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ABSTRACT

We introduce Diffusion Compose, a zero-shot approach for depth-aware scene
editing using Text-to-Image diffusion models. While existing methods for 3D-
aware editing focus on object-centric control, they do not support compositional
depth-aware edits, such as placing objects at specific depths or combining multi-
ple scenes realistically. We address this by incorporating depth-based multiplane
scene representation in diffusion models. These planes, placed at fixed depths,
can be individually edited or composed to enable 3D-aware scene modifications.
However, direct manipulation of multiplane representation of diffusion latents of-
ten leads to identity loss or unrealistic blending. To overcome this, we propose a
novel multiplane feature guidance technique that gradually aligns source latents
with the target edit at each denoising step. We validate Diffusion Compose on two
challenging tasks: a) scene composition, blending scenes with consistent depth
order and scene illumination, and b) depth-aware object insertion, inserting novel
objects at specified depths in a scene while preserving occlusions and scene struc-
ture and illumination. Extensive experiments demonstrate that Diffusion Com-
pose significantly outperforms task-specific baselines for object placement and
harmonization. A user study further confirms that it produces realistic, identity-
preserving, and accurate depth-aware scene edits.

1 INTRODUCTION

Text-to-Image (T2I) diffusion models Rombach et al. (2022); Saharia et al. (2022); Esser et al.
(2024) can generate highly realistic images from text prompts. Various conditioning mechanisms
have been proposed Zhang et al. (2023a); Epstein et al. (2023) for complex image editing, such
as altering scene appearance Brooks et al. (2023) or teleporting objects within scenes Chen et al.
(2024). However, these approaches lack the ability to edit scenes with 3D control, such as placing
a new vase at a specific 3D location in an image (Fig. 1). Achieving this requires addressing the
following challenges: i) Geometric consistency: the placed object should fit naturally in the scene
ii) Occlusion handling: for realistic placement, the placed object should be naturally occluded by
the existing objects without any artifacts iii) Illumination and lighting: the placed object should
respect the lighting in the scene to create realistic shading.

Existing methods for 3D control in T2I models primarily focus on editing geometric object proper-
ties such as rotating or translating the existing objects in the scene. This is achieved by applying the
required geometric transformation to the diffusion features of the individual objects during denois-
ing Wang et al. (2024); Pandey et al. (2024a); Sajnani et al. (2024); Kumari et al. (2024). Others
rely on large-scale training with synthetic datasets conditioning on explicit 3D pose or geometric
information with text Michel et al. (2024a); Wu et al. (2024), but struggle with generalization to
real-world scenes. Although effective for object-centric 3D editing, these methods lack the ability
to perform compositional 3D scene editing, such as depth-aware object insertion or scene compo-
sition. Our framework addresses this gap, enabling designers and artists to achieve precise object
placement and seamless scene blending with depth-aware control. This enables workflows in areas
such as advertising, game design, and visual effects, where depth-based layering is crucial.

We propose DiffusionCompose to enable depth-aware scene editing from a single image without the
need to explicitly model a complete scene geometry. The key idea is to use a multiplane representa-
tion, where planes are placed at discrete depth levels, allowing for 3D-aware editing by manipulating

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

P1
P2

P3

Another option

Sc
en

e 
a

M
P

I M
as

k

Depth-aware object insertion

Depth-aware Scene composition

This one

Image MPI

Scene b

a+b a+c a+d a

b

c da+b+c a+b+d

Scene c Scene d

Figure 1: Diffusion Compose enables zero-shot depth-aware editing in real images: i) realistic object
insertion in 3D handling complex scene effects, such as generating realistic occlusions for the vase
while preserving object identity ii) depth-aware composition of multiple scenes with intro scene
interactions such as illumination changes on the pillow from the foreground.

individual planes. We integrate this representation into diffusion models at inference time to achieve
realistic zero-shot depth-aware edits. Directly applying multiplane representation to the latent space
at intermediate timesteps leads to inferior results, suffering from preserving scene content or incor-
rect scene illumination. To address this, we introduce a novel multiplane feature guidance, which
gradually guides the latents toward the target edit during each denoising step. Specifically, we align
the multiplane representations of the intermediate diffusion U-Net features from the source and tar-
get edit latents, while preserving the distribution of the pretrained T2I model. This softer way to
guide enables high-quality depth-aware edits with consistent geometry while respecting occlusions
and scene illumination (Fig. 1).

Our zero-shot approach enables highly realistic scene edits by leveraging the rich priors of T2I mod-
els. We demonstrate the effectiveness of our framework via two challenging depth-aware editing
tasks - i) object insertion, where novel objects are inserted at user-defined depths with proper occlu-
sion and illumination, and ii) scene composition: depth-aware composition of multiple scenes with
consistent scene illumination. Extensive experiments and a user study demonstrate the effectiveness
of our method. For a comprehensive evaluation, we curated a test dataset of complex scenes and
outperform existing object placement and scene harmonization baselines, without explicitly training
for these tasks.

