions joining consecutive points. Let δi be the slope of the line
gi(x), i.e. δi = g′i(x). We denote δ0 := δ1 and δn := δn−1. Then, we can define the sign of the
curvature of the linear spline ĝS(x) at each point.
Definition 4.1. For any i ∈ [n],

curv(xi) =


+1 δi > δi−1

0 δi = δi+1

−1 δi < δi−1

Based on the curvature, the following lemma geometrically characterizes f̂S in any interval
[xi, xi+1), in terms of the linear pieces gi−1, gi, gi+1.

Lemma 4.2. The function f̂S can be characterized as follows:

• f̂S(x) = g1(x) for x ∈ (−∞, x2);

• f̂S(x) = gn−1(x) for x ∈ [xn−1,∞);
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Figure 4: An illustration of the characterization of f̂S from Lemma 4.2.

• In each interval [xi, xi+1) for i ∈ {2, . . . n− 2},

1. If curv(xi) = curv(xi+1) = +1 then

max{gi−1(x), gi+1(x)} ≤ f̂S(x) ≤ gi(x);

2. If curv(xi) = curv(xi+1) = −1 then

min{gi−1(x), gi+1(x)} ≥ f̂S(x) ≥ gi(x);

3. Else, i.e. either curv(xi) = 0 or curv(xi+1) = 0 or curv(xi) ̸= curv(xi+1),

f̂S(x) = gi(x).

The lemma implies that f̂S coincides with ĝS except in an interval [xi, xi+1) where the curvature
of the two points are both +1 or −1 (see Figure 4). Intuitively, this property captures the worst-
case effect of the spikes and will be crucial in showing the tempered behavior of f̂S w.r.t. Lp for
p ∈ [1, 2). However, this still does not imply that such spikes are necessarily formed.

To this end, Boursier & Flammarion (2023, Lemma 8) characterized the situation under which
indeed these spikes are formed. Roughly speaking, if the sign of the curvature changes twice within
three points, then we get a spike. Formally, we identify special points from left to right recursively
where the sign of the curvature changes.
Definition 4.3. We define n1 := 1. Having defined the location of the special points n1, . . . , ni−1,
we recursively define

ni = min{j > ni−1 : curv(xj) ̸= curv(xni)}.
If there is no such ni−1 < j ≤ n where curv(xj) ̸= curv(xni), then ni−1 is the location of the last
special point.
Lemma 4.4 (Boursier & Flammarion (2023)). For any k ≥ 1, if δnk−1 ̸= δnk

and nk+1 = nk + 2,
then f̂S has exactly one kink between (xnk−1, xnk+1

). Moreover, if curv(xnk
) = curv(xnk+1) = −1

then f̂S(x) = min{gnk−1(x), gnk+1(x)} in [xnk
, xnk+1).

This is a slight variation of (Boursier & Flammarion, 2023, Lemma 8), which we reprove in the
appendix for completeness. See Figure 5 for an illustration of the above lemma. To show the
catastrophic behavior of f̂S for p ≥ 2, we will consider events under which such configurations of
points are formed. This will result in spikes giving catastrophic behavior.

4.2 TEMPERED OVERFITTING FOR Lp WITH p ∈ [1, 2)

We now show the tempered behavior of the minimal norm interpolator w.r.t. Lp losses for p ∈ [1, 2).
Theorem 2. Let f∗ be a Lipschitz function and D be the distribution from equation 3. Sample
S ∼ Dn, and let f̂S be the min-norm interpolator (equation 5). Then, for some universal constant
C > 0, for any p ∈ [1, 2) we have

lim
n→∞

P
S

[
Rp(f̂S) ≤

C

2− p
· Lp(f

∗)

]
= 1 and lim

n→∞
P
S

[
Lp(f̂S) ≤

C

2− p
· Lp(f

∗)

]
= 1 .
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Figure 5: An illustration of the spike formed by Lemma 4.4. Here, x2 and x4 are two consecutive
special points with exactly one point in between. There must be exactly one kink in (x1, x4). Thus,
in [x2, x3), the interpolator f̂S must be min{g1(x), g3(x)}.

The proof of Theorem 2 builds on Lemma 4.2, which implies that in an interval [xi, xi+1), a spike in
the interpolator f̂S must be bounded within the triangle obtained from gi−1, gi, gi+1 (see Figure 4).
Analyzing the population loss of f̂S requires considering the distribution of the spacings between
data points. Let ℓ0, . . . , ℓn be such that

∀i ∈ [n− 1] ℓi = xi+1 − xi, ℓ0 = x1, ℓn = 1− xn . (8)

Prior works (Alagar, 1976; Pinelis, 2019) established that

(ℓ0, . . . , ℓn) ∼
(
X0

X
, . . . ,

Xn

X

)
, where X0, . . . , Xn

i.i.d.∼ Exp(1), and X :=

n∑
i=0

Xi . (9)

The slopes of the affine functions gi−1, gi+1 are roughly 1
ℓi−1

, 1
ℓi+1

, where ℓj are the lengths as

defined in equation 8. Hence, the spike’s height is proportional to ℓi
max{ℓi−1,ℓi+1} . As a result, the

Lp loss in the interval [xi, xi+1] is roughly(
ℓi

max{ℓi−1, ℓi+1}

)p

· ℓi =
ℓp+1
i

max{ℓi−1, ℓi+1}p
.

Using the distribution of the ℓj’s given in equation 9, we can bound the expectation of this expres-
sion. Then, similarly to our discussion on linear splines in Section 3, in the range [x1, xn] we can
bound the Lp loss both in expectation and in probability. In the intervals [0, x1] and [xn, 1], the
expected loss is infinite (similarly to the interpolator ĥS in equation 7), and therefore we have

E
S

[
Lp(f̂S)

]
= ∞ . (10)

Still, we can get a high probability upper bound for the Lp loss in the intervals [0, x1] and [xn, 1].
Thus, we get a bound on Lp loss in the entire domain [0, 1] w.h.p. We note that the definition
of tempered overfitting in Mallinar et al. (2022) considers only the expectation. Theorem 2 and
equation 10 imply that in our setting we have tempered behavior in probability but not in expectation,
which demonstrates that tempered behavior is delicate.

We also show a lower bound for the population loss Lp which matches the upper bound from The-
orem 2 (up to a constant factor independent of p). The lower bound holds already for f∗ ≡ 0 and
Gaussian label noise.
Theorem 3. Let f∗ ≡ 0, consider label noise ϵ ∼ N (0, σ2) for some constant σ > 0, and let
D be the corresponding distribution from equation 3. Let S ∼ Dn, and let f̂S be the min-norm
interpolator (equation 5). Then, for some universal constant c > 0, for any p ∈ [1, 2) we have

lim
n→∞

P
S

[
Rp(f̂S) ≥

c

2− p
· Lp(f

∗)

]
= 1 and lim

n→∞
P
S

[
Lp(f̂S) ≥

c

2− p
· Lp(f

∗)

]
= 1 .

The proof of the above lower bound follows similar arguments to the proof of catastrophic overfitting
for p ≥ 2, which we will discuss in the next section.
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4.3 CATASTROPHIC OVERFITTING FOR Lp WITH p ≥ 2

Next, we prove that for the Lp loss with p ≥ 2, the min-norm interpolator exhibits catastrophic
overfitting. We prove this result already for f∗ ≡ 0 and Gaussian label noise:

Theorem 4. Let f∗ ≡ 0, consider label noise ϵ ∼ N (0, σ2) for some constant σ > 0, and let
D be the corresponding distribution from equation 3. Let S ∼ Dn, and let f̂S be the min-norm
interpolator (equation 5). Then, for any p ≥ 2 and b > 0,

lim
n→∞

P
S

[
Rp(f̂S) > b

]
= 1 and lim

n→∞
P
S

[
Lp(f̂S) > b

]
= 1 .

To obtain some intuition on this phenomenon, consider the first four samples (x1, y1), . . . , (x4, y4),
and let ℓi be the lengths of the intervals as defined in equation 8. We show that with constant
probability, the configuration of the labels of these samples satisfies certain properties, which are
illustrated in Figure 5. In this case, Lemma 4.4 implies that in the interval [x2, x3] the interpolator f̂S
is equal to min{g1(x), g3(x)}, where g1 (respectively, g3) is the affine function that connects x1, x2

(respectively, x3, x4). Now, as can be seen in the figure, in this “unfortunate configuration” the
interpolator f̂S spikes above f∗ ≡ 0 in the interval [x2, x3], and the spike’s height is proportional to

ℓ2
max{ℓ1,ℓ3} . As a result, the Lp loss in the interval [x2, x3] is roughly ℓp+1

2

max{ℓ1,ℓ3}p . Using equation 9,

we can show that ES

[
ℓp+1
2

max{ℓ1,ℓ3}p

]
= ∞ for any p ≥ 2.

We then divide divide the n samples in S into Θ(n) disjoint subsets and consider the events that
labels are such that the 4 middle points exhibit an “unfortunate configuration” as described above.
Using the fact that we have Θ(n) such subsets and the losses in these subsets are only mildly corre-
lated, we are able to prove that f̂S exhibits a catastrophic behavior also in probability.

We note that the proof of Theorem 3 follows similar arguments, except that when p < 2 the expec-
tation of the Lp loss in each subset with an “unfortunate configuration” is finite, and hence we get a
finite lower bound.

5 MIN-NORM INTERPOLATION WITH SAMPLES ON THE GRID

In this section, we analyze the population loss of the min-norm interpolator, when the n data-points
in S are uniformly spaced, instead of i.i.d. uniform sampling considered in the previous sections.
Namely, consider the training set S = {(xi, yi) : i ∈ [n]}, where

xi =
i

n
and yi = f∗(xi) + ϵi for i.i.d. noise ϵi . (11)

Note that the randomness in S is only in the label noises ϵi. It can be interpreted as a non-adaptive
active learning setting, where the learner can actively choose the training points, and then observe
noisy measurements at these points, and the query points are selected on an equally spaced grid. We
show that in this situation the min-norm interpolator exhibits tempered overfitting with respect to
any Lp loss:

Theorem 5. Let f∗ be any Lipschitz function. For the size-n dataset S given by equation 11, let f̂S
be the min-norm interpolator (equation 5). Then for any p ≥ 1, there is a constant Cp such that

lim
n→∞

P
S

[
Rp(f̂S) ≤ Cp Lp(f

∗)
]
= 1 and lim

n→∞
P
S

[
Lp(f̂S) ≤ Cp Lp(f

∗)
]
= 1 .

An intuitive explanation is as follows. Since the points are uniformly spaced, whenever spikes are
formed, they can at most reach double the height without the spikes. Thus, the population loss
of f̂S(x) becomes worse but only by a constant factor. We remark that in this setting the min-
norm interpolator exhibits tempered overfitting both in probability (as stated in Theorem 5) and in
expectation. From Theorem 5 we conclude that the catastrophic behavior for Lp with p ≥ 2 shown
in Theorem 4 stems from the non-uniformity in the lengths of the intervals [xi, xi+1], which occurs
when the xi’s are drawn at random.
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A DELICATE BEHAVIOR OF LINEAR SPLINES

Recall the definition of ĥS from equation 7.

