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ABSTRACT

We introduce Diffusion Compose, a zero-shot approach for depth-aware scene
editing using Text-to-Image diffusion models. While existing methods for 3D-
aware editing focus on object-centric control, they do not support compositional
depth-aware edits, such as placing objects at specific depths or combining multi-
ple scenes realistically. We address this by incorporating depth-based multiplane
scene representation in diffusion models. These planes, placed at fixed depths,
can be individually edited or composed to enable 3D-aware scene modifications.
However, direct manipulation of multiplane representation of diffusion latents of-
ten leads to identity loss or unrealistic blending. To overcome this, we propose a
novel multiplane feature guidance technique that gradually aligns source latents
with the target edit at each denoising step. We validate Diffusion Compose on two
challenging tasks: a) scene composition, blending scenes with consistent depth
order and scene illumination, and b) depth-aware object insertion, inserting novel
objects at specified depths in a scene while preserving occlusions and scene struc-
ture and illumination. Extensive experiments demonstrate that Diffusion Com-
pose significantly outperforms task-specific baselines for object placement and
harmonization. A user study further confirms that it produces realistic, identity-
preserving, and accurate depth-aware scene edits.

1 INTRODUCTION

Text-to-Image (T2I) diffusion models |Rombach et al.| (2022); |Saharia et al.| (2022); Esser et al.
(2024) can generate highly realistic images from text prompts. Various conditioning mechanisms
have been proposed [Zhang et al.| (2023a); [Epstein et al.| (2023) for complex image editing, such
as altering scene appearance |Brooks et al.| (2023)) or teleporting objects within scenes |Chen et al.
(2024). However, these approaches lack the ability to edit scenes with 3D control, such as placing
a new vase at a specific 3D location in an image (Fig. [I). Achieving this requires addressing the
following challenges: i) Geometric consistency: the placed object should fit naturally in the scene
ii) Occlusion handling: for realistic placement, the placed object should be naturally occluded by
the existing objects without any artifacts iii) Illumination and lighting: the placed object should
respect the lighting in the scene to create realistic shading.

Existing methods for 3D control in T2I models primarily focus on editing geometric object proper-
ties such as rotating or translating the existing objects in the scene. This is achieved by applying the
required geometric transformation to the diffusion features of the individual objects during denois-
ing |Wang et al.[(2024); Pandey et al.| (2024al)); [Sajnani et al.| (2024); Kumari et al.| (2024)). Others
rely on large-scale training with synthetic datasets conditioning on explicit 3D pose or geometric
information with text Michel et al.| (2024a); Wu et al.| (2024), but struggle with generalization to
real-world scenes. Although effective for object-centric 3D editing, these methods lack the ability
to perform compositional 3D scene editing, such as depth-aware object insertion or scene compo-
sition. Our framework addresses this gap, enabling designers and artists to achieve precise object
placement and seamless scene blending with depth-aware control. This enables workflows in areas
such as advertising, game design, and visual effects, where depth-based layering is crucial.

We propose DiffusionCompose to enable depth-aware scene editing from a single image without the
need to explicitly model a complete scene geometry. The key idea is to use a multiplane representa-
tion, where planes are placed at discrete depth levels, allowing for 3D-aware editing by manipulating
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Depth-aware object insertion

Figure 1: Diffusion Compose enables zero-shot depth-aware editing in real images: i) realistic object
insertion in 3D handling complex scene effects, such as generating realistic occlusions for the vase
while preserving object identity ii) depth-aware composition of multiple scenes with intro scene

interactions such as illumination changes on the pillow from the foreground.

individual planes. We integrate this representation into diffusion models at inference time to achieve
realistic zero-shot depth-aware edits. Directly applying multiplane representation to the latent space
at intermediate timesteps leads to inferior results, suffering from preserving scene content or incor-
rect scene illumination. To address this, we introduce a novel multiplane feature guidance, which
gradually guides the latents toward the target edit during each denoising step. Specifically, we align
the multiplane representations of the intermediate diffusion U-Net features from the source and tar-
get edit latents, while preserving the distribution of the pretrained T2I model. This softer way to
guide enables high-quality depth-aware edits with consistent geometry while respecting occlusions
and scene illumination (Fig. [T).

Our zero-shot approach enables highly realistic scene edits by leveraging the rich priors of T2I mod-
els. We demonstrate the effectiveness of our framework via two challenging depth-aware editing
tasks - i) object insertion, where novel objects are inserted at user-defined depths with proper occlu-
sion and illumination, and ii) scene composition: depth-aware composition of multiple scenes with
consistent scene illumination. Extensive experiments and a user study demonstrate the effectiveness
of our method. For a comprehensive evaluation, we curated a test dataset of complex scenes and
outperform existing object placement and scene harmonization baselines, without explicitly training
for these tasks.

Our major contributions are threefold: i) first-of-its-kind zero-shot approach for depth-aware
scene editing by integrating multiplane representations in Text-to-Image diffusion models. ii) novel
multiplane feature guidance to slowly update the intermediate diffusion features for realistic depth-
aware editing. iii) application of multiplane feature guidance to solve the challenging task of depth-
aware object insertion and scene composition, with consistent occlusion and scene illumination.