Our major contributions are threefold: i) first-of-its-kind zero-shot approach for depth-aware
scene editing by integrating multiplane representations in Text-to-Image diffusion models. ii) novel
multiplane feature guidance to slowly update the intermediate diffusion features for realistic depth-
aware editing. iii) application of multiplane feature guidance to solve the challenging task of depth-
aware object insertion and scene composition, with consistent occlusion and scene illumination.

2 RELATED WORKS

Editing in Generative models. Text-to-Image diffusion models have enabled several image editing
tasks previously difficult to achieve Hertz et al. (2022); Epstein et al. (2023); Pandey et al. (2024a);
Brooks et al. (2023). An effective approach for editing with diffusion models involves manipu-
lating the intermediate cross-attention and self-attention maps Hertz et al. (2022); Patashnik et al.
(2023); Cao et al. (2023) as they provide control in defining the layout, structure, and color in an
image. This operation can be performed during inference time, eliminating the need for training.
Some methods swap the attention maps Hertz et al. (2022); Cao et al. (2023), and while concatenate
both features and take attention across the batch Zhou et al. (2024); Tewel et al. (2024). Control-
Net Zhang et al. (2023a) introduced spatial conditioning modalities such as depth maps or edge maps
for finer control. Another set of works explores the diffusion framework and condition at different
timestepPatashnik et al. (2023); Zhang et al. (2023b) at U-Net layersVoynov et al. (2023b); Alaluf
et al. (2023). Others aim to find semantic direction in latent space or the text space Kwon et al.
(2022); Brack et al. (2023); Baumann et al. (2024) for editing. However, these approaches do not
allow for 3D control in the generated scene.
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3D editing with Generative Models. Diffusion models though excellent at generating realistic im-
ages often fail to generate consistent 3D effects Sarkar et al. (2024); Upadhyay (2024). To achieve
some 3D control in the generation a common approach is to use depth conditioned diffusion model
and edit the depth map. One effective approach is to provide guidance Mou et al. (2024); Pandey
et al. (2024b) or lift the 2D diffusion feature to intermediate 3D representation Pandey et al. (2024a);
Sajnani et al. (2024) using depth and edit it, and use diffusion models to refine the rendered image
Wang et al. (2024); Yenphraphai et al. (2024); Michel et al. (2024b)or perform large scale finetun-
ing with 3D conditioned dataset Bhat et al. (2024); Michel et al. (2024b). In Wang et al. (2024),
multiple iterations of 3D edits are performed in image space followed by image refinement using
diffusion prior. Similarly, in Pandey et al. (2024b), edited depth maps are used for conditioning and
performing appearance guidance to preserve object and scene identity. On the other hand, Bhat et al.
(2024); Michel et al. (2024a); Wu et al. (2024) perform large-scale training to achieve object-centric
3D geometric control, however struggle to handle complex real scenes with multiple objects.

Object Insertion. Given a 3D representation one can insert an object while following scene geom-
etry Shahbazi et al. (2024) and perform 3D aware edits Haque et al. (2023). However, obtaining a
good 3D representation of a scene from a single image is difficult. In Ge et al. (2024), they find an
approximate floor plane and scene lighting to generate and place synthetic 3D assets in the given
scene with relighting which is challenging to obtain for real-world objects. When dealing with
only a single scene image and object image, the most common methods for object placement are
reference-based inpainting methods like IP-Adapter, PaintbyExample, and Anydoor Ye et al. (2023);
Yang et al. (2023); Chen et al. (2024). However, these methods do not provide control to place ob-
jects at a particular depth and always generate full objects without occlusion. Another recent work
Winter et al. (2024) performs realistic object insertion with accurate lighting and shading as it is
trained on high-quality datasets curated for the task. In this work, we propose a zero-shot approach
to generate realistic depth-aware object placement given a single object and background image with
consistent shadings and blending effects.

3 METHOD

3.1 OVERVIEW

Our goal is to perform realistic depth-aware editing with a single image using the generative priors
of Text-to-Image models without retraining. To this end, we utilize the multiplane scene represen-
tation, where a scene is decomposed into a set of frontoparallel planes at fixed depths, enabling 3D
scene editing. Directly applied in the image space the multiplane representation does not respect the
scene semantics during editing and leads to ‘cut-paste’ appearance (Fig. 3). Instead, we integrate
the multiplane representation into the latent space of T2I diffusion models, capitalizing on their rich
image generation priors. We accomplish this through multiplane feature guidance at each denoising
step, updating the intermediate source latents to enable consistent depth-aware editing. In the fol-
lowing sections, we discuss the preliminaries of our work and present our approach for multiplane
feature guidance, along with its applications in depth-aware editing.