ĥS(x) := g1(x) · 1{x < x1}+ gn−1(x) · 1{x > xn}+ ĝS(x) · 1{x ∈ [x1, xn]}.

For simplicity, assume that f∗ ≡ 0 and consider the L1 loss. Since in the interval [0, x1] the
interpolator ĥS is defined by extending the line connecting (x1, y1) and (x2, y2), then it has slope
of Θ

(
1
ℓ1

)
, and hence the L1 loss of ĥS in [0, x1] is

Θ

(
ℓ20
ℓ1

)
= Θ

(
X2

0

X ·X1

)
,

as can be seen in Figure 3 (right). Recall that (X0, . . . , Xn) and X are defined in equation 9.
Since X1 ∼ Exp(1), then E

[
1
X1

]
= ∞, and as a consequence the expected L1 loss in [0, x1] is

infinite. A similar argument also holds for the interval [xn, 1]. Thus, we get that ES

[
Lp(ĥS)

]
= ∞.

However, with high probability the lengths ℓ1 and ℓn−1 will not be too short, and therefore the loss
in the intervals [0, x1] and [xn, 1] will be bounded, which implies tempered overfitting with high
probability.

B PROOF OF THEOREM 1

Proof of Theorem 1. Let G < ∞ be the Lipschitz constant of f∗. We sample S ∼ Dn and we
number points (xi, yi) such that:

0 < x1 < x2 < · · · < xn < 1.

We will also denote x0 = 0 and xn+1 = 1 for simplicity of exposition. Our goal is to analyze the
population and reconstruction errors of linear splines ĝS(x), as defined in equation 6.

Lp(ĝS) = E
(x,y)∼D

[|ĝS(x)− y|p]

= E
x∼Uniform([0,1]),ϵ

[|ĝS(x)− f∗(x)− ϵ|p]

≤ 2p−1 E
x∼Uniform([0,1]),ϵ

[|ĝS(x)− f∗(x)|p + |ϵ|p]

= 2p−1

(
E

x∼Uniform([0,1])
[|ĝS(x)− f∗(x)|p] + E

ϵ
[|ϵ|p]

)
= 2p−1(Rp(ĝS) + Lp(f

∗)) . (12)

Therefore, it boils down to analyzing Rp(ĝS). We define the risk in the interval [xi, xi+1] as the
random variable Ri. In particular, for i ∈ {0, 1, . . . , n} as

Ri :=

∫ xi+1

xi

|ĝS(x)− f∗(x)|p dx , and Rp(ĝS(x)) =

n∑
i=0

Ri. (13)

The entire range from [0, 1] is divided into n+ 1 intervals. We denote their length by ℓ0, . . . , ℓn. In
particular, ℓi := xi+1 − xi. Recall the joint distribution of (ℓ0, . . . , ℓn) in equation 9.

We first show that the sum of the risks in the first and the last intervals is vanishing as n → ∞.

Lemma B.1. For any γ > 0, we have limn→∞ PS [R0 +Rn ≤ γ] = 1.

All the helper lemmas, including the above, are proved at the end of the proof of the theorem. We
now focus on bounding the remaining Ri’s. Define

R :=

n−1∑
i=1

Ri , (14)
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then we are interested in bounding R. For any i ∈ [n− 1] and x ∈ [xi, xi+1],

|ĝS(x)− f∗(x)| =|gi(x)− f∗(x)|

=

∣∣∣∣yi + (yi+1 − yi)

(xi+1 − xi)
(x− xi)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi) + ϵi +

(
f∗(xi+1) + ϵi+1 − f∗(xi)− ϵi

xi+1 − xi

)
(x− xi)− f∗(x)

∣∣∣∣
≤ |f∗(xi)− f∗(x)|+ |ϵi|+

G|xi+1 − xi|+ |ϵi+1 − ϵi|
xi+1 − xi

(x− xi)

≤G(x− xi) + |ϵi|+
(
G(xi+1 − xi) + |ϵi+1|+ |ϵi|

xi+1 − xi

)
(x− xi)

≤G · ℓi + |ϵi|+
(
G · ℓi + |ϵi+1|+ |ϵi|

ℓi

)
· ℓi

=2G · ℓi + |ϵi+1|+ 2|ϵi|.

Therefore, for i ∈ [n− 1]

Ri =

∫ xi+1

xi

|ĝS(x)− f∗(x)|p dx ≤ ℓi(2G · ℓi + |ϵi+1|+ 2|ϵi|)p

≤ 3p−1ℓi((2G)pℓpi + |ϵi+1|p + 2p|ϵi|p)
≤ 3p−1(2G)pℓp+1

i + 3p−1ℓi|ϵi+1|p + 3p−12pℓi|ϵi|p := R̂i

Therefore, if we define R̂ :=
∑n−1

i=1 R̂i then it serves as upper bound for R, i.e. R ≤ R̂. Since the
ℓi’s are mildly dependent random variables; we will try to re-express R̂ as the sum of independent
random variables. We now define random variables ℓ̃0, . . . , ℓ̃n

i.i.d.∼ Exp(1)/(n + 1). More specifi-
cally, (ℓ̃0, . . . , ℓ̃n) = (X0, . . . , Xn)/(n+1). Using these random variables, define random variables
similar to R̂1, . . . , R̂n−1, but replace ℓi with ℓ̃i

R̃i := 3p−1(2G)pℓ̃p+1
i + 3p−1ℓ̃i|ϵi+1|p + 3p−1 · 2pℓ̃i|ϵi|p, and R̃ =

n−1∑
i=1

R̃i.

Then, the following lemma (whose proof we include after the proof of the theorem) establishes the
almost sure convergence between R̂ and R̃. Therefore, it suffices to bound the latter.

Lemma B.2. As n → ∞, we have R̃− R̂
a.s.−−→ 0.

Still on looking at R̃, any two consecutive R̃i and R̃i+1 are dependent since it shares ϵi+1 in its
definition. Due to this, we split R̃ into two sums R̃odd (and R̃even ) containing odd-numbered terms
(and even-numbered terms respectively).

R̃odd :=
∑

i∈[n−1],i%2=1

R̃i, R̃even :=
∑

i∈[n−1],i%2=0

R̃i, and R̃ = R̃odd + R̃even

Now, R̃odd is the sum of ⌈(n − 1)/2⌉ i.i.d. random variables. Similarly, R̃even is the sum of ⌊(n −
1)/2⌋ i.i.d. random variables. Let us calculate the expectation of these identically distributed random
variables, which are R̃i’s. For any i ∈ [n− 1], Further simplifying:

R̃odd =
∑

i∈[n−1],i%2=1

(
3p−1(2G)pXp+1

i

(n+ 1)p+1
+

3p−1|ϵi+1|pXi

(n+ 1)
+

3p−1 · 2p · |ϵi|pXi

(n+ 1)

)
(15)

By the strong law of large numbers (LLN), we can say that as n → ∞

1

⌈(n− 1)/2⌉
∑

i∈[n−1],i%2=1

Xp+1
i

a.s.−−→ E[Exp(1)p+1] = Γ(p+ 2)
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Therefore, as n → ∞, for p ≥ 1 the first term of equation 15∑
i∈[n−1],i%2=1

3p−1(2G)pXp+1
i

(n+ 1)p+1

a.s.−−→ 0. (16)

Similarly, using the strong LLN

1

⌈(n− 1)/2⌉
∑

i∈[n−1],i%2=1

3p−1|ϵi+1|pXi + 3p−1 · 2p|ϵi|pXi
a.s.−−→ 3p−1 E [|ϵi+1|pXi] + 3p−1 · 2p E[|ϵi|pXi],

= 3p−1Lp(f
∗) + 3p−1 · 2pLp(f

∗).

Therefore, as n → ∞, the second and third terms of equation 15 converge almost surely as follows.∑
i∈[n−1],i%2=1

(
3p−1|ϵi+1|pXi

(n+ 1)
+

3p−1 · 2p · |ϵi|pXi

(n+ 1)

)
a.s.−−→ 3p−1Lp(f

∗) + 3p−1 · 2pLp(f
∗)

2
.

(17)
Therefore, combining equation 16 and equation 17 and substituting in equation 15, as n → ∞

R̃odd
a.s.−−→ 3p−1Lp(f

∗) + 3p−1 · 2pLp(f
∗)

2
.

Exactly following a similar argument,

R̃even
a.s.−−→ 3p−1Lp(f

∗) + 3p−1 · 2pLp(f
∗)

2
.

Therefore,
R̃

a.s.−−→ 3p−1Lp(f
∗) + 3p−1 · 2pLp(f

∗) .

Using R̃ − R̂
a.s.−−→ 0 by Lemma B.2, as n → ∞, we have R̂

a.s.−−→ 3p−1Lp(f
∗) + 3p−1 · 2pLp(f

∗) .
Finally, using the fact that R ≤ R̂, we obtain the following:

lim
n→∞

P
S

[
R ≤ (3p−1 (2p + 1) + 1)Lp(f

∗)
]
= 1. (18)

Recall the definition of R in equation 14 and Rp(ĝS) in equation 13. Having a probabilistic bound
on R gives us a bound on Rp(ĝS) when using Lemma B.1. In particular, we get

lim
n→∞

P
S

[
Rp(ĝS) ≤ (3p−1 (2p + 1) + 2)Lp(f

∗)
]
= 1. (19)

Finally, combining this with equation 12:

lim
n→∞

P
S
[Lp(ĝS) ≤ Cp Lp(f

∗)] = 1,

where Cp := 2p−1[3p−1((2p + 1) + 2) + 1].

We now prove Lemmas B.1 and B.2 in order.

Proof of Lemma B.1. For any x ∈ [0, x1], we have ĝS(x) = y1. Therefore,

|ĝS(x)− f∗(x)| = |y1 − f∗(x)| = |f∗(x1) + ϵ1 − f∗(x)| ≤ G|x1 − x|+ |ϵ1| ≤ Gℓ0 + |ϵ1|.
The implies that

R0 =

∫ x1

0

|ĝS(x)− f∗(x)|p dx ≤ (Gℓ0 + |ϵ1|)pℓ0 ≤ 2p−1Gpℓp+1
0 + 2p−1|ϵ1|pℓ0.

Similarly, for x ∈ [xn, 1]

|ĝS(x)− f∗(x)| = |yn − f∗(x)| = |f∗(xn) + ϵn − f∗(x)| ≤ G|xn − x|+ |ϵn| ≤ Gℓn + |ϵn|.
Therefore

Rn =

∫ 1

xn

|ĝS(x)− f∗(x)|p dx ≤ (Gℓn + |ϵn|)pℓn ≤ 2p−1Gpℓp+1
n + 2p−1|ϵn|pℓn.
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Combining the two we get

E
S
[R0 +Rn] ≤ 2p−1Gp · (E[ℓp+1

0 ] + E[ℓp+1
n ]) + 2p−1(E[|ϵ1|pℓ0] + E[|ϵn|pℓn])

= 2pGp E[ℓp+1
0 ] + 2pLp(f

∗)E[ℓ0] = 2pGp E[ℓp+1
0 ] +

2pLp(f
∗)

n+ 1

≤ 2pGp · E
[

X2
0

(X1 + · · ·+Xn)2

]
+

2pLp(f
∗)

n+ 1

= 2pGp · E[Exp(1)2] · E
[

1

Γ(n, 1)2

]
+ on(1)

= 2pGp · 2 ·
∫ ∞

0

1

z2
· z

n−1 · e−z

Γ(n)
dz + on(1) =

2p+1Gp

Γ(n)
·
∫ ∞

0

zn−3 · e−z dz + on(1)

=
2p+1GpΓ(n− 2)

Γ(n)
+ on(1) =

2p+1Gp

(n− 1)(n− 2)
+ on(1) = on(1).