2 RELATED WORKS

Editing in Generative models. Text-to-Image diffusion models have enabled several image editing
tasks previously difficult to achieve [Hertz et al. (2022)); [Epstein et al.| (2023); [Pandey et al.| (2024a);
Brooks et al| (2023). An effective approach for editing with diffusion models involves manipu-
lating the intermediate cross-attention and self-attention maps [Hertz et al.| (2022)); [Patashnik et al.
(2023)); |Cao et al.| (2023) as they provide control in defining the layout, structure, and color in an
image. This operation can be performed during inference time, eliminating the need for training.
Some methods swap the attention maps Hertz et al|(2022); (2023)), and while concatenate
both features and take attention across the batch [Zhou et al.| (2024)); [Tewel et al.| (2024). Control-
Net/Zhang et al.|(2023a)) introduced spatial conditioning modalities such as depth maps or edge maps
for finer control. Another set of works explores the diffusion framework and condition at different

timestepPatashnik et al| (2023); [Zhang et al| (2023b)) at U-Net layersVoynov et al| (2023b)); [Alaluf
2023). Others aim to find semantic direction in latent space or the text space Kwon et al.

(2022); Brack et al] (2023); [Baumann et al|(2024) for editing. However, these approaches do not

allow for 3D control in the generated scene.
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3D editing with Generative Models. Diffusion models though excellent at generating realistic im-
ages often fail to generate consistent 3D effects Sarkar et al.[(2024); [Upadhyay| (2024). To achieve
some 3D control in the generation a common approach is to use depth conditioned diffusion model
and edit the depth map. One effective approach is to provide guidance Mou et al.| (2024); Pandey
et al.[(2024b) or lift the 2D diffusion feature to intermediate 3D representation |Pandey et al.|(2024al);
Sajnani et al.| (2024) using depth and edit it, and use diffusion models to refine the rendered image
Wang et al.| (2024)); Yenphraphai et al.| (2024); [Michel et al.| (2024b)or perform large scale finetun-
ing with 3D conditioned dataset |Bhat et al.| (2024); Michel et al.| (2024b). In Wang et al.| (2024),
multiple iterations of 3D edits are performed in image space followed by image refinement using
diffusion prior. Similarly, in|Pandey et al.|(2024b), edited depth maps are used for conditioning and
performing appearance guidance to preserve object and scene identity. On the other hand, |Bhat et al.
(2024); Michel et al.|(2024a)); Wu et al.|(2024)) perform large-scale training to achieve object-centric
3D geometric control, however struggle to handle complex real scenes with multiple objects.

Object Insertion. Given a 3D representation one can insert an object while following scene geom-
etry Shahbazi et al.|(2024) and perform 3D aware edits Haque et al.| (2023)). However, obtaining a
good 3D representation of a scene from a single image is difficult. In|Ge et al.|(2024), they find an
approximate floor plane and scene lighting to generate and place synthetic 3D assets in the given
scene with relighting which is challenging to obtain for real-world objects. When dealing with
only a single scene image and object image, the most common methods for object placement are
reference-based inpainting methods like IP-Adapter, PaintbyExample, and Anydoor|Ye et al.|(2023));
Yang et al.| (2023); |Chen et al.|(2024). However, these methods do not provide control to place ob-
jects at a particular depth and always generate full objects without occlusion. Another recent work
Winter et al.| (2024) performs realistic object insertion with accurate lighting and shading as it is
trained on high-quality datasets curated for the task. In this work, we propose a zero-shot approach
to generate realistic depth-aware object placement given a single object and background image with
consistent shadings and blending effects.

3 METHOD

3.1 OVERVIEW

Our goal is to perform realistic depth-aware editing with a single image using the generative priors
of Text-to-Image models without retraining. To this end, we utilize the multiplane scene represen-
tation, where a scene is decomposed into a set of frontoparallel planes at fixed depths, enabling 3D
scene editing. Directly applied in the image space the multiplane representation does not respect the
scene semantics during editing and leads to ‘cut-paste’ appearance (Fig. [3). Instead, we integrate
the multiplane representation into the latent space of T2I diffusion models, capitalizing on their rich
image generation priors. We accomplish this through multiplane feature guidance at each denoising
step, updating the intermediate source latents to enable consistent depth-aware editing. In the fol-
lowing sections, we discuss the preliminaries of our work and present our approach for multiplane
feature guidance, along with its applications in depth-aware editing.

3.2 PRELIMINARIES

Diffusion models learn to transform random noise into an image with iterative denoising. In the
forward diffusion process, image x is corrupted by sequentially adding standard Gaussian noise
€. A denoiser network €y is trained to estimate the added noise, conditioned on the timestep and
optional conditioning such as text. For generating images, the reverse diffusion process denoises
the random noise z, with several passes through denoising network €g. To accelerate the diffusion
models, Latent Diffusion Models Rombach et al.| (2022) take a two-stage approach where the input
image is first encoded into a lower dimensional latent space, and the diffusion process is applied in
the compressed latent space, significantly reducing the computational requirements.