3.2 PRELIMINARIES

Diffusion models learn to transform random noise into an image with iterative denoising. In the
forward diffusion process, image x0 is corrupted by sequentially adding standard Gaussian noise
ϵ. A denoiser network ϵθ is trained to estimate the added noise, conditioned on the timestep and
optional conditioning such as text. For generating images, the reverse diffusion process denoises
the random noise xT , with several passes through denoising network ϵθ. To accelerate the diffusion
models, Latent Diffusion Models Rombach et al. (2022) take a two-stage approach where the input
image is first encoded into a lower dimensional latent space, and the diffusion process is applied in
the compressed latent space, significantly reducing the computational requirements.

Guidance. There are two main approaches for conditioning diffusion models on additional modal-
ities: classifier guidance and classifier-free guidance. In classifier-free guidance Ho & Salimans
(2022), conditional ϵθ(xt, y, t) predictions with y conditioning are combined with unconditional
predictions ϵθ(xt, t) using a scalar weight w(t). Classifier guidance, on the other hand, provides
inference time conditioning by guiding the reverse diffusion process using a predefined energy func-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Image MPI Latent MPI   τ = 10 Latent MPI   τ = 20 Latent MPI   τ = 30 Latent MPI   τ = 40 MP Feature Guidance

Figure 3: Ablation on depth-aware scene composition. a) Compositing a scene with multiplane in
the image space (MPI) generates unnatural ‘cut-paste’ compositions, as it does not have semantic
information, b) Using multiplane representation in the latent space of diffusion for scene compo-
sition, has a tradeoff between identity preservation of the scene contents (τ = 40), and realism of
the composition (τ = 10) depending on the blending timestep. Our Multiplane feature guidance
achieves realistic composition while preserving the structure from both scenes with interactions be-
tween scenes such as illumination changes on the bus from the background.

tion. For example, to generate class conditioned generation Dhariwal & Nichol (2021) defined the
energy as the cross-entropy loss between the pretrained classifier’s prediction f(xt) and the given
class y. During generation, the predicted noise ϵθ is adjusted to minimize the classifier loss L, with
λ as the classifier guidance weight as follows:

ϵ̃θ(xt, t) = ϵθ(xt, t) + λ∇xtL(f(xt), y) (1)

Several guidance approaches have been proposed to achieve inference time conditioning on
sketch Voynov et al. (2023a), layout Bansal et al. (2023); Epstein et al. (2023), features Pandey
et al. (2024a), opticalflow Geng & Owens and attribute distribution Parihar et al. (2024).

3.3 MULTIPLANE LATENT REPRESENTATION FOR TEXT-TO-IMAGE MODELS.

Multi-Plane Imaging (MPI) Shade et al. (1998); Szeliski & Golland (1999) is an effective 2.5D
scene representation, where an image x is factorized into D frontoparallel planes in the camera
frustum (Fig. 2). These planes are arranged at fixed depths d1 = dnear to dD = dfar. Each plane
is represented as an RGBA image with color ci and an opacity αi for ith plane, each having a
resolution HxW .

f(x) = {(α1, c1), (α2, c2), .....(αD, cD)} (2)

Given an input image x, and corresponding depth map xdepth, we can construct the multiplane

dnear

dfar

Image
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α2  c 2

αD  cD
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Multiplane Image Representation

Figure 2: A given image can be represented as a
set of RGBA planes placed at a fixed depth from
dnear to dfar, where ci is the RGB component
and αi is the opacity for layer i.

representation f by first discretizing the depth
maps based on the predefined plane depths d1
to dD. Next, the discretized depth image can be
decomposed into multiple opacity masks (αi),
one for each discrete depth value. The color ci
for each plane can be extracted by masking our
region from x using αi i.e., ci = αi · x. After
editing individual planes to ci

′
, the image can

be recomposed from the multiplane representa-
tion using the following::

x̂ =

D∑
i=1

(αici
′
·

D∏
j=i+1

(1− αj)) (3)

Though the MPI representation is efficient, us-
ing it directly in the image space results in un-
natural 3D edits as it does not handle complex
scene effects such as geometric consistency and
illumination.

Scene Composition. We implement the multi-
plane representation in the internals of diffusion
models for generating realistic and depth-aware
scene editing. We explain our approach with a running example of composing two scenes (xA and
xB) in a depth-aware manner. Precisely, we wish to realistically compose the foreground regions
(depth d1 to dk) from scene xA and the background regions (dk+1 to dD) from scene xB . One
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approach is to first invert the two scenes using DDIM into their latent representation zA1:T and zB1:T
and then combine the two latent representations for a timestep τ using corresponding multiplane
representation. Specifically, we can generate multiplane representation of the latents zAτ and zBτ
using downsampled depth maps of xA and xB ; yielding f(zAτ ) = {(αA,1, zA,1

