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A DETAILS OF BASELINES
We reproduce all the baselines according to official implementa-
tions from the diffusers library.

Textual Inversion [2] is a fine-tuning-based method that opti-
mizes a placeholder embedding of the diffusion text encoder, so as
to invert the subject into the diffusion text space. Textual Inversion
requires 2000 ∼ 3000 training steps for learning a new subject and
we report results using 2500 steps across all instances in the experi-
ments on DreamBench.

DreamBooth [5] is a fine-tuning-based method that optimizes the
parameters of the whole diffusion UNet for image personalization.
It learns to bind the specified subject with a rare text token via
a reconstruction loss. It further utilizes a class prior preservation
loss to avoid language drift and reduced generative diversity but at
the cost of worsening identity consistency. DreamBooth requires
around 400 ∼ 800 steps in general and we report the results using
600 steps in the experiments on DreamBench. We do not use class
prior preservation loss since we find it significantly reduces the
overall identity consistency, complicates convergence, and requires
heavy tuning for each instance.

BLIP-Diffusion [4] is an encoder-based method which pre-trains a
multimodal encoder following BLIP-2 to produce visual representa-
tion aligned with the text. It exhibits zero-shot capability but needs
further fine-tuning to achieve better performance. BLIP-Diffusion
requires 40 ∼ 120 steps for different subjects and we report the
results using 80 steps in the experiments on DreamBench.

B MORE ABLATION AND ANALYSIS
Visualization of activation selection. In Fig. 2 we visualize dif-
ferent activation selection strategies for the appearance picking
guidance. We choose Textual Inversion as an example baseline and
generate samples with Pick-and-Draw guidance using activations
of resolution 16× 16, 32× 32, and 64× 64. Activations of resolution
16× 16 contain mainly layout information, which is coarse-grained
and may introduce unwanted layout leakage (i.e. the window frame)
to the guided samples (3rd column). Activations of resolution 64×64
focus on high-frequency details such as edges, which are not suf-
ficient for local appearance transfer. The corresponding guided
samples (4th column) fail to maintain identity consistency with the
reference image. In comparison, activations of resolution 32 × 32
encode rich semantic information and focus on different salient
regions of the subject, facilitating the local appearance transfer to
achieve the best visual result in identity preservation. Therefore,
the guided samples (last column) not only exhibit consistent ap-
pearances but also eliminate the interference of background from
reference images.

Impact of guidance step selection.We conduct ablation study
on guidance steps for appearance-aware loss ℓapp and layout-aware
loss ℓlay on DreamBooth. Results are presented in Fig. 1. Since early
denoising steps exert a significant impact on the generated object
layout [1, 3], we perform layout guidance solely (Fig. 1 left) from the
very beginning and find that the optimal performance is achieved
when stopping guidance at step 10. More layout guidance steps
result in a significant performance drop on DINO score. We perform
appearance guidance (Fig. 1 middle) in a similar manner and find
that 10 steps are sufficient for appearance transfer. Additionally,
applying only appearance guidance leads to a substantial decrease
in the CLIP-T score, indicating a severe overfitting problem. We
then set the guidance schedule of ℓlay as [0, 10], fix the length of
appearance guidance as 10 steps, and perform the two types of
guidance simultaneously (Fig. 1 right). The scatter plot shows that
starting the appearance guidance at step 10 achieves the best trade-
off performance.

Considering the above, we set the range of guidance steps for
layout guidance and appearance guidance as [0, 10] and [10, 20],
respectively. The optimal setting is in line with intuition, where we
initially employ layout-aware loss to constrain subject shape and
background to ensure generative diversity and image-text fidelity,
followed by the utilization of appearance loss to enforce object
identity consistency and subject fidelity. We adhere to this setting
throughout all other experiments.

C FAILURE CASES
Pick-and-Draw fails to generate images aligned with text prompts
if the template image by Stable Diffusion provides a false layout
prior. In addition, it may suffer from incomplete appearance transfer
when the subjects generated by the baseline model differ too much
from the reference. We present two possible failure cases in Fig. 3.

D MORE QUALITATIVE RESULTS
Results on DreamBooth.We provide more qualitative results in
Fig. 4 to show the improvement of DreamBooth when equipped
with Pick-and-Draw. Our method consistently improves the per-
formance of DreamBooth on both subject fidelity (row 5 ∼ 7) and
image-text fidelity (row 1 ∼ 6).

Results on Vanilla Stable Diffusion.We apply Pick-and-Draw
to Vanilla Stable Diffusion for zero-shot text-to-image personaliza-
tion. Visual results can be shown in Fig. 5. We observe favorable
outcomes of the tree and flower cases. As illustrated in Section
4.5 of the main body, our method is capable of personalizing sim-
ple subjects even without strong prior of the fine-tuning-based
personalization baselines like Dreambooth [5].
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Figure 1: Ablation study for guidance step selection. We conduct ablation experiments under three conditions: employing only
the layout loss (left), employing only the appearance loss (middle), and employing both losses simultaneously (right). The
guidance steps of both losses are labeled.

Subject Image 32×32
Samples using Activations of Different ResolutionsTextual Inversion 

Sample 64×6416×16

“toy” “A S* with a city in the background”

“backpack” “A S* on a cobblestone street”

Figure 2: Ablation study for visualizing different activation selection strategies for the appearance picking guidance, conducted
on Textual Inversion. The best selection strategy is marked in green.

SD GeneratedSubject Image

“A V* sneaker on a pink fabric”

(a) False layout prior

“sneaker” “A V* toy on top of green 
grass with sunflowers around ”“toy”

(b) Incomplete appearance transfer 

DreamBooth + P&D DreamBoothSubject Image DreamBooth+P&D

Figure 3: Example failure generations. SD stands for Stable Diffusion and P&D stands for our method Pick-and-Draw.
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Figure 4: More qualitative results on DreamBooth before and after applying Pick-and-Draw.
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Figure 5: More qualitative results on Vanilla Stable Diffusion before and after applying Pick-and-Draw.
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