Guidance. There are two main approaches for conditioning diffusion models on additional modal-
ities: classifier guidance and classifier-free guidance. In classifier-free guidance Ho & Salimans
(2022)), conditional €y (x,y,t) predictions with y conditioning are combined with unconditional
predictions eg(x¢,t) using a scalar weight w(t). Classifier guidance, on the other hand, provides
inference time conditioning by guiding the reverse diffusion process using a predefined energy func-
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Image MPI Latent MPI T=10 Latent MPI T=20 Latent MPI T=30 Latent MPI T=40 MP Feature Guidance

Figure 3: Ablation on depth-aware scene composition. a) Compositing a scene with multiplane in
the image space (MPI) generates unnatural ‘cut-paste’ compositions, as it does not have semantic
information, b) Using multiplane representation in the latent space of diffusion for scene compo-
sition, has a tradeoff between identity preservation of the scene contents (7 = 40), and realism of
the composition (7 = 10) depending on the blending timestep. Our Multiplane feature guidance
achieves realistic composition while preserving the structure from both scenes with interactions be-
tween scenes such as illumination changes on the bus from the background.

tion. For example, to generate class conditioned generation [Dhariwal & Nichol| (2021) defined the
energy as the cross-entropy loss between the pretrained classifier’s prediction f(z;) and the given
class y. During generation, the predicted noise €y is adjusted to minimize the classifier loss £, with
A as the classifier guidance weight as follows:

6~9('£t7t) = 69($t7t) +/\th£(f(xt),y) (1)
Several guidance approaches have been proposed to achieve inference time conditioning on

sketch [Voynov et al| (2023a)), layout [Bansal et al.| (2023); [Epstein et al.| (2023), features
et al.| (2024a)), opticalflow Geng & Owens|and attribute distribution |Parihar et al.| (2024)).

3.3 MULTIPLANE LATENT REPRESENTATION FOR TEXT-TO-IMAGE MODELS.

Multi-Plane Imaging (MPI) [Shade et al| (1998); Szeliski & Golland| (1999)) is an effective 2.5D
scene representation, where an image x is factorized into D frontoparallel planes in the camera
frustum (Fig. . These planes are arranged at fixed depths di = dyeqr t0 dp = dyq,. Each plane
is represented as an RGBA image with color ¢; and an opacity «; for i!” plane, each having a

resolution HxW . fla) = {(al, 01)’ (a2, 02), ..... (aD,CD)} 2)
depth

Given an input image x, and corresponding depth map x , we can construct the multiplane

representation f by first discretizing the depth - N
maps based on the predefined plane depths d;
to dp. Next, the discretized depth image can be
decomposed into multiple opacity masks (a?),
one for each discrete depth value. The color ¢*
for each plane can be extracted by masking our
region from z using o’ ie., ¢! = o' - x. After
editing individual planes to ¢, the image can
be recomposed from the multiplane representa-
tion using the following::

D D
p=> (@ J[ a-a?) 6

i=1 j=it1
Though the MPI representation is efficient, us-
ing it directly in the image space results in un-
natural 3D edits as it does not handle complex
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scene effects such as geometric consistency and ~ * -/
illumination. Figure 2: A given image can be represented as a
set of RGBA planes placed at a fixed depth from
dnear 10 dfqr, Where ¢* is the RGB component
and «; is the opacity for layer .

Scene Composition. We implement the multi-
plane representation in the internals of diffusion
models for generating realistic and depth-aware
scene editing. We explain our approach with a running example of composing two scenes (z and
2P) in a depth-aware manner. Precisely, we wish to realistically compose the foreground regions
(depth d; to dj,) from scene z** and the background regions (dg41 to dp) from scene x”. One
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approach is to first invert the two scenes using DDIM into their latent representation 27\, and 22,

and then combine the two latent representations for a timestep 7 using corresponding multiplane
representation. Specifically, we can generate multiplane representation of the latents 2z and 2B
using downsampled depth maps of 24 and zp; yielding f(27') = {(a™',21), .., (P, 22 D)}
and f(28) = {(aB1, 281, ..., (aPP 2B-P)}. For composing the two ‘scenes at a user- pr0v1ded
depth value dporder» We can obtain the /argest plane index k, having a lesser depth than dp,ger (i.€.
dj, < dporder)- Next, we can fuse the two multiplane representations such that the first k& planes are
from scene A and the remaining planes are from scene B to obtain a fused multiplane representation
of edited latent 264, as:

f(Zidit) _ {(O&A 1’ 71_4 1)7 . (O(A’k, Z;l,k)’ (aB,lH»l’ ZTB,qul)7 . (O[B,D7 ZE’D)} (4)

Finally, we can recompose the fused multiplane representation using Eq.3, to obtain the edited in-
termediate latent code 2°%*. The edited latent 29 can then be denoised with diffusion model for
the remaining 7 timesteps, allowing for realistic blending of the scene Meng et al.| (2021)). Though
this framework seems promising, it is ineffective in generating plausible scene composition as there
is a tradeoff between realistic blending with complex scene effects and preserving scene content as
shown in Fig.[3] A small 7 does not provide enough freedom to recover the complex scene effects
with denoising, and a large 7 generates plausible composition but changes the scene contents signif-
icantly. To address this tradeoff, we propose a softer way of fusion via multiplane feature guidance
Voynov et al. (2023a)); [Pandey et al.| (2024a) that slowly nudge the generating latent to the target edit
latent, while preserving the scene identity and generating complex scene effects.

Multiplane Feature Guidance. We start the generation process by sampling zed” € N(0,1) and
then gu1d1ng intermediate latent zf%%* at each step of denoising. Given the intermediate scene latents
z{* and 2P and the generating latent 2¢% at timestep ¢, we extract their corresponding diffusion
U-Net features, ¥¢! s \IIB and \Ilfcfft, where ¢ is the diffusion model layer index. Next, we define

a loss between the multiplane representation of the three features - f (\Ilf}t) = {(a®V 1/1 ) j=1s
FOUE) = (0P, 77 )}y and FUEFT) = {(aitd g {7"7)} L, for guidance.