τ ), ..., (αA,D, zA,D
τ )}

and f(zBτ ) = {(αB,1, zB,1
τ ), ..., (αB,D, zB,D

τ )}. For composing the two scenes at a user-provided
depth value dborder, we can obtain the largest plane index k, having a lesser depth than dborder (i.e.
dk < dborder). Next, we can fuse the two multiplane representations such that the first k planes are
from scene A and the remaining planes are from scene B to obtain a fused multiplane representation
of edited latent zeditτ , as:

f(zeditτ ) = {(αA,1, zA,1
τ ), ..., (αA,k, zA,k

τ ), (αB,k+1, zB,k+1
τ ), ..., (αB,D, zB,D

τ )} (4)
Finally, we can recompose the fused multiplane representation using Eq.3, to obtain the edited in-
termediate latent code zeditτ . The edited latent zeditτ can then be denoised with diffusion model for
the remaining τ timesteps, allowing for realistic blending of the scene Meng et al. (2021). Though
this framework seems promising, it is ineffective in generating plausible scene composition as there
is a tradeoff between realistic blending with complex scene effects and preserving scene content as
shown in Fig. 3. A small τ does not provide enough freedom to recover the complex scene effects
with denoising, and a large τ generates plausible composition but changes the scene contents signif-
icantly. To address this tradeoff, we propose a softer way of fusion via multiplane feature guidance
Voynov et al. (2023a); Pandey et al. (2024a) that slowly nudge the generating latent to the target edit
latent, while preserving the scene identity and generating complex scene effects.

Multiplane Feature Guidance. We start the generation process by sampling zeditT ∈ N (0, I) and
then guiding intermediate latent zeditt at each step of denoising. Given the intermediate scene latents
zAt and zBt and the generating latent zeditt at timestep t, we extract their corresponding diffusion
U-Net features, ΨA

i,t, Ψ
B
i,t and Ψedit

i,t , where i is the diffusion model layer index. Next, we define
a loss between the multiplane representation of the three features - f(ΨA

i,t) = {(αA,j , ψA,j
i,t )}Dj=1,

f(ΨB
i,t) = {(αB,j , ψB,j

i,t )}Dj=1 and f(Ψedit
i,t ) = {(αedit,j , ψedit,j

i,t )}Dj=1 for guidance.

Intuition: We force the initial planes (1 to k) of Ψedit
i,t to be close to initial planes of ΨA

i,t and the
later planes (k + 1 to D) of Ψedit

i,t to be close to the later planes of ΨB
i,t as shown in Fig. 4 To this

end, we define the following guidance loss L(ΨA
t ,Ψ

B
t ,Ψ

edit
t ):

L(ΨA
t ,Ψ

B
t ,Ψ

edit
t ) =

∑
i

(

k∑
j=1

||ψA,j
i,t − ψedit,j

i,t ||2 +
D∑

j=k+1

||ψB,j
i,t − ψedit,j

i,t ||2) (5)

We use the guidance loss to update zeditt by computing ∇zedit
t

L(ΨA
t ,Ψ

B
t ,Ψ

edit
t ) for a few iterations

at each denoising timestep. The feature guidance approach keeps the intermediate latents of the

  Ψ
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Figure 4: Multiplane Feature Guidance: At each
denoising timestep the t the multiplane diffusion
features of the generated latent zedit,t are guided
with the multiplane features of the input scene.
The multiplane representation is obtained using
the depth map of the inputs.

edited image in the training distribution of the
pretrained model allowing high-quality genera-
tions. As shown in Fig. 1& 3, our method pro-
duces realistic scene compositions with com-
plex lighting and effects, while preserving
scene structure.

3.4 DEPTH AWARE OBJECT INSERTION

We show the application of multiplane feature
guidance for solving the task of 3D-aware ob-
ject placement in scenes. The inputs are the fol-
lowing: a background image x, reference ob-
ject image xo, a 2D bounding box b, and a
depth value do for placing the object. Instead
of providing do explicitly, the relative depth of
the object with respect to other objects can also
be given (e.g. putting an object behind the ta-
ble). The output is the background scene with
plausible object placement, seamlessly blend-
ing with correct occlusions and consistent scene
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illumination. For this task, we use state-of-the-art diffusion-based inpainting model H Chen et al.
(2024) given its strong prior for object inpainting. However, standard inpainting models are de-
signed to generate complete objects and struggle with depth-aware placement, particularly in scenes
with significant occlusions (Fig. 5). We start by sampling zeditT ∈ N (0, I) and denoise it with x, xo
and b as additional conditioning in the reference-based conditioning model H. During denoising, we
update zeditt with multiplane feature guidance for depth-aware object insertion. Specifically, given
do, we obtain the first plane index k, such that do < dk and apply the guidance on deeper planes.

Intuition: For depth-aware placement, information in all the planes with lesser depth (i < k)
should be preserved from the background image and planes with larger depth (i > k) are allowed
to change. To implement this, we apply multiple feature guidance on all the planes with index i < k
to update the current zeditt . Mathematically given features Ψedit of generating image from H and Ψ
from DDIM inversion of background image x, we use the following loss function for guidance:

L(Ψt,Ψ
edit
t ) =

∑
i

j=k∑
j=1

||ψj
i,t − ψedit,j

i,t ||2 (6)

Empirically, we find that applying Eq.4 at an intermediate timestep τ , followed by guidance from
Eq.6 at later timesteps, yields the most realistic object placement. This approach allows H to better
interpret object depth in cases of occlusion. As a result, the generated object blends seamlessly
in the scene respecting the occlusion and scene illuminations well while respecting occlusions and
shadows (Fig. 5).