Therefore, applying Markov’s inequality yields that for any γ > 0,

P
S
[R0 +Rn > γ] ≤ E[R0 +Rn]

γ
≤ on(1),

and the lemma follows.

Proof of Lemma B.2. By equation 9, we have (ℓ0, . . . , ℓn) ∼
(
X0

X , . . . , Xn

X

)
, where

X0, . . . , Xn
i.i.d.∼ Exp(1) and X :=

∑n
i=0 Xi. Also, we have ℓ̃i =

Xi

n+1 for all i.

For every p ≥ 1 we have
n−1∑
i=1

(
ℓ̃p+1
i − ℓp+1

i

)
=

n−1∑
i=1

(
Xp+1

i

(n+ 1)p+1
− Xp+1

i

Xp+1

)

=

n−1∑
i=1

Xp+1
i

(n+ 1)p+1

(
1− (n+ 1)p+1

Xp+1

)

=
n− 1

(n+ 1)p+1
·
∑n−1

i=1 Xp+1
i

n− 1

[
1−

(
n+ 1

X

)p+1
]

,

and by the strong law of large numbers we have
∑n−1

i=1 Xp+1
i

n−1

a.s.−−→ EXp+1
i < ∞ and

(
n+1
X

)p+1 a.s.−−→
1, and thus

n−1∑
i=1

(
ℓ̃p+1
i − ℓp+1

i

)
a.s.−−→ 0 .

Moreover, we have
n−1∑
i=1

(
ℓ̃i|ϵi|p − ℓi|ϵi|p

)
=

n−1∑
i=1

(
Xi|ϵi|p

n+ 1
− Xi|ϵi|p

X

)

=

n−1∑
i=1

Xi|ϵi|p

n+ 1

(
1− n+ 1

X

)

=
n− 1

n+ 1
·
∑n−1

i=1 Xi|ϵi|p

n− 1

(
1− n+ 1

X

)
,

and by the strong law of large numbers we have
∑n−1

i=1 Xi|ϵi|p
n−1

a.s.−−→ EXi|ϵi|p < ∞ and n+1
X

a.s.−−→ 1,
and thus

n−1∑
i=1

(
ℓ̃i|ϵi|p − ℓi|ϵi|p

)
a.s.−−→ 0 .
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Similarly, we also have
n−1∑
i=1

(
ℓ̃i|ϵi+1|p − ℓi|ϵi+1|p

)
a.s.−−→ 0 .

Overall, we get

R̃− R̂

=

n−1∑
i=1

(
3p−1(2G)pℓ̃p+1

i + 3p−1ℓ̃i|ϵi+1|p + 3p−1 · 2p · ℓ̃i|ϵi|p

−3p−1(2G)pℓp+1
i − 3p−1ℓi|ϵi+1|p − 3p−1 · 2p · ℓi|ϵi|p

)
= 3p−1(2G)p

n−1∑
i=1

(
ℓ̃p+1
i − ℓp+1

i

)
+ 3p−1

n−1∑
i=1

(
ℓ̃i|ϵi+1|p − ℓi|ϵi+1|p

)
+ 3p−1 · 2p

n−1∑
i=1

(
ℓ̃i|ϵi|p − ℓi|ϵi|p

)
a.s.−−→ 0 .

C OMITTED PROOF FROM SECTION 4.1

Recall the definition of the affine functions g1, . . . , gn−1 in Section 4.1. Also, recall the slope values
δ0, . . . , δn and the sign of the discrete curvature curv(xi) at any point xi. As mentioned, Boursier &
Flammarion (2023) showed Lemma 2.1, which says that there is a unique minimizer of equation 2,
which is piecewise linear and has at most one kink in the range [xi, xi+1). Due to this, we have
only one degree of freedom between any two points; the solution can be completely characterized
by variables s∗ = {s∗i }ni=1 where s∗i is the slope of the line incoming to point (xi, yi). Formally,
s∗i = limϵ→0+ Df̂(xi − ϵ).

Boursier & Flammarion (2023) (Lemma 3) proved the following lemma which upper and lower
bounds the value of s∗i in terms of δi−1 and δi.
Lemma C.1 (Boursier & Flammarion (2023)). For any i ∈ [n], s∗i ∈ [min(δi−1, δi),max(δi−1, δi)]
where δ0 = δ1 and δn = δn−1.

Having the above lemma at our disposal, we will now show Lemma 4.2, which characterizes the
worst-case behavior of formation spikes.

Proof of Lemma 4.2. It is easy to see that the function f̂S cannot have any kink on (−∞, x1). This
just follows from Lemma 2.1. Moreover, the slope of this straight line incoming to (x1, y1) is
given by s∗1 ∈ [min{δ0, δ1},max{δ0, δ1}] = δ1 by Lemma C.1. Therefore, f̂S(x) in the interval
(−∞, x1) must be g1(x). Now, again by Lemma 2.1 we can have at most one kink between [x1, x2).
Since g1(x) is a unique line joining the points (x1, y1) and (x2, y2), having one kink and changing
the line at some point x ∈ [x1, x2) will not pass through the point (x2, y2). But since f̂S(x2) = y2,
we must have that f̂S(x) = g1(x) in the entire (−∞, x2).

Similarly, by Lemma 2.1, we don’t have any kink from [xn,∞). Moreover, the slope incoming to
the point (xn, yn) is s∗n = δn−1 since s∗n ∈ [min{δn−1, δn},max{δn−1, δn}] and δn−1 = δn by
Lemma C.1. Thus, it must be that f̂S(x) = gn−1(x) in [xn,∞). Moreover, f̂S(x) has at most one
kink in [xn−1, xn). This kink cannot belong to (xn−1, xn) since gn−1(x) is the unique line joining
the points (xn−1, yn−1) and (xn, yn). Combining, we can say that f̂S(x) = gn−1(x) in [xn−1,∞).

We now consider [xi, xi+1) for any i ∈ {2, . . . , n − 2}. We prove the lemma under three different
cases.

1. Case 1: curv(xi) = curv(xi+1) = −1
First of all, since δi−1 > δi and gi−1(xi) = gi(xi) = yi, we have gi−1(x) ≥ gi(x) in
x ∈ [xi, xi+1). Similarly, since δi+1 < δi even gi+1(x) ≥ gi(x) for x ∈ [xi, xi+1).
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Using the same argument, since s∗i ∈ [δi, δi−1] and s∗i+1 ∈ [δi+1, δi] by Lemma C.1,
we say that f̂S lies above gi(x) in [xi, xi+1). Therefore, it only remains to show that
f̂S(x) ≤ min{gi−1(x), gi+1(x)}.

Let us assume that it is not true. Let x∗ ∈ [xi, xi+1) be the intersection point of
gi−1(x) and gi+1(x). If f̂S(x) ≥ min{gi−1(x), gi+1(x)} for some x ∈ [xi, xi+1),
then it is easy to observe that it must be true at the location of the kink which is x′, i.e.
f̂S(x

′) ≥ min{gi−1(x
′), gi+1(x

′)}.

Now we have two possibilities; the first one is x′ < x∗, in which case

s∗i =
f̂S(x

′)− yi
x′ − xi

>
gi−1(x

′)− yi
x′ − xi

= δi−1,

contradicting Lemma C.1. If x′ > x∗ then

s∗i+1 =
yi+1 − f̂S(x

′)

xi+1 − x′ <
yi+1 − gi+1(x

′)

xi+1 − x′ = δi+1,

again contradicting Lemma C.1. In either case, we get a contradiction and therefore, we
must have

gi(x) ≤ f̂S(x) ≤ min{gi−1(x), gi+1(x)}.

2. Case 2: curv(xi) = curv(xi+1) = +1
Using a similar strategy, one can also show the desired result in this case. More formally,
flip the label signs and apply exactly the same argument but on −f̂S ,−gi,−gi−1,−gi+1

instead. Then using the above argument, we achieve

−gi(x) ≤ −f̂S(x) ≤ min{−gi−1(x),−gi+1(x)}.

This implies
gi(x) ≥ f̂S(x) ≥ max{gi−1(x), gi+1(x)}.

3. Case 3: Otherwise, we may have several situations. We consider them one by one. If
curv(xi) = 0. Then δi−1 = δi. Then by Lemma C.1 we must have that s∗i = δi. Also, we
have either one or no kink in [xi, xi+1) by Lemma 2.1. Since gi(x) is the unique line joining
the points (xi, yi) and (xi+1, yi+1), we cannot have any kink and f̂S = gi(x). Similarly,
if curv(xi+1) = 0 then δi = δi+1 and s∗i+1 = δi, which gives us that f̂S(x) = gi(x) using
the uniqueness.

The only remaining possibilities are curv(xi) = +1 but curv(xi+1) = −1 or curv(xi) =
−1 but curv(xi+1) = +1. W.l.o.g., we consider the former situation. Then δi−1 < δi and
δi > δi+1. Also, by Lemma 2.1 there is at most one kink in [xi, xi+1). Therefore, if we
show that the kink is at xi only, it is sufficient. Let us assume that it is not the case, namely,
the kink is at x′ ∈ (xi, xi+1). If f̂S(x′) > gi(x), then the slope of the line incoming at xi:

s∗i =
f̂S(x

′)− yi
x′ − xi

>
gi(x

′)− yi
x′ − xi

= δi,

contradicting Lemma C.1. On the other hand, if f̂S(x′) < gi(x), then the slope of the line
incoming at xi+1:

s∗i+1 =
yi+1 − f̂S(x

′)

xi+1 − x′ >
yi+1 − gi(x

′)

xi+1 − x′ = δi,

contradicting Lemma C.1.

Therefore, the lemma is true in all the cases.

As a corollary, we get the following lemma.
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Lemma C.2. Fix any i ∈ {2, . . . , n− 2}, and consider x ∈ [xi, xi+1):

|f̂S(x)− f∗(x)| ≤ max {|gi(x)− f∗(x)|,min{|gi+1(x)− f∗(x)|, |gi−1(x)− f∗(x)|}} ,

and for x ∈ [0, x2)

|f̂S(x)− f∗(x)| = |g1(x)− f∗(x)|,
and for x ∈ [xn−1, 1]

|f̂S(x)− f∗(x)| = |gn−1(x)− f∗(x)| .

Proof. The above lemma is clearly true for x ∈ [0, x2), since in that range, f̂S(x) = g1(x) by
Lemma 4.2. Similarly, for x ∈ [xn−1, 1] we have f̂S(x) = gn−1(x) by Lemma 4.2. This implies
that |f̂S(x)− f∗(x)| = |gn−1(x)− f∗(x)|.
Also, by applying Lemma 4.2, for any i ∈ {2, . . . , n − 2) and for any x ∈ [xi, xi+1), one can say
that unless curv(xi) = curv(xi+1) = −1 or curv(xi) = curv(xi+1) = +1, we have

f̂S(x) = |gi(x)− f∗(x)|,

and the lemma holds. If curv(xi) = curv(xi+1) = −1. Then by Lemma 4.2, we have gi(x) ≤
f̂S(x) ≤ min{gi−1(x), gi+1(x)}. Let x∗ ∈ [xi, xi+1), where gi−1(x) and gi+1(x) meet.