Intuition: We force the initial planes (1 to k) of \Ilfff“ to be close to initial planes of \Il{}t and the
later planes (k + 1 to D) of \Ilfﬁ” to be close to the later planes of \I!ft as shown in Fig. 4| To this
end, we define the following guidance loss L(U{, UB Wedit):
D
E(\Ith7\Ith,\Ijedlt Z Z |W edzt,j||2 + Z wat,j _ edzt,jH ) (5)

j=k+1 }
We use the guidance loss to update zfd” by computing V _caie L(U, U P, W§it) for a few iterations
at each denoising timestep. The feature guidance approach keeps the intermediate latents of the

edited image in the training distribution of the Multiplane feature guidance
pretrained model allowing high-quality genera-
"R Enj
A
A

tions. As shown in Fig. [T|& 3] our method pro-

duces realistic scene compositions with com- W, ome > W
plex lighting and effects, while preserving ;
scene structure.

it

Loss

RN

2 edit N
3.4 DEPTH AWARE OBJECT INSERTION 5% it [LMP> predit
i - it
We show the application of multiplane feature Bt 1 Loss
guidance for solving the task of 3D-aware ob- s
ject placement in scenes. The inputs are the fol- W, e e

it

lowing: a background image x, reference ob- U
ject image Xo, a 2D bounding box b, and a

depth value d,, for placing the object. Instead Figure 4: Multiplane Feature Guidance: At each
of providing d,, explicitly, the relative depth of ~denoising timestep the ¢ the multiplane diffusion
the object with respect to other objects can also  features of the generated latent 2%t are guided
be given (e.g. putting an object behind the ta- With the multiplane features of the input scene.
ble). The output is the background scene with The multiplane representation is obtained using
plausible object placement, seamlessly blend- the depth map of the inputs.

ing with correct occlusions and consistent scene
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illumination. For this task, we use state-of-the-art diffusion-based inpainting model # |(Chen et al.
(2024) given its strong prior for object inpainting. However, standard inpainting models are de-
signed to generate complete objects and struggle with depth-aware placement, particularly in scenes
with significant occlusions (Fig. S5). We start by sampling 25%* € A/(0, I) and denoise it with x, 7,
and b as additional conditioning in the reference-based condltlomng model H. During denoising, we
update z{%* with multiplane feature guidance for depth-aware object insertion. Specifically, given
do, we obtam the first plane index &, such that d, < dj and apply the guidance on deeper planes.

Intuition: For depth-aware placement, information in all the planes with lesser depth (i < k)
should be preserved from the background image and planes with larger depth (i > k) are allowed
to change. To implement this, we apply multiple feature guidance on all the planes with index v < k
to update the current z{%*. Mathematically given features W% of generating image from H and ¥
from DDIM inversion of backgmund image x, we use the following loss function for guidance:

£ 0, ‘I,edzt ZZH,L/} _ Edltd

i j=1
Empirically, we find that applying Eq.4 at an intermediate timestep 7, followed by guidance from
Eq.6 at later timesteps, yields the most realistic object placement. This approach allows H to better
interpret object depth in cases of occlusion. As a result, the generated object blends seamlessly
in the scene respecting the occlusion and scene illuminations well while respecting occlusions and
shadows (Fig.[5).

? (6)

4 EXPERIMENTS

We perform extensive experiments to evaluate Diffusion Compose for the task of depth-aware edit-
ing. In this section, we first discuss the implementation and dataset details, followed by experiments
on object placement scene composition, and ablations.

Implementation Details. We use Stable Diffusion v2-depth[Rombach et al.| (2022) which has depth
conditioning as the base T2I model for scene composition and Anydoor|Chen et al.[(2024) for depth-
aware object placement. For multiplane feature guidance, we use features from the last and the
penultimate layers of the diffusion UNet which results in accurate edits as discussed in ablations.
We give guidance from 0 to 38 timesteps for scene composition and update the latent z{%* for 5
iterations at each timestep, and for object placement, we give guidance from 30 to 50 timestep and
update the latent z¢%* for 3 iterations at each timestep. More details are in the appendix.

Dataset. As a zero-shot approach, we curated two datasets for a thorough evaluation of depth-
aware editing tasks. For object placement, we compiled 490 image-object pairs annotated with 2D
bounding boxes, object depth, and scene depth maps. The dataset includes diverse objects from
indoor and outdoor environments, ensuring occlusion by other objects to effectively assess depth-
aware placement. For scene composition, we curated a dataset of 2, 844 image pairs with diverse
foreground and background scenes, combining the SSHarmonization dataset Jiang et al.|(2021)) and
web-sourced images. The dataset spans a wide range of indoor and outdoor scenes, varying in
lighting, composition, and appearance.

4.1 OBIJECT PLACEMENT

To our knowledge, we are the first to perform depth-aware object placement using only a single
object and background image. For the evaluation of Diffusion Compose, we define the following
baselines for Diffusion Compose.

Image MPI + Harmonization (Image MPI+H). We perform MPI decomposition using the depth
image of the background and paste the object in the next plane to the given object depth (Sec. [3.4).
We preprocess the object image by segmenting the object of interest using SAM Kirillov et al.| (2023)
and resizing it according to the bounding box. Then, we recompose the MPI representation using
Eq.3 to obtain the edited image. Additionally, to blend the object well in the scene, we apply a recent
image harmonization technique |Ke et al.|(2022) on the placed object.