4 EXPERIMENTS

We perform extensive experiments to evaluate Diffusion Compose for the task of depth-aware edit-
ing. In this section, we first discuss the implementation and dataset details, followed by experiments
on object placement scene composition, and ablations.

Implementation Details. We use Stable Diffusion v2-depth Rombach et al. (2022) which has depth
conditioning as the base T2I model for scene composition and Anydoor Chen et al. (2024) for depth-
aware object placement. For multiplane feature guidance, we use features from the last and the
penultimate layers of the diffusion UNet which results in accurate edits as discussed in ablations.
We give guidance from 0 to 38 timesteps for scene composition and update the latent zeditt for 5
iterations at each timestep, and for object placement, we give guidance from 30 to 50 timestep and
update the latent zeditt for 3 iterations at each timestep. More details are in the appendix.

Dataset. As a zero-shot approach, we curated two datasets for a thorough evaluation of depth-
aware editing tasks. For object placement, we compiled 490 image-object pairs annotated with 2D
bounding boxes, object depth, and scene depth maps. The dataset includes diverse objects from
indoor and outdoor environments, ensuring occlusion by other objects to effectively assess depth-
aware placement. For scene composition, we curated a dataset of 2, 844 image pairs with diverse
foreground and background scenes, combining the SSHarmonization dataset Jiang et al. (2021) and
web-sourced images. The dataset spans a wide range of indoor and outdoor scenes, varying in
lighting, composition, and appearance.

4.1 OBJECT PLACEMENT

To our knowledge, we are the first to perform depth-aware object placement using only a single
object and background image. For the evaluation of Diffusion Compose, we define the following
baselines for Diffusion Compose.

Image MPI + Harmonization (Image MPI+H). We perform MPI decomposition using the depth
image of the background and paste the object in the next plane to the given object depth (Sec. 3.4).
We preprocess the object image by segmenting the object of interest using SAM Kirillov et al. (2023)
and resizing it according to the bounding box. Then, we recompose the MPI representation using
Eq.3 to obtain the edited image. Additionally, to blend the object well in the scene, we apply a recent
image harmonization technique Ke et al. (2022) on the placed object.

Reference-based Inpainting. We use state-of-the-art reference conditioned inpainting methods IP-
Adapter Ye et al. (2023), Paint by example Yang et al. (2023), and Anydoor Chen et al. (2024) to
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Figure 5: a) Results for depth-aware object placement. b) Our method can also place the given object
at multiple locations in a depth-consistent manner. c) Comparison of depth-aware object placement:
Image MPI + Harmonization results in an unnatural ‘cut-paste’ appearance for the inserted object.
Inpainting models IP-adapter and Paint by example struggle to insert objects with consistent identity
given the amodal bounding box. Anydoor achieves decent placement but has significant artifacts at
the mask border (marked in red). Our method achieves realistic object placement while preserving
the object identity and scene consistency.

inpaint the given bounding box with object image in the background scene. All these methods take
a bounding box as input and place the object without considering occlusions. For a fair comparison,
we adapt them for depth-aware placement, by using the MPI representation and masking the bound-
ing box with the occluding objects (Fig. 5) to obtain an amodal bounding box. This will preserve the
foreground regions during inpainting and give us the illusion that the object is placed behind other
objects.

Metrics. We evaluate the object identity, realism of the output, and correctness of the object place-
ment location in 3D. We use DINO Caron et al. (2021) feature similarity between the generated

Table 1: Comparison for depth-aware object placement.
KID and ∆ depth are shown in x102 units

Method DINO-sim ↑ KID ↓ ∆ depth ↓ Clip-sim ↑
Image MPI + H 0.576 4.7 2.985 68.5

IP-Adapter 0.244 5.3 9.366 27.81
Paint by example 0.273 4.9 6.733 60.12

Anydoor 0.507 4.9 3.176 83.23
Ours 0.545 4.8 2.989 84.86

object in the bounding box and
the reference object to measure
identity preservation. To mea-
sure image realism, we compute
KID Bińkowski et al. (2018) against
COCO dataset Lin et al. (2014) as
our evaluation set is relatively smaller
to compute FID. To evaluate whether
the object is actually placed, we use
CLIP Radford et al. (2021) similarity (CLIP) between ‘a photo of object-name’ and the cropped
bounding box from the generated image. If the object is generated correctly, the CLIP score should
be higher. To assess depth consistency, we compute the discrepancy between the predicted object
depth and the input placement depth. We estimate the depth of the generated image, compute the
mean depth of the placed object and report normalized ∆ depth across the dataset, with smaller
values indicating more consistent depth-aware placement.