For x ∈ [xi, x
∗]: gi(x) ≤ f̂S(x) ≤ gi−1(x) ≤ gi+1(x). Therefore,

gi(x)− f∗(x)︸ ︷︷ ︸
:=(1)

≤ f̂S(x)− f∗(x) ≤ gi−1(x)− f∗(x)︸ ︷︷ ︸
:=(2)

≤ gi+1(x)− f∗(x)︸ ︷︷ ︸
:=(3)

.

If (1) is non-negative, then the claim is clearly true. Because even (2) and (3) are positive. If
(1) is negative then the only way the |f̂S(x) − f∗(x)| can be greater than |gi(x) − f∗(x)| is when
gi−1(x)− f∗(x) is positive. And thus gi+1(x)− f∗(x) is also positive. Therefore we have

−|gi(x)− f∗(x)| ≤ f̂S(x)− f∗(x) ≤ |gi−1(x)− f∗(x)| ≤ |gi+1(x)− f∗(x)|,

which immediately implies the desired result. Similarly, for x ∈ (x∗, xi+1): gi(x) ≤ f̂S(x) ≤
gi+1(x) ≤ gi−1(x). Therefore,

gi(x)− f∗(x)︸ ︷︷ ︸
:=(1)

≤ f̂S(x)− f∗(x) ≤ gi+1(x)− f∗(x)︸ ︷︷ ︸
:=(2)

≤ gi−1(x)− f∗(x)︸ ︷︷ ︸
:=(3)

.

Again if (1) is non-negative, then the claim is clearly true. If (1) is negative then the only way the
|f̂S(x)− f∗(x)| can be greater than |gi(x)− f∗(x)| is when gi+1(x)− f∗(x) is positive. And thus
gi−1(x)− f∗(x) is also positive. Therefore we have

−|gi(x)− f∗(x)| ≤ f̂S(x)− f∗(x) ≤ |gi+1(x)− f∗(x)| ≤ |gi−1(x)− f∗(x)|,

and the lemma follows. The proof is exactly symmetric for when curv(xi) = curv(xi) = +1; the
only difference is that we apply the same argument on −gi,−gi−1,−gi+1 and −f̂S and add the
function f∗(x) instead of subtracting.

We now recall Definition 4.3 of special points. Boursier & Flammarion (2023) proved that if two
special points occur within two points. Then we get a spike. Our Lemma 4.4 is a mild generalization
of the lemma.

Proof of Lemma 4.4. (Boursier & Flammarion, 2023, Lemma 8) already showed that if nk+1 =

nk + 2 then f̂S has exactly one kink in (xnk−1, xnk+1
). Consider four consecutive points

(xnk−1, ynk−1), (xnk
, ynk

), (xnk+1, ynk+1), and (xnk+2, xnk+2). The first three are non-collinear
and even the last three are non-colinear since curv(xnk

) = curv(xnk+1) = −1. Therefore, the only
way to interpolate them with 2 linear pieces is to extend gnk−1 and gnk+1 until they intersect. This
immediately implies that f̂S(x) = min{gnk−1, gnk+1}.
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D PROOF OF THEOREM 2

Proof of Theorem 2. Let f∗ be G-Lipschitz. We sample S ∼ Dn and number points (xi, yi) from
left to right based on the x-coordinate. Again, we denote x0 := 0 and xn+1 := 1 for notational
convenience (they are not used in determining f̂S). The domain [0, 1] is divided into n+ 1 intervals
of length ℓ0, ℓ1, . . . , ℓn, where ℓi = xi+1 − xi. We want to analyze the population Lp loss of the
min-norm interpolator f̂S as defined in equation 2 for p ∈ [1, 2). Exactly following the step for the
derivation of equation 48, we get

Lp(f̂S) ≤ 2p−1(Rp(f̂S) + Lp(f
∗)), (20)

where Rp(f̂S) is defined and simplified as the following.

Rp(f̂S) =

∫ xn+1=1

x0=0

|f̂S(x)− f∗(x)|p dx

=

n∑
i=0

∫ xi+1

xi

|f̂S(x)− f∗(x)|p dx

≤
∫ x2

0

|g1(x)− f∗(x)|p dx+

∫ 1

xn−1

|gn−1(x)− f∗(x)|p dx

+

n−2∑
i=2

∫ xi+1

xi

max{|gi(x)− f∗(x)|p,min{|gi−1(x)− f∗(x)|p, |gi+1(x)− f∗(x)|p}} dx

(by Lemma C.2)

≤
∫ x2

0

|g1(x)− f∗(x)|p dx+

∫ 1

xn−1

|gn−1(x)− f∗(x)|p dx

+

n−2∑
i=2

∫ xi+1

xi

|gi(x)− f∗(x)|p +min{|gi−1(x)− f∗(x)|p, |gi+1(x)− f∗(x)|p} dx

≤
∫ x1

0

|g1(x)− f∗(x)|p dx︸ ︷︷ ︸
:=R0

+

∫ 1

xn

|gn−1(x)− f∗(x)|p dx︸ ︷︷ ︸
:=Rn

+

n−1∑
i=1

∫ xi+1

xi

|gi(x)− f∗(x)|p dx

+

n−2∑
i=2

∫ xi+1

xi

min{|gi−1(x)− f∗(x)|p, |gi+1(x)− f∗(x)|p} dx︸ ︷︷ ︸
:=R

≤ R0 +Rn +Rp(ĝS) +R. (21)

The following lemma, which we prove after the theorem, establishes that R0+Rn is vanishing with
high probability.

Lemma D.1. For any γ > 0, we have limn→∞ PS [R0 +Rn ≤ γ] = 1.

Moreover, we have already bounded Rp(ĝS) in equation 19; in fact for any p ≥ 1. When p ∈ [1, 2),
it reduces to:

lim
n→∞

P
S
[Rp(ĝS) ≤ 17Lp(f

∗)] = 1. (22)

We now focus on bounding R. Intuitively, R is the risk term caused due to spike formation. This is
only bounded for p ∈ [1, 2) and grows as p approaches 2. For i ∈ {2, . . . , n− 2}, define:

Ri :=

∫ xi+1

xi

min{|gi−1(x)− f∗(x)|p, |gi+1(x)− f∗(x)|p} dx.
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Then R =
∑n−2

i=2 Ri. Moreover, each Ri can be simplified as the following. For any i ∈ {2, . . . , n−
2} and any x ∈ [xi, xi+1],

|gi−1(x)− f∗(x)| =
∣∣∣∣yi + (yi − yi−1)

xi − xi−1
(x− xi)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi) + ϵi +

(
f∗(xi) + ϵi − f∗(xi−1)− ϵi−1

xi − xi−1

)
(x− xi)− f∗(x)

∣∣∣∣
≤ |f∗(xi)− f∗(x)|+ |ϵi|+

G(xi − xi−1) + |ϵi − ϵi−1|
xi − xi−1

|(x− xi)|

≤G(x− xi) + |ϵi|+
(
G(xi − xi−1) + |ϵi|+ |ϵi−1|

xi − xi−1

)
(x− xi)

≤G · ℓi + |ϵi|+
(
G · ℓi−1 + |ϵi|+ |ϵi−1|

ℓi−1

)
· ℓi

=2G · ℓi + |ϵi|+ (|ϵi|+ |ϵi−1|)
ℓi

ℓi−1
(23)

|gi+1(x)− f∗(x)| =
∣∣∣∣yi+1 +

(yi+2 − yi+1)

xi+2 − xi+1
(x− xi+1)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi+1) + ϵi+1 +

(
f∗(xi+2) + ϵi+2 − f∗(xi+1)− ϵi+1

xi+2 − xi+1

)
(x− xi+1)− f∗(x)

∣∣∣∣
≤ |f∗(xi+1)− f∗(x)|+ |ϵi+1|+

G(xi+2 − xi+1) + |ϵi+2 − ϵi+1|
xi+2 − xi+1

|x− xi+1|

≤G|x− xi+1|+ |ϵi+1|+
(
G(xi+2 − xi+1) + |ϵi+2|+ |ϵi+1|

xi+2 − xi+1

)
|x− xi+1|

≤G · ℓi + |ϵi+1|+
(
G · ℓi+1 + |ϵi+2|+ |ϵi+1|

ℓi+1

)
· ℓi

=2G · ℓi + |ϵi+1|+ (|ϵi+1|+ |ϵi+2|)
ℓi

ℓi+1
(24)

Ri =

∫ xi+1

xi

min{|gi−1(x)− f∗(x)|p, |gi+1(x)− f∗(x)|p} dx

≤
∫ xi+1

xi

min

{
2G · ℓi + |ϵi|+ (|ϵi|+ |ϵi−1|)

ℓi
ℓi−1

, 2G · ℓi + |ϵi+1|+ (|ϵi+1|+ |ϵi+2|)
ℓi

ℓi+1

}p

dx

(using equation 23 and equation 24)

≤
(
2Gℓi + |ϵi|+ |ϵi+1|+ (|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)

ℓi
max{ℓi−1, ℓi+1}

)p

ℓi,

≤ 4p−1

(
(2Gℓi)

p + |ϵi|p + |ϵi+1|p +
(
(2|ϵi|+ 2|ϵi+1|+ |ϵi−1|+ |ϵi+2|)

ℓi
max{ℓi−1, ℓi+1}

)p)
ℓi

= 23p−2Gpℓp+1
i + 4p−1|ϵi|pℓi + 4p−1|ϵi+1|pℓi + 4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p

ℓp+1
i

max{ℓi−1, ℓi+1}p

:= R̂i

(25)

Then R̂ :=
∑n−2

i=2 R̂i is an upper bound on R. The random variables ℓi s are mildly dependent. To

achieve independence, we denote ℓ̃0, ℓ̃1, . . . , ℓ̃n
i.i.d.∼ Exp(1)/(n + 1); in particular, ℓ̃i = Xi/n+1.
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We replace ℓi with ℓ̃i and define random variables R̃i.

R̃i = 23p−2Gpℓ̃p+1
i + 4p−1(|ϵi|p + |ϵi+1|p)ℓ̃i + 4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p

ℓ̃p+1
i

max{ℓ̃i−1, ℓ̃i+1}p
, and

R̃ =

n−2∑
i=2

R̃i.

We claim that:

Lemma D.2. As n → ∞, we have R̂− R̃
a.s.−−→0 .

The proof is similar to Lemma B.2. Therefore, it suffices to give a bound on R̃. Still, any four
consecutive R̃i’s are dependent. Therefore, we re-express R̃ into four disjoint sums such that each
individual of them is the sum of only i.i.d. random variables. We divide the indices into four sets Ij
for 0 ≤ j ≤ 3. Define Ij = {i%4 = j : 2 ≤ i ≤ (n− 2)} for 0 ≤ j ≤ 3 and

R̃(j) :=
∑
i∈Ij

R̃i. Then R̃ =

3∑
j=0

R̃(j).