Reference-based Inpainting. We use state-of-the-art reference conditioned inpainting methods IP-
Adapter |Ye et al.| (2023)), Paint by example |Yang et al.[(2023)), and Anydoor |Chen et al.|(2024) to



Under review as a conference paper at ICLR 2025

Comparison

<
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Figure 5: a) Results for depth-aware object placement. b) Our method can also place the given object
at multiple locations in a depth-consistent manner. ¢) Comparison of depth-aware object placement:
Image MPI + Harmonization results in an unnatural ‘cut-paste’ appearance for the inserted object.
Inpainting models IP-adapter and Paint by example struggle to insert objects with consistent identity
given the amodal bounding box. Anydoor achieves decent placement but has significant artifacts at
the mask border (marked in red). Our method achieves realistic object placement while preserving
the object identity and scene consistency.

inpaint the given bounding box with object image in the background scene. All these methods take
a bounding box as input and place the object without considering occlusions. For a fair comparison,
we adapt them for depth-aware placement, by using the MPI representation and masking the bound-
ing box with the occluding objects (Fig.[5) to obtain an amodal bounding box. This will preserve the
foreground regions during inpainting and give us the illusion that the object is placed behind other
objects.

Metrics. We evaluate the object identity, realism of the output, and correctness of the object place-
ment location in 3D. We use DINO |Caron et al.|(2021) feature similarity between the generated

object in the bounding box and
the reference object to measure Table 1: Comparison for depth-aware object placement.

identity preservation. To mea- KID and A depth are shown in x10? units

sure image realism, we compute Method DINO-sim 1 | KID | | A depth] | Clip-sim 1
KID Birikowski et al 2018) against ~ 1mage MPL+H 8;12 ‘5‘; gggg 2678851
COCO dataset [Lin et al, a3 Paint by efample 0.273 49 6.733 60.12
our evaluation set is relatively smaller Anydoor 0.507 49 3.176 83.23
to compute FID. To evaluate whether Ours 0.545 4.8 2.989 84.86

the object is actually placed, we use

CLIP Radford et al.|(2021) similarity (CLIP) between ‘a photo of object-name’ and the cropped
bounding box from the generated image. If the object is generated correctly, the CLIP score should
be higher. To assess depth consistency, we compute the discrepancy between the predicted object
depth and the input placement depth. We estimate the depth of the generated image, compute the
mean depth of the placed object and report normalized A depth across the dataset, with smaller
values indicating more consistent depth-aware placement.

Analysis. We present the results for depth-aware object placement in Fig. [5] and Tab. [} Image MPI
+ Harmonization generates consistent scene lighting for objects and identity-preserving placement
but results in a copy-paste appearance and generates physically implausible compositions, such as a
tilted vase and teddy hanging in the air also quantified with our user study Sec.[#.3] The reference
conditioned inpainting models IP-adapter and Paint by example, struggle to generate accurate ob-
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Figure 6: a) Results for scene composition b) Given a foreground scene, we can compose it with a
background scene with only the sky to achieve realistic lighting of the foreground subject. ¢) Com-
parison for depth-aware scene composition: SDEdit and Pair Diffusion generate unnatural compo-
sitions and distorts the identity in some cases. Our approach realistically blends the two scenes in a
depth-aware manner, with consistent intra-scene illumination.

jects in the amodal bounding box as they have trained to primarily inpaint unoccluded objects with
2D bounding boxes. This is quantified with a poor CLIP-sim metric. Anydoor is able to generate
consistent objects; however, it generates significant border artifacts (marked in red), resulting in un-
natural composition. Our approach generates realistic compositions with accurate object placement
(highest Clip-sim) superior identity preservation (highest Dino-sim) as compared to all the inpaint-
ing baselines. Further, the object is naturally placed at an accurate depth, as evident with higher A
depth scores.

4.2 SCENE COMPOSITION

We compare Diffusion Compose for the task of depth-aware
scene-composition with the following baselines: a) Image ) .
MPI + Harmonization (Image MPI + H), Image MPI + Table 2: CompaHSf)tp for depth-
SDEdit Meng et al.| (2021) for generating realistic composi- 2 are SCene composition

. : Method LPIPS FID
tions using MPI mask for foreground and bgckground. .Ad- Tmage MPL + H 0‘036i 132.6i
ditionally, we also compare our method with PAIR Diffu- SDEdit 0395 | 106.24
sion |Goel et al.| (2024), which allows for localized control for Pair-Diffusion 0.45 140.54
a given masked region with a reference image. Specifically, Ours 0.263 | 123.32

we use the MPI mask to segment out the foreground and back-
ground regions and then pass the foreground and background reference images to PAIR Diffusion
for generation.

Metrics. We measure the scene composition for visual quality, structure preservation of the fore-
ground and background, and depth consistency. We report FID with the COCO dataset to quantify
the realism of the scene compositions. To evaluate the structure and appearance preservation, we
report the average LPIPS of the background and the foreground region. For realistic composition,
LPIPS and the KID value should be low-achieving structure preservation with high realism.