Analysis. We present the results for depth-aware object placement in Fig. 5, and Tab. 1. Image MPI
+ Harmonization generates consistent scene lighting for objects and identity-preserving placement
but results in a copy-paste appearance and generates physically implausible compositions, such as a
tilted vase and teddy hanging in the air also quantified with our user study Sec. 4.3. The reference
conditioned inpainting models IP-adapter and Paint by example, struggle to generate accurate ob-
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Figure 6: a) Results for scene composition b) Given a foreground scene, we can compose it with a
background scene with only the sky to achieve realistic lighting of the foreground subject. c) Com-
parison for depth-aware scene composition: SDEdit and Pair Diffusion generate unnatural compo-
sitions and distorts the identity in some cases. Our approach realistically blends the two scenes in a
depth-aware manner, with consistent intra-scene illumination.

jects in the amodal bounding box as they have trained to primarily inpaint unoccluded objects with
2D bounding boxes. This is quantified with a poor CLIP-sim metric. Anydoor is able to generate
consistent objects; however, it generates significant border artifacts (marked in red), resulting in un-
natural composition. Our approach generates realistic compositions with accurate object placement
(highest Clip-sim) superior identity preservation (highest Dino-sim) as compared to all the inpaint-
ing baselines. Further, the object is naturally placed at an accurate depth, as evident with higher ∆
depth scores.

4.2 SCENE COMPOSITION

Table 2: Comparison for depth-
aware scene composition

Method LPIPS ↓ FID ↓
Image MPI + H 0.036 132.6

SDEdit 0.395 106.24
Pair-Diffusion 0.45 140.54

Ours 0.263 123.32

We compare Diffusion Compose for the task of depth-aware
scene-composition with the following baselines: a) Image
MPI + Harmonization (Image MPI + H), Image MPI +
SDEdit Meng et al. (2021) for generating realistic composi-
tions using MPI mask for foreground and background. Ad-
ditionally, we also compare our method with PAIR Diffu-
sion Goel et al. (2024), which allows for localized control for
a given masked region with a reference image. Specifically,
we use the MPI mask to segment out the foreground and back-
ground regions and then pass the foreground and background reference images to PAIR Diffusion
for generation.

Metrics. We measure the scene composition for visual quality, structure preservation of the fore-
ground and background, and depth consistency. We report FID with the COCO dataset to quantify
the realism of the scene compositions. To evaluate the structure and appearance preservation, we
report the average LPIPS of the background and the foreground region. For realistic composition,
LPIPS and the KID value should be low-achieving structure preservation with high realism.

Analysis. We present our results and comparisons in Fig. 6 and Tab. 2. Image MPI + Harmonization,
achieves illuminates the foreground to improve blending, however still struggles with cut-pasting
appearance (e.g. sofa scene) leading to improved structure preservation, but unrealistic generation
(inferior FID score). SDEdit and PAIR-diffusion change the scene structure while generating con-
sistent images in some examples.
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Figure 7: Depth consistency in scene editing:
The initial depth regions in the composite image
align with the foreground depth maps, while the
later regions correspond to the background depth
maps, indicating that the depth distribution is pre-
served in the composite image.

Our method generates realistic depth-aware
scene composition with accurate scene illu-
mination while preserving the scene structure.
Additionally, our method allows for realistic
relighting of the scenes by providing different
sky backgrounds. To analyze the depth consis-
tency, we visualize the histogram of the input
and the output scene in Fig. 7, which shows
Diffusion Compose preserves the distribution
of depth present in the foreground and back-
ground scene even during composition.

4.3 USER STUDY

Due to the unavailability of well-established
metrics for the task, we perform an extensive user study to quantitatively evaluate our approach
across multiple aspects. We perform a user study to evaluate Diffusion Compose for depth-aware
scene editing. We evaluate object placement for the realism of the placement, identity preservation,
and depth consistency. For the task of scene composition, we evaluate for the realism of the com-
position and depth consistency. The study was performed on 15 source images for each task and 40
volunteers participated with varied expertise in

image editing. We created 60 image pairs for object placement, and 40 pairs for scene composition,
with each pair consisting of our generated output and a randomly sampled baseline. We divide this
dataset into groups of 20 image pairs for separate analysis on each editing goal. Each user compared
20 pairs for each of the goals for the two tasks. The order of image pairs and the methods within
each pair were randomized.

Image MPI + H

IP Adapter

Paint by Example

Anydoor

O
u

rs

Which is more realistic?
Which has better replication of 

identity of object and background?
Is the object placed at the 

intended depth?

Object Placement User Study

Figure 8: Object placement user study.

Object placement. The results of the
study are presented in Fig. 8. Our
method significantly outperforms all
baselines in terms of realism, identity
preservation, and depth consistency.
Image MPI+Harmonization achieves
better results for identity preserva-
tion, as it directly cut paste the object
from the input image resulting in unrealistic generations. Paint by example and IP-adaptor per-
forms poorly across all the three goals indicating the challenge of depth-aware placement task. Our
approach excels in depth consistency metrics, indicating that our method effectively performs depth-
aware editing while producing highly realistic images.