Then for any 0 ≤ j ≤ 3, further simplifying

R̃(j) =
∑
i∈Ij

23p−2Gpℓ̃p+1
i + 4p−1(|ϵi|p + |ϵi+1|p)ℓ̃i + 4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p

ℓ̃p+1
i

max{ℓ̃i−1, ℓ̃i+1}p

=
1

(n+ 1)p+1

∑
i∈Ij

23p−2GpXp+1
i︸ ︷︷ ︸

:=T1

+
1

(n+ 1)

∑
i∈Ij

4p−1(|ϵi|p + |ϵi+1|p)Xi︸ ︷︷ ︸
:=T2

+
1

(n+ 1)

∑
i∈Ij

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p
Xp+1

i

max{Xi−1, Xi+1}p︸ ︷︷ ︸
:=T3

(26)

Now, each T1, T2 and T3 is the average of i.i.d. random variables (up to scaling). Thus, as n → ∞,
by the strong LLN,

1

|Ij |
∑
i∈Ij

23p−2GpXp+1
i

a.s.−−→ 23p−2Gp E[Xp+1
i ] = 23p−2GpΓ(p+ 2) < ∞.

Therefore, using the fact limn→∞
|Ij |

(n+1) = 1
4 and since we are considering that p ≥ 1 we get that

the first term of equation 26 converges to 0 almost surely, i.e. as n → ∞

T1 =
1

(n+ 1)p+1

∑
i∈Ij

23p−2GpXp+1
i

a.s.−−→ 0. (27)

Similarly, since E[Xi] = 1 and E[|ϵ|p] = Lp(f
∗) < ∞ even T2 (up to scaling) is the average i.i.d.

random variables, with finite expectation. Using the strong law of large numbers, as n → ∞ the
second term of equation 26

T2 =
1

(n+ 1)

∑
i∈Ij

4p−1(|ϵi|p + |ϵi+1|p)Xi
a.s.−−→ 1

4
· 4p−1 E[(|ϵi|p + |ϵi+1|p)Xi] =

4p−1

2
Lp(f

∗).

(28)
Finally, T3 is also the average of i.i.d random variables (up to scaling). Before applying the strong
LLN, we must verify if each summand has a finite expectation. Since E[|ϵ|p] = Lp(f

∗) < ∞ and
E[Xp+1

i ] = Γ(p+2) < ∞, it is easy to observe that it boils down to verifying if E[ 1
max{Xi−1,Xi+1}p ]

has a finite expectation. The following claim verifies this.

Claim D.3. Let A,B
i.i.d.∼ Exp(1), then E

[
1

max{A,B}p

]
≤ 2p

(2−p) .
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Therefore, applying the strong LLN in exactly the same way:

T3 =
1

(n+ 1)

∑
i∈Ij

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p
Xp+1

i

max{Xi−1, Xi+1}p
a.s.−−→

1

4
· E

[
4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p

Xp+1
i

max{Xi−1, Xi+1}p

]

≤ 4p−1 4p−1(E[|ϵi|p + |ϵi+1|p + |ϵi−1|p + |ϵi+2|p)]
4

Γ(p+ 2) · E
[

1

max{Xi−1, Xi+1}p

]
≤ 24p−4Lp(f

∗)Γ(p+ 2)2p

(2− p)
, (29)

where in the last inequality, we use Claim D.3. Using equation 29, equation 27 and equation 28, we
get a high probability bound on R̃(j) (recall definition in equation 26). In particular, for 0 ≤ j ≤ 3

lim
n→∞

P
S

[
R̃(j) ≤

(
4p−1

2
+

24p−4 · 2p · Γ(p+ 2)

2− p
+ 1

)
Lp(f

∗)

]
= 1 .

Using the fact that we are considering p ∈ [1, 2), we get

lim
n→∞

P
S

[
R̃(j) ≤

(
2 +

384

2− p
+ 1

)
Lp(f

∗)

]
= 1 ,

=⇒ lim
n→∞

P
S

[
R̃(j) ≤ 387Lp(f

∗)

2− p

]
= 1 .

Therefore, since R̃ =
∑3

j=0 R̃
(j) we obtain

lim
n→∞

P
S

[
R̃ ≤ 1548Lp(f

∗)

(2− p)

]
= 1 .

Using this along with Lemma D.2 and the fact that R ≤ R̂ gives us

lim
n→∞

P
S

[
R ≤ 1549Lp(f

∗)

(2− p)

]
= 1 .

Further substituting this in the bounds from equation 21 and using Lemma D.1 and equation 22

lim
n→∞

P
S

[
Rp(f̂S) ≤ 1567Lp(f

∗)

(2− p)

]
= 1.

Finally, using equation 20 with the above

lim
n→∞

P
S

[
Lp(f̂S) ≤ 3136Lp(f

∗)

(2− p)

]
= 1.

As such, by letting C = 3136, the theorem follows.

We now prove the lemmas and claims we used in the above proof.
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Proof of Lemma D.1. For any x ∈ [0, x1], we have

|g1(x)− f∗(x)| =
∣∣∣∣y1 + (y2 − y1)

x2 − x1
(x− x1)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(x1) + ϵ1 +

(
f∗(x2) + ϵ2 − f∗(x1)− ϵ1

x2 − x1

)
(x− x1)− f∗(x)

∣∣∣∣
≤ |f∗(x1)− f∗(x)|+ |ϵ1|+

∣∣∣∣G(x2 − x1) + |ϵ2 − ϵ1|
x2 − x1

∣∣∣∣ |x− x1|

≤G|x− x1|+ |ϵ1|+
(
G(x2 − x1) + |ϵ2|+ |ϵ1|

x2 − x1

)
|x− x1|

≤G · ℓ0 + |ϵ1|+
(
G · ℓ1 + |ϵ2|+ |ϵ1|

ℓ1

)
· ℓ0

=2G · ℓ0 + |ϵ1|+ (|ϵ2|+ |ϵ1|)
ℓ0
ℓ1
.

Therefore,

R0 =

∫ x1

0

|g1(x)− f∗(x)|p dx ≤ ℓ0

[
2G · ℓ0 + |ϵ1|+ (|ϵ2|+ |ϵ1|)

ℓ0
ℓ1

]p
≤ 4p−1 · (2G)p · ℓp+1

0 + 4p−1|ϵ1|pℓ0 + 4p−1|ϵ2|p
ℓp+1
0

ℓp1
+ 4p−1 · |ϵ1|p ·

ℓp+1
0

ℓp1

= 4p−1 · (2G)p · Xp+1
0

(X0 + · · ·+Xn)p+1
+ 4p−1|ϵ1|p

X0

(X0 + · · ·+Xn)

+ (4p−1 · |ϵ2|p + 4p−1 · |ϵ1|p) ·
Xp+1

0

Xp
1 · (X0 + · · ·+Xn)

(30)

We now provide probabilistic upper bounds on X0, |ϵ2|p and |ϵ1|p, and lower bounds on X1 and
X0 + · · ·+Xn, which suffices to further upper bound R0.

P[X0 ≤ 3 lnn] = 1− P[X0 > 3 lnn] = 1−
∫ ∞

3 lnn

e−z dz = 1− 1

n3
.

Using Markov’s inequality,

P[|ϵ1|p ≤ Lp(f
∗) lnn] = 1− P[|ϵ1|p > Lp(f

∗) lnn] ≥ 1− E[|ϵ1|p]
Lp(f∗) lnn

= 1− 1

lnn
.

Similarly,

P[|ϵ2|p ≤ Lp(f
∗) lnn] ≥ 1− 1

lnn
.

P[X1 ≥ 1

lnn
] =

∫ ∞

1
lnn

e−z dz = e−
1

lnn ≥ 1− 1

lnn
,

where the last inequality follows from the Taylor expansion of ez . Finally, as n → ∞, by the strong
Law of Large Numbers, 1

n

∑n
i=0 Xi

a.s.−−→ 1. This implies

P

[
n∑

i=0

Xi ≥
n

2

]
= 1− on(1).

Doing a union bound over these events, and substituting these probabilistic bounds in equation 30,
we get that with probability 1− on(1),

R0 ≤ 4p−1 · (2G)p(3 lnn)p+1

(n/2)p+1
+

4p−1Lp(f
∗) lnn · 3 lnn
(n/2)

+
2 · 4p−1Lp(f

∗) lnn · (3 lnn)p+1

(1/lnp n) · (n/2)
= on(1).

Following the exact same steps, one can say that with probability 1− on(1), we have Rn = on(1).
Therefore, doing the union bound and combining both, we get that with probability 1 − on(1) we
have R0 +Rn = on(1). This implies, for any γ > 0,

lim
n→∞

P
S
[R0 +Rn ≤ γ] = 1.
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Proof of Lemma D.2. By equation 9, we have (ℓ0, . . . , ℓn) ∼
(
X0

X , . . . , Xn

X

)
, where

X0, . . . , Xn
i.i.d.∼ Exp(1) and X :=

∑n
i=0 Xi. Also, we have ℓ̃i =

Xi

n+1 for all i.

Therefore,

n−2∑
i=2

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p
(

ℓi
p+1

max{ℓi−1, ℓi+1}p
− ℓ̃p+1

i

max{ℓ̃i−1, ℓ̃i+1}p

)

=

n−2∑
i=2

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p ·
Xi

p+1

max{Xi−1, Xi+1}p

(
1

X
− 1

n+ 1

)

=
1

(n+ 1)

n−2∑
i=2

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p ·
Xi

p+1

max{Xi−1, Xi+1}p︸ ︷︷ ︸
:=T

(
n+ 1

X
− 1

)

By the strong law of large numbers, as n → ∞, n+1
X

a.s.−−→ 1. Thus, (n+1
X − 1)

a.s.−−→ 0. Also, T
converges almost surely to a finite quantity as n → ∞. To see this, we split T into four disjoint
sums, one each over indices in Ij = {i : i%4 = j} for 0 ≤ j ≤ 3. And each of them converges
almost surely to a finite quantity by equation 29, and hence also the overall sum T . Therefore, as
n → ∞
n−2∑
i=2

4p−1(|ϵi|+|ϵi+1|+|ϵi−1|+|ϵi+2|)p
(

ℓi
p+1

max{ℓi−1, ℓi+1}p
− ℓ̃p+1

i

max{ℓ̃i−1, ℓ̃i+1}p

)
a.s.−−→ 0 . (31)

Next, we have

n−2∑
i=2

23p−2Gp
(
ℓp+1
i − ℓ̃p+1

i

)
=

n−2∑
i=2

23p−2GpXp+1
i

(
1

Xp+1
− 1

(n+ 1)p+1

)

= 23p−2Gp ·
∑n−2

i=2 Xp+1
i

n− 3
· n− 3

(n+ 1)p+1
·
(
(n+ 1)p+1

Xp+1
− 1

)
,

and by the strong law of large numbers we have
∑n−2

i=2 Xp+1
i

n−3

a.s.−−→ EXp+1
i < ∞ and

(
n+1
X

)p+1 a.s.−−→
1, and thus

n−2∑
i=2

23p−2Gp
(
ℓp+1
i − ℓ̃p+1

i

)
a.s.−−→ 0 . (32)