Analysis. We present our results and comparisons in Fig.[land Tab.[2] Image MPI + Harmonization,
achieves illuminates the foreground to improve blending, however still struggles with cut-pasting
appearance (e.g. sofa scene) leading to improved structure preservation, but unrealistic generation
(inferior FID score). SDEdit and PAIR-diffusion change the scene structure while generating con-
sistent images in some examples.
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Background Scene Foreground Scene Composed Scene
Depth Histogram Depth Histogram Depth Histogram

Our method generates realistic depth-aware
scene composition with accurate scene illu-
mination while preserving the scene structure.
Additionally, our method allows for realistic
relighting of the scenes by providing different
sky backgrounds. To analyze the depth consis-
tency, we visualize the histogram of the input
and the output scene in Fig. [/, which shows
Diffusion Compose preserves the distribution Figure 7: Depth consistency in scene editing:
of depth present in the foreground and back- The initial depth regions in the composite image
ground scene even during composition. align with the foreground depth maps, while the
later regions correspond to the background depth
maps, indicating that the depth distribution is pre-
served in the composite image.

Original Image Depth Image Original Image Depth Image Original Image Depth Image

4.3 USER STUDY

Due to the unavailability of well-established

metrics for the task, we perform an extensive user study to quantitatively evaluate our approach
across multiple aspects. We perform a user study to evaluate Diffusion Compose for depth-aware
scene editing. We evaluate object placement for the realism of the placement, identity preservation,
and depth consistency. For the task of scene composition, we evaluate for the realism of the com-
position and depth consistency. The study was performed on 15 source images for each task and 40
volunteers participated with varied expertise in

image editing. We created 60 image pairs for object placement, and 40 pairs for scene composition,
with each pair consisting of our generated output and a randomly sampled baseline. We divide this
dataset into groups of 20 image pairs for separate analysis on each editing goal. Each user compared
20 pairs for each of the goals for the two tasks. The order of image pairs and the methods within
each pair were randomized.

Object Placement User Study

Object placement. The results of the
study are presented in Fig. [§] Our
method significantly outperforms all l LT

i

Which has better replication of Isthe object placed at the
identity of object and background? intended depth?

[ |
' 3 W 3 | 7 adepter
T [T A
| S0 | I

Figure 8: Object placement user study.

Which is more realistic?

Image MPI +H

baselines in terms of realism, identity
preservation, and depth consistency. .
Image MPI+Harmonization achieves | . R
better results for identity preserva-
tion, as it directly cut paste the object
from the input image resulting in unrealistic generations. Paint by example and IP-adaptor per-
forms poorly across all the three goals indicating the challenge of depth-aware placement task. Our
approach excels in depth consistency metrics, indicating that our method effectively performs depth-
aware editing while producing highly realistic images.

Ours

Anydoor

Scene composition. As indicated in user study (Fig. [0), Image MPI + Harmonization performs
comparably to our approach for both goals. However, the harmonization model is specifically trained
on a large scale dataset for the task of blending objects and foreground but the same baseline fails
to perform well on the object placement task (Fig. [8). Our zero-shot approach achieves superior
realism and depth consistency in the generation as compared to other scene composition baselines.

4.4 ABALATIONS

Scene Composition User Study
Is the object placed at the

We ablate over the design choices with the task

of scene composition in Fig.[T0} We follow the e morerealee? intended depth?

same guidance parameters for the object place- | ""I" || "'I" | imsse e o
ment task as well. Additional ablations are pro-  § = P | soa
vided in the supplementary document. | i |_|_| | | i '_|_+ i Diffusion

Guidance Timestesp. We ablate over the
timestep range from 0 — 50 for applying the
multiplane feature guidance. Guiding only for small timesteps (0 —20) results in significant structure
changes for the foreground and background scenes. On the contrary, providing guidance for all the
timesteps preserves the structure but leads to unnatural composition (lighting mismatch). We found

Figure 9: Scene composition user study.
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that guiding until an intermediate range of timesteps (0-38) and allowing the image to denoise freely
for the remaining steps strikes a good balance, resulting in realistic compositions.

Guidance Layers. We ablate over
the U-Net decoder features to guide
the generation. Using all the de-
coder layers for guidance results in
significant artifacts. We observe that
guidance with the first decoder lay-
ers can significantly hurt the genera-
tion. Finally, we achieve a combina-
tion of layer 3 (weight 8.5) and layer
2 (weight 0.2) works well in most
cases. Using only one of these layers
resulted in subpar compositions.

Guidance weight. After finalizing
the layers to be used for guidance, we
tried different weights for the guid-
ance factor. Specifically, we ablate
over a guidance multiplier A for fore-
ground guidance. Having a smaller
A results in generating only a back-
ground region, we achieve a good
composition with A = 1. Notably, A
is also a control parameter that a user
use to control the effect of the back-

t=0-30

t=0-50

Guidance Timesteps

Guidance Layers

Guidance weight

Latent MPI (t=10)

\ E
ﬁ

Figure 10: Ablation for scene composition guidance

'FT

No guidance

ground on the foreground scene.

No guidance. We ablate against di-

rectly compositing multiplane representation of diffusion latent at timestep ¢ and allow the model
to freely denoise from ¢ to O timesteps. With lower timesteps, the generation is coherent but the
identity of the sofa(Fig.[T0) is significantly changed, however, when blended at a later timestep the
illumination of the foreground is not adapted. The guidance based approach enables us to slowly
align the latents at each step of denoising to achieve identity-preserving and coherent compositions.