Scene composition. As indicated in user study (Fig. 9), Image MPI + Harmonization performs
comparably to our approach for both goals. However, the harmonization model is specifically trained
on a large scale dataset for the task of blending objects and foreground but the same baseline fails
to perform well on the object placement task (Fig. 8). Our zero-shot approach achieves superior
realism and depth consistency in the generation as compared to other scene composition baselines.

4.4 ABALATIONS

Image MPI + H

SDEdit

Pair Diffusion

O
u

rs

Which is more realistic?
Is the object placed at the 

intended depth?

Scene Composition User Study

What is this one?
Pair Diffusion

Figure 9: Scene composition user study.

We ablate over the design choices with the task
of scene composition in Fig. 10. We follow the
same guidance parameters for the object place-
ment task as well. Additional ablations are pro-
vided in the supplementary document.

Guidance Timestesp. We ablate over the
timestep range from 0 − 50 for applying the
multiplane feature guidance. Guiding only for small timesteps (0−20) results in significant structure
changes for the foreground and background scenes. On the contrary, providing guidance for all the
timesteps preserves the structure but leads to unnatural composition (lighting mismatch). We found
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that guiding until an intermediate range of timesteps (0-38) and allowing the image to denoise freely
for the remaining steps strikes a good balance, resulting in realistic compositions.
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Figure 10: Ablation for scene composition guidance

Guidance Layers. We ablate over
the U-Net decoder features to guide
the generation. Using all the de-
coder layers for guidance results in
significant artifacts. We observe that
guidance with the first decoder lay-
ers can significantly hurt the genera-
tion. Finally, we achieve a combina-
tion of layer 3 (weight 8.5) and layer
2 (weight 0.2) works well in most
cases. Using only one of these layers
resulted in subpar compositions.

Guidance weight. After finalizing
the layers to be used for guidance, we
tried different weights for the guid-
ance factor. Specifically, we ablate
over a guidance multiplier λ for fore-
ground guidance. Having a smaller
λ results in generating only a back-
ground region, we achieve a good
composition with λ = 1. Notably, λ
is also a control parameter that a user
use to control the effect of the back-
ground on the foreground scene.

No guidance. We ablate against di-
rectly compositing multiplane representation of diffusion latent at timestep t and allow the model
to freely denoise from t to 0 timesteps. With lower timesteps, the generation is coherent but the
identity of the sofa(Fig. 10) is significantly changed, however, when blended at a later timestep the
illumination of the foreground is not adapted. The guidance based approach enables us to slowly
align the latents at each step of denoising to achieve identity-preserving and coherent compositions.

5 CONCLUSION AND DISCUSSION

Conclusion. In this work, we propose Diffusion Compose an efficient zero-shot framework for
depth-aware scene editing with Text-to-Image diffusion models. We leverage multiple scene repre-
sentations and incorporate them in the generation process of diffusion models. Precisely, we propose
a novel multiplane feature guidance approach to guide the generating diffusion latents towards the
target edit while preserving the scene structure. We demonstrate the effectiveness of our depth-
aware editing framework with the task of realistic scene composition and 3D-aware object insertion.
Diffusion Compose generates highly realistic scene editing results without a need for retraining.
We believe our work provides a new perspective on augmenting the capabilities of Text-to-Image
diffusion models for 3D-aware editing.

Limitations. Our framework is based on pretrained Text-to-Image diffusion models and inherits the
limitations and biases of the base model, such as geometrically inconsistent shadows and perspec-
tives in some cases. Further, as we are applying guidance at each step of denoising, the proposed
method is slower than generation from the base Text-to-Image diffusion model.
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A APPENDIX

In this appendix, we provide more details about the dataset used for the evaluation of object place-
ment and scene composition and implementation details and hyperparameters used for both the task.
We also conduct a user study, and its details will be explained in detail, along with a few additional
results and comparisons for both scene composition and object placement.

B DATASET DETAILS

Scene composition. We collect background images from the SSharmonization dataset Jiang et al.
(2021), and for foreground images, we take a variety of images with different lighting from Google
images. Our dataset consist of around 2844 images with 80 background images and 36 foreground
images. To get the foreground mpi mask, we manually do annotation to find the best MPI plane
where we can get a meaningful foreground region that can be composed with other background
images.

Object Placement. Our object placement evaluation dataset consists of 491 background, object
paired images. All of these are collected from Google images consisting of outdoor and indoor
scenes with various kinds of occlusions. We manually annotate each pair to get the object bounding
box and the MPI depth layer where the object can be placed with proper occlusion.