Moreover,

n−2∑
i=2

4p−1|ϵi|p
(
ℓi − ℓ̃i

)
= 4p−1

n−2∑
i=2

(
|ϵi|pXi

X
− |ϵi|pXi

n+ 1

)

= 4p−1 ·
∑n−2

i=2 |ϵi|pXi

n− 3
· n− 3

n+ 1

(
n+ 1

X
− 1

)
,

and by the strong law of large numbers we have
∑n−2

i=2 |ϵi|pXi

n−3

a.s.−−→ E |ϵi|pXi < ∞ and
(
n+1
X

) a.s.−−→ 1,
and thus

n−2∑
i=2

4p−1|ϵi|p
(
ℓi − ℓ̃i

)
a.s.−−→ 0 . (33)

By a similar argument, we also have

n−2∑
i=2

4p−1|ϵi+1|p
(
ℓi − ℓ̃i

)
a.s.−−→ 0 . (34)
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Combining equation 31, (32), (33) and (34), we get

R̂− R̃ =

n−2∑
i=2

23p−2Gp
(
ℓp+1
i − ℓ̃p+1

i

)
+

n−2∑
i=2

4p−1|ϵi|p
(
ℓi − ℓ̃i

)
+

n−2∑
i=2

4p−1|ϵi+1|p
(
ℓi − ℓ̃i

)
+

n−2∑
i=2

4p−1(|ϵi|+ |ϵi+1|+ |ϵi−1|+ |ϵi+2|)p
(

ℓp+1
i

max{ℓi−1, ℓi+1}p
− ℓ̃p+1

i

max{ℓ̃i−1, ℓ̃i+1}p

)
a.s.−−→ 0

Proof of Claim D.3. We first show that max{A,B} d
= A + B

2 . Both A,B
i.i.d.∼ Exp(1). We will

show that the CDF of max{A,B} is the same as the CDF of A+ B
2 . Let Fmax{A,B}(.) and FA+B

2
(.)

be their CDFs respectively. Then for any z ≥ 0.

FA+B
2
(z) =P

(
A+

B

2
≤ z

)
=

∫ z

0

e−x P (B ≤ 2(z − x)) dx =

∫ z

0

e−x
(
1− e−2(z−x)

)
dx

=

∫ z

0

e−x dx− e−2z

∫ z

0

ex dx = 1− e−z − e−2z(ez − 1) = 1− 2e−z + e−2z

=
(
1− e−z

)2
= P(A ≤ z,B ≤ z) = P(max{A,B} ≤ z)

=Fmax{A,B}(z).

Using this, we can further simplify the expectation as follows.

E
[

1

max{A,B}p

]
= E

[
1

(A+ B
2 )

p

]
≤ E

[
2p

(A+B)p

]
= 2p E

[
1

Γ(2, 1)p

]
= 2p

∫ ∞

0

1

zp
· ze−z dz

= 2p
∫ ∞

0

z1−pe−z dz

= 2pΓ(2− p)

≤ 2p

2− p
,

where the last inequality follows from Claim D.4 and the fact that 1 ≤ p < 2.

Claim D.4. For z ∈ (0, 1], we have 1
2z ≤ Γ(z) ≤ 1

z .

Proof. For z > 0,

Γ(z) =

∫ ∞

0

wz−1e−w dw =
wz

z
· e−w

∣∣∣∞
0

−
∫ ∞

0

−e−wwz

z
dw = 0 +

1

z
·
∫ ∞

0

e−wwz dw

=
Γ(1 + z)

z
(35)

Now for 0 < z ≤ 1, we have 1 < 1 + z ≤ 2. Therefore,
1

2
≤ Γ(1 + z) ≤ 1.

The upper bound follows from the fact that Γ(.) is unimodal (with first decreasing and then increas-
ing). Therefore, the maximum value of Γ(.) in [1, 2] is max{Γ(1),Γ(2)} = 1. The lower bound
follows from Deming & Colcord (1935); the minimum value is approximately 0.8856032, which is
at least 1/2. Putting this back in equation 35, for 0 < z ≤ 1

1

2z
≤ Γ(z) ≤ 1

z
.

27



Published as a conference paper at ICLR 2024

E LOWER BOUNDS

Our lower bounds (Theorem 3 and 4) follow from very similar situations under which spikes are
formed. Therefore, we first present the basic construction of such a situation; later, we specialize to
the case of p ∈ [1, 2) and p ≥ 2 and obtain both theorems respectively.

Recall the noise model ϵ ∼ N (0, 1). We first claim the following.

Lemma E.1. For any function f , we have Lp(f) ≥ Rp(f).

The above lemma then allows us to solely focus on lower bounding the reconstruction loss of the
predictor.

Proof of Lemma E.1. By definition,

Lp(f) = E
(x,y)∼D

[|f(x)− y|p] = E
x∼Uniform([0,1]),ϵ∼N (0,1)

[|f(x)− f∗(x)− ϵ|p] .

Let q : R+ → R+ be the density of the folded standard Gaussian, i.e. |N (0, 1)|. Then due to the
symmetry of the Gaussian,

Lp(f) = E
x∼Uniform([0,1])

E
ϵ∼N (0,1)

[|f(x)− f∗(x)− ϵ|p]

= E
x∼Uniform([0,1])

[∫ ∞

0

(
1

2
|f(x)− f∗(x)− δ|p + 1

2
|f(x)− f∗(x) + δ|p

)
q(δ) dδ

]
≥ E

x∼Uniform([0,1])

[∫ ∞

0

|f(x)− f∗(x)|pq(δ) dδ
]

(by Claim E.2 below)

= E
x∼Uniform([0,1])

[|f(x)− f∗(x)|p] = Rp(f). (by definition)

Here the second last step follows from the following claim, which we prove below.

Claim E.2. For any µ ∈ R, p ≥ 1, and δ ∈ R+, we have 1
2 (|µ+ δ|p + |µ− δ|p) ≥ |µ|p.

Proof. The claim trivially holds for µ = 0. Now consider µ > 0, then if δ ≥ µ then

1

2
((µ+ δ)p + |µ− δ|p) ≥ 1

2
(2µ)p ≥ 2p−1µp ≥ µp.

But if δ < µ then since the function |.|p is convex for p ≥ 1 we have

1

2
(|µ+ δ|p + |µ− δ|p) = 1

2
(µ+ δ)p +

1

2
(µ− δ)p ≥

(
µ+ δ + µ− δ

2

)p

= µp.

Finally, if µ < 0, then apply the same argument to −µ giving the desired result.

This concludes the proof of the lemma.

We now describe the situations under which spikes are formed. We will consider f∗(x) ≡ 0 and the
noise model ϵ ∼ N (0, 1). Let S ∼ Dn be the data points. Again, we number them such that

x0 =: 0 < x1 < · · · < xn < 1 := xn+1.

We have n+ 1 intervals with lengths ℓ0, . . . , ℓn from left to right. In particular, ℓi = xi+1 − xi.

We now consider N := ⌊n/10⌋ disjoint subsets S1, . . . , SN ⊂ S such that Si ∩ Sj = ∅ for i ̸= j.
Each Si is a set of six consecutive points (ordered from left to right). For any i ∈ [N ],

Si := {(xj , yj) : j = 10(i− 1) + 1, . . . , 10(i− 1) + 6}.

It is clear by definition that these sets are disjoint.
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Figure 6: An illustration of configuration of points in the i-th subset Si when the event Ai happens.

We denote the noise random variables associated with j-th point of Si by ϵi,j . Also. we re-denote
the distance between any two consecutive points from the same subset by ℓi,j , i.e. ℓi,j is the distance
between (j + 1)-th point and j-th point in Si. Consider the events A1, . . . , AN as below.

Ai := {ϵi,2, ϵi,5 ≤ −1} ∩ {ϵi,1, ϵi,3, ϵi,4, ϵi,6 ∈ [1, 2]} ∩ {ℓi,3 ≥ ℓi,2} ∩ {ℓi,3 ≥ ℓi,4}

See Figure 6 for an illustration. This considers the event that the bad configuration of points happens
for points in Si. Then we can express Rp(f̂S), the risk of the predictor in [0, 1], in terms of the
random variables ℓi s when such bad configurations occur. Formally,

Lemma E.3. • For 1 ≤ p < 2:

Rp(f̂S) ≥
N∑
i=1

ℓp+1
i,3

(ℓi,2 + ℓi,4)p
1[Ai];

• For p ≥ 2 :

Rp(f̂S) ≥
N∑
i=1

ℓ3i,3
(ℓi,2 + ℓi,4)2

1[Ai].

Proof. Without loss of generality, assume that A1 holds and consider the following analysis under
A1. (One can choose any i ∈ [N ] and the discussion follows in the same way). If A1 happens
then curv(x2) = +1, curv(x3) = curv(x4) = −1 and again at x5 we will have curv(x5) = +1.
Therefore, x3 and x5 are special points according to Definition 4.3; the curvature changes within the
distance of 2 points. Therefore, by Lemma 4.4, there is exactly one kink possible in (x2, x5). More
importantly, in the interval (x3, x4), the function f̂S(x) = min{g2(x), g4(x)}. Therefore, for any
x ∈ [x3, x4],

g2(x) = y3 +

(
y3 − y2
x3 − x2

)
(x− x3) = ϵ3 +

ϵ3 − ϵ2
x3 − x2

(x− x3) ≥ 1 +
2

ℓ2
(x− x3).

Similarly,

g4(x) = y4+
y5 − y4
x5 − x4

(x−x4) = ϵ4+
ϵ5 − ϵ4
x5 − x4

(x−x4) = ϵ4+
ϵ4 − ϵ5
x5 − x4

(x4−x) ≥ 1+
2

ℓ4
(x4−x).
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Therefore, if A1 happened then writing the Lp reconstruction error in the interval [x3, x4]:

∫ x4

x3

|f̂S(x)− f∗(x)|pdx =

∫ x4

x3

|f̂S(x)|pdx =

∫ x4

x3

min{g2(x), g4(x)}p dx

≥
∫ x4

x3

min{1 + 2

ℓ2
(x− x3), 1 +

2

ℓ4
(x4 − x)}p dx

=

∫ x∗

x3

(
1 +

2

ℓ2
(x− x3)

)p

dx+

∫ x4

x∗

(
1 +

2

ℓ4
(x4 − x)

)p

dx ,

where x∗ ∈ [x3, x4] is the x-coordinate of the point of intersection of the two lines. Thus, to find x∗

1 +
2

ℓ2
(x∗ − x3) = 1 +

2

ℓ4
(x4 − x∗)

1

ℓ2
(x∗ − x3) =

1

ℓ4
(ℓ3 − (x∗ − x3))(

1

ℓ2
+

1

ℓ4

)
(x∗ − x3) =

ℓ3
ℓ4

(x∗ − x3) =
ℓ3
ℓ4

· ℓ2ℓ4
ℓ2 + ℓ4

=
ℓ2ℓ3

ℓ2 + ℓ4

=⇒ (x4 − x∗) = ℓ3 −
ℓ2ℓ3

ℓ2 + ℓ4
=

ℓ4ℓ3
ℓ2 + ℓ4

When 1 ≤ p < 2: Writing the reconstruction risk in [x3, x4] and substituting the above:

∫ x4

x3

|f̂S(x)− f∗(x)|p dx ≥
∫ x∗

x3

(
1 +

2

ℓ2
(x− x3)

)p

dx+

∫ x4

x∗

(
1 +

2

ℓ4
(x4 − x)

)p

dx

≥
∫ x∗

x3

(
2

ℓ2
(x− x3)

)p

dx+

∫ x4

x∗

(
2

ℓ4
(x4 − x)

)p

dx

=
2p

(p+ 1) · ℓ2p
(x∗ − x3)

p+1 +
2p

(p+ 1) · ℓ4p
(x4 − x∗)p+1

=
2p

(p+ 1)

(
ℓ2ℓ

p+1
3

(ℓ2 + ℓ4)p+1
+

ℓ4ℓ
p+1
3

(ℓ2 + ℓ4)p+1

)

=
2p

(p+ 1)
· ℓp+1

3

(ℓ2 + ℓ4)p

≥ ℓp+1
3

(ℓ2 + ℓ4)p
, (36)

where the last inequality follows from the fact that we are considering p ∈ [1, 2).
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When p ≥ 2∫ x4

x3

|f̂S(x)− f∗(x)|p dx ≥
∫ x∗

x3

(
1 +

2

ℓ2
(x− x3)

)p

dx+

∫ x4

x∗

(
1 +

2

ℓ4
(x4 − x)

)p

dx

≥
∫ x∗

x3

(
1 +

2

ℓ2
(x− x3)

)2

dx+

∫ x4

x∗

(
1 +

2

ℓ4
(x4 − x)

)2

dx

(both integrands are at least 1 in the range)

≥
∫ x∗

x3

(
2

ℓ2
(x− x3)

)2

dx+

∫ x4

x∗

(
2

ℓ4
(x4 − x)

)2

dx

=
4

3 ℓ22
(x∗ − x3)

3 +
4

3 ℓ24
(x4 − x∗)3

=
4

3
· ℓ2ℓ

3
3

(ℓ2 + ℓ4)3
+

4

3
· ℓ4ℓ

3
3

(ℓ2 + ℓ4)3

=
4

3
· ℓ33
(ℓ2 + ℓ4)2

≥ ℓ33
(ℓ2 + ℓ4)2

. (37)

By the definition of risk, one can say that

Rp(f̂S) ≥
∑
i∈N

∫ xi,4

xi,3

|f̂S(x)− f∗(x)|p dx

Then by doing the above analysis as in equation 36 and equation 37 for each i ∈ N , along with the
observation that the risk in any [xi,3, xi,4] is non-negative, we obtain the desired result. In particular,
for 1 ≤ p < 2 :

Rp(f̂S) ≥
N∑
i=1

ℓp+1
i,3

(ℓi,2 + ℓi,4)p
1[Ai];

And, for p ≥ 2 :

Rp(f̂S) ≥
N∑
i=1

ℓ3i,3
(ℓi,2 + ℓi,4)2

1[Ai].

Lemma E.4. The events {Ai}Ni=1 are independent. Moreover, P(Ai) = c0 for some universal
constant c0.

Proof. The events A1, . . . , AN are independent since the noises are i.i.d. Also, the event about the
interval lengths (that are dependent random variables) in the above {ℓi,3 ≥ ℓi,2} ∩ {ℓi,3 ≥ ℓi,4} can
be expressed in terms of the underlying exponential random variables (which are independent) as
{Xi,3 ≥ Xi,2} ∩ {Xi,3 ≥ Xi,4}. Finally, it is easy to observe that for any i ∈ [N ], P (Ai) is some
universal constant c0.

E.1 PROOF OF THEOREM 3

Proof of Theorem 3. We have f∗ ≡ 0 and the noise distribution is N (0, 1). Therefore, Lp(f
∗) is

just a constant (dependent on p). More precisely,

Lp(f
∗) = E[|ϵ|p] = σp · 2

p/2

√
π
Γ

(
p+ 1

2

)
≤ 2√

π
, (38)

where in the last inequality we use σ = 1 and 1 ≤ p < 2. Also, for 1 ≤ p < 2, by Lemma E.3

Rp(f̂S) ≥

(
N∑
i=1

ℓp+1
i,3

(ℓi,2 + ℓi,4)p
1[Ai]

)
:= R̂p (39)

31



Published as a conference paper at ICLR 2024

Then, to create independence, we define (ℓ̃0, . . . , ℓ̃n)
i.i.d.∼ Exp(1)/(n+1) where ℓ̃i = Xi

n+1 . We now
replace ℓi’s with ℓ̃i’s to define R̃p.

R̃p :=

N∑
i=1

ℓ̃p+1
i,3

(ℓ̃i,2 + ℓ̃i,4)p
1[Ai]

Lemma E.5. As n → ∞ we have R̂p − R̃p
a.s.−−→ 0.

Moreover, expressing R̃p in terms of Xi’s

R̃p =
1

(n+ 1)

N∑
i=1

Xp+1
i,3

(Xi,2 +Xi,4)p
1[Ai] =

N

(n+ 1)
· 1

N

N∑
i=1

Xp+1
i,3

(Xi,2 +Xi,4)p
1[Ai] (40)

Therefore, R̃p is the average of N i.i.d. random variables (up to scaling). Each random variables
have the expectation

E

[
Xp+1

i,3

(Xi,2 +Xi,4)p
1[Ai]

]
≤ E

[
Xp+1

i,3

(Xi,2 +Xi,4)p

]
= E[Xp+1

i,3 ]E
[

1

(Xi,2 +Xi,4)p

]
= E[Exp(1)p+1] · E

[
1

Γ(2, 1)p

]
(sum of two i.i.d. Exp(1)s is Γ(2, 1))

=

(∫ ∞

0

zp+1e−z dz

)(∫ ∞

0

1

zp
· 1

Γ(2)
ze−z dz

)
=

(∫ ∞

0

zp+1e−z dz

)(∫ ∞

0

z1−pe−z dz

)
= Γ(p+ 2)Γ(2− p) < ∞, (41)

for 1 ≤ p < 2. Thus, by the strong law of large numbers, as n → ∞ (also N = ⌊n/10⌋ → ∞)

1

N

N∑
i=1

Xp+1
i,3

(Xi,2 +Xi,4)p
1[Ai]

a.s−→ E

[
Xp+1

i,3

(Xi,2 +Xi,4)p
1[Ai]

]

= P(Ai)E

[
Xp+1

i,3

(Xi,2 +Xi,4)p
| Ai

]
= P(Ai)E

[
Xp+1

i,3

(Xi,2 +Xi,4)p
| Xi,2 ≤ Xi,3, Xi,4 ≤ Xi,3

]
(by definition of Ai)

≥ P(Ai)E

[
Xp+1

i,3

(Xi,2 +Xi,4)p

]
(since the function is non-increasing in terms of Xi,2 and Xi,4)

= c0 E[Exp(1)p+1] · E
[

1

Γ(2, 1)p

]
= c0 · Γ(2 + p) · Γ(2− p) ≥ 2c0 · Γ(2− p)

(since 1 ≤ p < 2)

≥ c0
(2− p)

(by Claim D.4)

Moreover, limn→∞
N

n+1 = limn→∞
⌊n/10⌋
n+1 = 1

10 . Therefore, recalling the definition of R̃p in equa-
tion 40, we obtain that for a constant γ > 0

lim
n→∞

P
S

[
R̃p ≥ c0

10(2− p)
− γ

]
= 1.

Therefore, using Lemma E.5

lim
n→∞

P
S

[
R̂p ≥ c0

20(2− p)

]
= 1.

Recalling equation 39 that R̂p is a lower-bound on the risk, we obtain

lim
n→∞

P
S

[
Rp(f̂S) ≥

c0
20(2− p)

]
= 1.
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By equation 38, Lp(f
∗) ≤ 2/

√
π. Choosing c := c0

√
π/40 we get the desired theorem, i.e.

lim
n→∞

P
S

[
Rp(f̂S) ≥

c

(2− p)
Lp(f

∗)

]
= 1.

Finally, using Lemma E.1 we obtain

lim
n→∞

P
S

[
Lp(f̂S) ≥

c

(2− p)
Lp(f

∗)

]
= 1.

Proof of Lemma E.5. Recall equation 9 that ℓi,j ∼ Xi,j/X for 1 ≤ i ≤ N and j ∈ {1, 2, 3, 4, 5, 6},
where Xi,j ∼ Exp(1) and X is the sum of (n + 1) i.i.d Exp(1) random variables. Therefore, by
definition of R̂p and R̃p

R̂p − R̃p =

(
N∑
i=1

ℓp+1
i,3

(ℓi,2 + ℓi,4)p
1[Ai]

)
−

(
N∑
i=1

ℓ̃p+1
i,3

(ℓ̃i,2 + ℓ̃i,4)p
1[Ai]

)

=

N∑
i=1

(
(Xi,3/X)p+1

(Xi,2/X + Xi,4/X)p
1[Ai]−

(Xi,3/n+1)p+1

(Xi,2/n+1 + Xi,4/n+1)p
1[Ai]

)

=
1

n+ 1

N∑
i=1

[
Xp+1

i,3

(Xi,2 +Xi,4)p
1[Ai]

]
︸ ︷︷ ︸

:=T

(
n+ 1

X
− 1

)
(42)

We already know that by equation 41, T converges to a finite quantity almost surely as n → ∞.
More formally, by the strong LLN

T =
N

n+ 1
· 1

N

N∑
i=1

[
Xp+1

i,3

(Xi,2 +Xi,4)p
1[Ai]

]
a.s.−−→ 1

10
· E

[
Xp+1

i,3

(Xi,2 +Xi,4)p
1[Ai]

]
< ∞,

where the last inequality follows from equation 41. Since X is the sum of (n + 1) i.i.d. Exp(1)
random variables, by the strong law of large numbers, as n → ∞, we have n+1

X

a.s.−−→ 1. Therefore,(
n+1
X − 1

) a.s.−−→ 0. Combining this in equation 42, we obtain that R̂p − R̃p
a.s−→ 0.

E.2 PROOF OF THEOREM 4

Proof of Theorem 4. We have the same f∗ ≡ 0 and the noise distribution is N (0, 1). By Lemma
E.3 for p ≥ 2

Rp(f̂S) ≥
N∑
i=1

ℓ3i,3
(ℓi,2 + ℓi,4)2

· 1[Ai].

Recall equation 9 that ℓi,j ∼ Xi,j/X, where Xi,j ∼ Exp(1) and X is the sum of (n+1) i.i.d Exp(1)
random variables, one of which is Xi,j . Thus,

Rp(f̂S) ≥
N∑
i=1

(Xi,3/X)3

(Xi,2/X + Xi,4/X)2
· 1[Ai] =

1

X

N∑
i=1

X3
i,3

(Xi,2 +Xi,4)2
1[Ai] := R̂. (43)

For i ∈ [N ], define

R̂i :=
X3

i,31[Ai]

(Xi,2 +Xi,4)2
. Then R̂ =

1

X

N∑
i=1

R̂i (44)
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Each R̂i has an infinite expectation, as we show in the following calculation.