5 CONCLUSION AND DISCUSSION

Conclusion. In this work, we propose Diffusion Compose an efficient zero-shot framework for
depth-aware scene editing with Text-to-Image diffusion models. We leverage multiple scene repre-
sentations and incorporate them in the generation process of diffusion models. Precisely, we propose
a novel multiplane feature guidance approach to guide the generating diffusion latents towards the
target edit while preserving the scene structure. We demonstrate the effectiveness of our depth-
aware editing framework with the task of realistic scene composition and 3D-aware object insertion.
Diffusion Compose generates highly realistic scene editing results without a need for retraining.
We believe our work provides a new perspective on augmenting the capabilities of Text-to-Image
diffusion models for 3D-aware editing.

Limitations. Our framework is based on pretrained Text-to-Image diffusion models and inherits the
limitations and biases of the base model, such as geometrically inconsistent shadows and perspec-
tives in some cases. Further, as we are applying guidance at each step of denoising, the proposed
method is slower than generation from the base Text-to-Image diffusion model.
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A APPENDIX

In this appendix, we provide more details about the dataset used for the evaluation of object place-
ment and scene composition and implementation details and hyperparameters used for both the task.
We also conduct a user study, and its details will be explained in detail, along with a few additional
results and comparisons for both scene composition and object placement.

B DATASET DETAILS

Scene composition. We collect background images from the SSharmonization dataset
(2021)), and for foreground images, we take a variety of images with different lighting from Google
images. Our dataset consist of around 2844 images with 80 background images and 36 foreground
images. To get the foreground mpi mask, we manually do annotation to find the best MPI plane
where we can get a meaningful foreground region that can be composed with other background
images.

Object Placement. Our object placement evaluation dataset consists of 491 background, object
paired images. All of these are collected from Google images consisting of outdoor and indoor
scenes with various kinds of occlusions. We manually annotate each pair to get the object bounding
box and the MPI depth layer where the object can be placed with proper occlusion.

C ABLATION

Since this feature guidance has a lot of hyperparamters, we will explain their role and the choice we
made for choosing specific values.

Scene composition. With respect to
which layers to use for guidance and
what timestep to give guidance, we
have shown the result in Fig. [I0]
which clearly explains our parame-
ter choice. But in regard to the MPI-
based rendering in latent space, there
are other choices like direct latent
MPI rendering or latent MPI guid-
ance. In this section, we show why
feature guidance is used and how it is
better at scene composition compared
to the other mentioned alternatives.
In direct latent MPI guidance, we
could just cup-paste the foreground
and background DDIM latent at some
timestep and let the model denoise it
as usual. But from b) in Fig. [I]]

Object Placement guidance timestep ablation
Latent MPl at T =20

Latent MPlat T =30
53 ks Y 3

LatentMPlat T=35  LatentMPlat T=40
FI i L [ > g
7 :

Latent space MPI
Latent MPI T =40 Ours

Latent MPI T =20

Latent MPI T =10 Latent MPI T=30

Latent space guidance

guidance till T =20 guidance till T=30 guidance tll T=40

we can see that doing this MPI ren-
dering in latent space at an earlier
timestep has some lighting change
but the scene identity is completely
lost and doing this at a later timestep
preserves scene identity but there is

Figure 11: a) Ablation for timestep is used for guidance in
object placement task; the other two rows have ablation for
alternative latent space MPI-based composition methods. b)
Ablation for Latent space MPI for scene composition, c)
Ablation for Latent space guidance method for scene com-
position

no composition, it is similar to image

MPI with no lighting change. Another option is to give latent space guidance for the foreground
region and background region, similar to how we give it in feature space in our method. We can give
this guidance from the beginning till a particular timestep. In Fig. [TT]c) part, we have shown the
result for latent guidance till different timesteps, and as we can see in the earlier timestep, we have
major identity loss, and at the later timestep, it is similar to the image space MPI, but with a little
lighting change. Compared to our feature guidance both these alternative latent MPI methods fail to
do scene composition.
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Object Placement In the depth-aware object placement task, since inpainting distorts the foreground
region, we use our guidance to preserve the foreground region based on the MPI masks. In this, our
guidance tries to preserve the foreground, and Anydoor’s additional conditioning tries to erase the
foreground and paint the whole object in the foreground. As we can see, both of these go against
each other, and since the guidance is weak compared to edge conditioning in Anydoor, initially, we
do latent space MPI rendering as mentioned in Sec. [3.4]and then give guidance to foreground region.
And there is a choice to do this latent MPI rendering at which timestep. We saw that doing this at
an earlier timestep gives more freedom to Anydoor, and thus, it doesn’t put the object with proper
occlusion as we can see in Fig. [IT] and doing this at a later timestep can cause artifact at the mpi
mask foreground edge.

D IMPLEMENTATION DETAILS

Our guidance method is based on [Pandey et al|(2024b). As we can see from[I0} using any layer
other than the last feature layer causes major artifacts in generated images. Using only the last layer
features for guidance, doesn’t cause any artifacts, but image appearance is lost for background and
foreground. So, we give high weightage to the last layer feature and very low weightage to the last
before layer for better identity preservation. For scene composition, we start from the inverted latent
of the background image and give guidance to the foreground and background layers according to
their corresponding features. Starting from background layer latents causes the scene lighting to be
inherited from the background scene. We give guidance from Oth timstep to 38 similar to diffusion
handles. We also show in [I0]that giving guidance till 50th timestep causes it to look similar to cut
paste without any lighting change.