E[R̂i] = E

[
X3

i,31[Ai]

(Xi,2 +Xi,4)2

]
= P(Ai) · E

[
X3

i,3

(Xi,2 +Xi,4)2
| Ai

]

= c0 · E

[
X3

i,3

(Xi,2 +Xi,4)2
| Xi,2 ≤ Xi,3, Xi,4 ≤ Xi,3

]
(by Lemma E.4 and recall Ai)

≥ c0 · E

[
X3

i,3

(Xi,2 +Xi,4)2

]
(the function inside expectation is non-increasing in terms of Xi,2, Xi,4)

= c0 · E[Exp(1)3] · E
[

1

Γ(2, 1)2

]
= 6c0 ·

∫ ∞

0

1

z2
· ze−z dz = 6c0 ·

∫ ∞

0

e−z

z
dz = ∞.

Therefore, we define the truncated random variables T̂i(a) which is the truncation of R̂i at any finite
threshold a. Formally,

T̂i(a) := min{R̂i, a}.
Then T̂i(a) has finite expectation by its definition, which we denote by E[T̂i(a)] = h(a) for some
non-decreasing function h(a). Also, it must be that lima→∞ h(a) = ∞, because the expectation of
T̂i(a) goes to infinity as a does. We now define

T̂ (a) :=
1

X

N∑
i=1

T̂i(a),

then T̂ (a) for any fixed a, by its definition serves as a lower bound on R̂ (recall equation 44). We
rewriting T̂ (a) as follows

T̂ (a) :=
n+ 1

X
· N

n+ 1
· 1

N

N∑
i=1

T̂i(a). (45)

Then as n → ∞, since X is the sum of n+ 1 i.i.d. Exp(1), by the strong law of large numbers
n+ 1

X

a.s.−−→ E[Exp(1)] = 1. (46)

Similarly, by the strong LLN

1

N

N∑
i=1

T̂i(a)
a.s.−−→ E[T̂i(a)] = h(a). (47)

And, finally using limn→∞
N

n+1 = 1
10 along with equation 47 and equation 46 in equation 45, we

obtain

T̂ (a)
a.s.−−→ h(a)

10
.

Therefore, for any b > 0 choose a∗ such that h(a∗) ≥ 21b, then as n → ∞, T̂ (a∗) a.s.−−→ h(a∗)/10 =
2.1b (note that it is always possible to choose such a∗ since lima→∞ h(a) = ∞). This implies

lim
n→∞

P
S
[T̂ (a∗) ≥ 2b] = 1.

Thus, using the fact that T̂ (a∗) is a lower bound on R̂

lim
n→∞

P
S
[R̂ ≥ 2b] = 1.

Finally, recalling equation 43 that R̂ is a lower bound on Rp(f̂S) we obtain the desired theorem.

lim
n→∞

P
S
[Rp(f̂S) > b] = 1.

Note that Lemma E.1 immediately also implies
lim
n→∞

P
S
[Lp(f̂S) > b] = 1.
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F PROOF OF THEOREM 5

Proof of Theorem 5. Let f∗ be G-Lipschitz. First, we observe that the distance between two con-
secutive xi’s is 1/n. The domain [0, 1] is divided into n intervals of length 1/n. We again denote
x0 = 0 for notational convenience. Our goal is to analyze the population Lp loss of min-norm
interpolating solution f̂S(x) defined in equation 2.

Lp(f̂S) = E
(x,y)∼D

[
|f̂S(x)− y|p

]
= E

x∼Uniform([0,1]),ϵ

[
|f̂S(x)− f∗(x) + ϵ|p

]
≤ 2p−1 E

x∼Uniform([0,1]),ϵ

[
|f̂S(x)− f∗(x)|p + |ϵ|p

]
= 2p−1

(
E

x∼Uniform([0,1])

[
|f̂S(x)− f∗(x)|p

]
+ E

ϵ
[|ϵ|p]

)
= 2p−1(Rp(f̂S) + Lp(f

∗)) (48)

Therefore, it suffices to bound Rp(f̂S). It can be expressed as the following.

Rp(f̂S) =

n−1∑
i=0


∫ xi+1

xi

|f̂(x)− f∗(x)| dx︸ ︷︷ ︸
:=Ri

 (49)

For x ∈ [0, x2], f̂S(x) = g1(x) by Lemma 4.2. Thus we have

|f̂S(x)− f∗(x)| =|g1(x)− f∗(x)|

=

∣∣∣∣y1 + (y2 − y1)

x2 − x1
(x− x1)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(x1) + ϵ1 +

(
f∗(x2) + ϵ2 − f∗(x1)− ϵ1

x2 − x1

)
(x− x1)− f∗(x)

∣∣∣∣
≤ |f∗(x1)− f∗(x)|+ |ϵ1|+

G|x2 − x1|+ |ϵ2 − ϵ1|
x2 − x1

|x− x1|

≤G|x− x1|+ |ϵ1|+
(
G(x2 − x1) + |ϵ2|+ |ϵ1|

x2 − x1

)
|x− x1|

≤G · 1
n
+ |ϵ1|+

(
G · 1

n + |ϵ2|+ |ϵ1|
1
n

)
· 1
n

=
2G

n
+ |ϵ2|+ 2|ϵ1|.

Using this we get,

R0 +R1 ≤
∫ x2

0

|f̂S(x)− f∗(x)|p dx ≤ 2

n

(
2G

n
+ |ϵ2|+ 2|ϵ1|

)p

≤ 3p
((

2G

n

)p

+ |ϵ2|p + 2p|ϵ1|p
)
· 2
n
. (50)

Using exactly the same steps, one can also bound the risk in the last interval [xn−1, xn].

Rn−1 ≤
∫ xn=1

xn−1

|f̂S(x)− f∗(x)|p dx ≤ 3p
((

2G

n

)p

+ |ϵn−1|p + 2p|ϵn|p
)
· 1
n
. (51)

Fix any i ∈ {2, . . . , n− 2}, and consider x ∈ [xi, xi+1]. By Lemma C.2, we get:

|f̂(x)− f∗(x)| ≤ max {|gi(x)− f∗(x)|,min{|gi+1(x)− f∗(x)|, |gi−1(x)− f∗(x)|}} ,
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We can simplify each one by one.

|gi(x)− f∗(x)| =
∣∣∣∣yi + (yi+1 − yi)

xi+1 − xi
(x− xi)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi) + ϵi +
f∗(xi+1) + ϵi+1 − f∗(xi)− ϵi

xi+1 − xi
(x− xi)− f∗(x)

∣∣∣∣
≤ |f∗(xi)− f∗(x)|+ |ϵi|+

(
G/n+ |ϵi+1|+ |ϵi|

1/n

)
· |(x− xi−1)|

≤G

n
+ |ϵi|+

(
G/n+ |ϵi+1|+ |ϵi|

1/n

)
· 1
n

=
2G

n
+ 2|ϵi|+ |ϵi+1|.

Similarly,

|gi−1(x)− f∗(x)| =
∣∣∣∣yi + (yi − yi−1)

xi − xi−1
(x− xi)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi) + ϵi +
f∗(xi) + ϵi − f∗(xi−1)− ϵi−1

xi − xi−1
(x− xi)− f∗(x)

∣∣∣∣
≤ |f∗(xi)− f∗(x)|+ |ϵi|+

(
G/n+ |ϵi|+ |ϵi−1|

1/n

)
|(x− xi)|

≤G

n
+ |ϵi|+

(
G/n+ |ϵi|+ |ϵi−1|

1/n

)
· 1
n

=
2G

n
+ 2|ϵi|+ |ϵi−1|.

Using a similar strategy, we also bound:

|gi+1(x)− f∗(x)| =
∣∣∣∣yi+1 +

(yi+2 − yi+1)

xi+2 − xi+1
(x− xi+1)− f∗(x)

∣∣∣∣
=

∣∣∣∣f∗(xi+1) + ϵi+1 +
f∗(xi+2) + ϵi+2 − f∗(xi+1)− ϵi+1

xi+2 − xi+1
(x− xi+1)− f∗(x)

∣∣∣∣
≤ |f∗(xi+1)− f∗(x)|+ |ϵi+1|+

(
G/n+ |ϵi+2|+ |ϵi+1|

1/n

)
|(x− xi+1)|

≤G

n
+ |ϵi+1|+

(
G/n+ |ϵi+2|+ |ϵi+1|

1/n

)
· 1
n

=
2G

n
+ 2|ϵi+1|+ |ϵi+2|.

Therefore, combining the above three, for x in the intermediate intervals:

|f̂(x)− f∗(x)| ≤ max

{
2G

n
+ 2|ϵi|+ |ϵi+1|,

2G

n
+ 2|ϵi|+ |ϵi−1|,

2G

n
+ 2|ϵi+1|+ |ϵi+2|

}
≤ 2G

n
+ 2|ϵi|+ 2|ϵi+1|+ |ϵi+2|+ |ϵi−1| .

Therefore, for any i ∈ {2, . . . , n− 2}, and x ∈ [xi, xi+1],

|f̂(x)− f∗(x)|p ≤ 5p
((

2G

n

)p

+ 2p|ϵi|p + 2p|ϵi+1|p + |ϵi+2|p + |ϵi−1|p
)

Therefore,

Ri =

∫ xi+1

xi

|f̂(x)− f∗(x)|p dx ≤ 5p
((

2G

n

)p

+ 2p|ϵi|p + 2p|ϵi+1|p + |ϵi+2|p + |ϵi−1|p
)

1

n
.
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We now sum over all i ∈ {0, 2, . . . , n− 1} and use equation 50 and equation 51:

Rp(f̂S) =

n−1∑
i=0

Ri ≤
n−2∑
i=2

[
5p
((

2G

n

)p

+ 2p|ϵi|p + 2p|ϵi+1|p + |ϵi+2|p + |ϵi−1|p
)

1

n

]
+ 3p

((
2G

n

)p

+ |ϵ2|p + 2p|ϵ1|p
)
· 2
n
+ 3p

((
2G

n

)p

+ |ϵn−1|p + 2p|ϵn|p
)
· 1
n

≤ (5p + 2 · 3p + 3p)(2G)p

np
+

2 · 3p|ϵ2|p + 2 · 6p|ϵ1|p + 3p|ϵn−1|p + 6p|ϵn|p

n

+
1

n

n−2∑
i=2

(10p|ϵi|p + 10p|ϵi+1|p + 5p|ϵi+2|p + 5p|ϵi−1|p)

≤ (5p + 3p+1)(2G)p

np
+

2 · (10p + 5p)

n
·

n∑
i=1

|ϵi|p (52)

The first term converges to 0 surely as n → ∞. The second term is proportional to the average of n
i.i.d. random variables |ϵi|p, each having E[|ϵi|p] = Lp(f

∗). Therefore, by the strong LLN

1

n

n∑
i=1

|ϵi|p
a.s.−−→ Lp(f

∗).

Combining this with equation 52:

lim
n→∞

P
S

[
Rp(f̂S) ≤ (2 · 10p + 2 · 5p + 1)Lp(f

∗)
]
= 1.

Finally, substituting the bound from equation 48 in the above:

lim
n→∞

P
S

[
Lp(f̂S) ≤ (20p + 10p + 2p)Lp(f

∗)
]
= 1.

Letting Cp = 20p + 10p + 2p, we get the desired theorem.
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