The same layered guidance is used for object placement, and we use the same parameter used for
scene composition except the number of optimization per step. For object placement, we only
optimize for 3 steps per iteration since the inpainting model already does well in preserving the
appearance of the features outside of the bounding box. At T th timestep we perform a cut paste
of latents according to the MPI layer mask, then for the rest of the generation, we give guidance to
preserve the foreground. If the T value is early, then Anydoor edgemap condition becomes strong
and puts the object in the foreground, and if T is late, then image looks similar to latent cut paste
with artifacts at the border. We qualitatively found T=30 timstep to be working best for most cases.

The time taken to generate a single image for object placement is 60 seconds, and for scene compo-
sition, it takes around 86 seconds.

E USER STUDY

We conduct a qualitative comparison of our Object Placement method against four baselines: Image
MPI + H, IP Adapter, Paint by Example, and Anydoor. The evaluation focuses on three key goals:
scene realism, identity replication of the placed object and background, and accurate placement at
the intended depth. To assess these goals, we carried out a user study on 15 edits across 15 images
from our Object Placement dataset. Each goal was evaluated separately by presenting users with
pairs of images and asking them to select the one that better met the specific goal. A total of 60
randomized image pairs were generated, with each pair comparing a result from our method to a
corresponding result from a randomly chosen baseline. These pairs were divided into three groups
of 20 pairs each, corresponding to the three goals. The study involved 40 participants with varied
experience in image editing, who evaluated all 20 pairs for each goal, resulting in 800 data points
per goal and 2400 data points in total. To mitigate bias, the order of image pairs and the methods
within each pair were randomized.

For Scene Composition, we compare our approach against Image MPI + H, SDEdit, and Pair Dif-
fusion, focusing on two goals: realism and depth consistency. Using a subset of 15 edits across 15
images from our Scene Composition dataset, we generated 40 image pairs, split evenly across the
two goals. The same 40 users participated in this evaluation, generating 800 data points per goal,
for a total of 1600 data points.
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User Study - Scene editing with MPI
This form contains a user study to compare several image editing methods.

Instructions:
- All the questions are mandatory
- There are 20x2 outputs in the survey, each having a pair of images to be compared
- There figures are categorized into two tasks:
1. Object Placement: Placing a new object in a given input scene
2. Scene Composition: Realistically composing two scenes in a single image

This is the first part of the study, where you have to rate the object placement quality of This is the first part of the study, where you have to rate the scene composition quality
edited image. images

- Each question has three inputs: back image, a target ing box and an object - Each question has three inputs: background image, a foreground image

image. - The task is to realistically compose the background and foreground image, where the

- The task is to place the object accurately in the bounding box background is placed after the foreground in the depth order.

- Each question has two outputs a) and b), from two different methods randomly sampled - Each question has two outputs a) and b), from two different methods randomly sampled
from multiple methods. from multiple methods.

- You have to pick the best suited output from a) or b) on the following metrics: - You have to pick the best-suited output from a) or b) on the following metrics:

1. Realism of the scene: After placing the object, how realistic is the edited scene. The 1. Realism of the scene: The foreground and background regions in the scene should blend
placed object should blend naturally with the background with minimal artifacts. naturally, where the lighting and shading effects are consistent in the generated image. Note
2. Identity of the object: How much does the placed object resemble the input object that the lighting of the generated scene should be consistent with the background lighting
image. Consider object shape, texture and structure while answering. conditions. Observe the edges at the intersection of the foreground and background.

3. Depth consistency: Is the object placed accurately in the intended bounding box at the 2. Depth i Is the regions behind the foreground regions
correct depth in the scene considering object occlusions? Is the object placed plausibly in in the depth order?

3D scene without any artifacts at the object boundaries.

Note : There are cases where a method fails to attempt to place the object. In such

situations the other option should be directly selected. Scene Composition *
14. Best in Realism of the scene?

Object Placement *
3. Best in Realism of the scene?

Ob

O b Scene Composition ]
9. Best in Depth Consistency

Foreground Image

Object Placement %
2. Best in Identity Preservation

Object Placement L
16. Best in Depth Consistency

E';:l«xmwa image Object

Figure 12: User Study Screenshot. We asked three types of questions on Object Placement(left):
Realism of the generated image, Identity of object and background, Depth accuracy and two types
of questions on Scene Composition(right): Realism and Depth Accuracy.
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Foreground Object Image MPI IP-Adapter Paint by example Anydoor Qurs
+Harmonization

Figure 13: Comparison of depth-aware object placement: Image MPI + Harmonization results in
an unnatural ‘cut-paste’ appearance for the inserted object. Inpainting models IP-adapter and Paint
by example struggle to insert objects with consistent identity given the amodal bounding box. Any-
door achieves decent placement but has significant artifacts at the mask border (marked in red). Our
method achieves realistic object placement while preserving the object identity and scene consis-
tency.

F ADDITIONAL RESULTS

In this section, we provide additional results for comparison with other baseline methods on both
tasks and additional results for various scenes by our method.
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Depth-aware object insertion

Figure 14: a) Results for depth-aware object placement. b) Our method can also place the given
object at multiple locations in a depth-consistent manner
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Foreground Background Image MPI SDEdit PAIR Diffusion Ours
+Harmonization

Figure 15: Comparison for depth-aware scene composition: SDE edit and Pair Diffusion generate
unnatural compositions and distort the identity in some cases. Our approach realistically blends the
two scenes in a depth-aware manner with consistent intra-scene illumination.
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Scene composition

v. -l

//-P/ZE r \

Figure 16: a) Results for scene composition b) Given a foreground scene, we can compose it with a
background scene with only the sky to achieve realistic lighting of the foreground subject.
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