C ABLATION

Since this feature guidance has a lot of hyperparamters, we will explain their role and the choice we
made for choosing specific values.
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Figure 11: a) Ablation for timestep is used for guidance in
object placement task; the other two rows have ablation for
alternative latent space MPI-based composition methods. b)
Ablation for Latent space MPI for scene composition, c)
Ablation for Latent space guidance method for scene com-
position

Scene composition. With respect to
which layers to use for guidance and
what timestep to give guidance, we
have shown the result in Fig. 10,
which clearly explains our parame-
ter choice. But in regard to the MPI-
based rendering in latent space, there
are other choices like direct latent
MPI rendering or latent MPI guid-
ance. In this section, we show why
feature guidance is used and how it is
better at scene composition compared
to the other mentioned alternatives.
In direct latent MPI guidance, we
could just cup-paste the foreground
and background DDIM latent at some
timestep and let the model denoise it
as usual. But from b) in Fig. 11
we can see that doing this MPI ren-
dering in latent space at an earlier
timestep has some lighting change
but the scene identity is completely
lost and doing this at a later timestep
preserves scene identity but there is
no composition, it is similar to image
MPI with no lighting change. Another option is to give latent space guidance for the foreground
region and background region, similar to how we give it in feature space in our method. We can give
this guidance from the beginning till a particular timestep. In Fig. 11 c) part, we have shown the
result for latent guidance till different timesteps, and as we can see in the earlier timestep, we have
major identity loss, and at the later timestep, it is similar to the image space MPI, but with a little
lighting change. Compared to our feature guidance both these alternative latent MPI methods fail to
do scene composition.
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Object Placement In the depth-aware object placement task, since inpainting distorts the foreground
region, we use our guidance to preserve the foreground region based on the MPI masks. In this, our
guidance tries to preserve the foreground, and Anydoor’s additional conditioning tries to erase the
foreground and paint the whole object in the foreground. As we can see, both of these go against
each other, and since the guidance is weak compared to edge conditioning in Anydoor, initially, we
do latent space MPI rendering as mentioned in Sec. 3.4 and then give guidance to foreground region.
And there is a choice to do this latent MPI rendering at which timestep. We saw that doing this at
an earlier timestep gives more freedom to Anydoor, and thus, it doesn’t put the object with proper
occlusion as we can see in Fig. 11 and doing this at a later timestep can cause artifact at the mpi
mask foreground edge.

D IMPLEMENTATION DETAILS

Our guidance method is based on Pandey et al. (2024b). As we can see from 10, using any layer
other than the last feature layer causes major artifacts in generated images. Using only the last layer
features for guidance, doesn’t cause any artifacts, but image appearance is lost for background and
foreground. So, we give high weightage to the last layer feature and very low weightage to the last
before layer for better identity preservation. For scene composition, we start from the inverted latent
of the background image and give guidance to the foreground and background layers according to
their corresponding features. Starting from background layer latents causes the scene lighting to be
inherited from the background scene. We give guidance from 0th timstep to 38 similar to diffusion
handles. We also show in 10 that giving guidance till 50th timestep causes it to look similar to cut
paste without any lighting change.

The same layered guidance is used for object placement, and we use the same parameter used for
scene composition except the number of optimization per step. For object placement, we only
optimize for 3 steps per iteration since the inpainting model already does well in preserving the
appearance of the features outside of the bounding box. At T th timestep we perform a cut paste
of latents according to the MPI layer mask, then for the rest of the generation, we give guidance to
preserve the foreground. If the T value is early, then Anydoor edgemap condition becomes strong
and puts the object in the foreground, and if T is late, then image looks similar to latent cut paste
with artifacts at the border. We qualitatively found T=30 timstep to be working best for most cases.

The time taken to generate a single image for object placement is 60 seconds, and for scene compo-
sition, it takes around 86 seconds.

E USER STUDY

We conduct a qualitative comparison of our Object Placement method against four baselines: Image
MPI + H, IP Adapter, Paint by Example, and Anydoor. The evaluation focuses on three key goals:
scene realism, identity replication of the placed object and background, and accurate placement at
the intended depth. To assess these goals, we carried out a user study on 15 edits across 15 images
from our Object Placement dataset. Each goal was evaluated separately by presenting users with
pairs of images and asking them to select the one that better met the specific goal. A total of 60
randomized image pairs were generated, with each pair comparing a result from our method to a
corresponding result from a randomly chosen baseline. These pairs were divided into three groups
of 20 pairs each, corresponding to the three goals. The study involved 40 participants with varied
experience in image editing, who evaluated all 20 pairs for each goal, resulting in 800 data points
per goal and 2400 data points in total. To mitigate bias, the order of image pairs and the methods
within each pair were randomized.

For Scene Composition, we compare our approach against Image MPI + H, SDEdit, and Pair Dif-
fusion, focusing on two goals: realism and depth consistency. Using a subset of 15 edits across 15
images from our Scene Composition dataset, we generated 40 image pairs, split evenly across the
two goals. The same 40 users participated in this evaluation, generating 800 data points per goal,
for a total of 1600 data points.
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Foreground Scene

Original Image Depth Image

Depth Histogram
Background Scene

Depth Histogram Depth Histogram
Composed Scene

Original Image Depth Image Original Image Depth Image

Figure 12: User Study Screenshot. We asked three types of questions on Object Placement(left):
Realism of the generated image, Identity of object and background, Depth accuracy and two types
of questions on Scene Composition(right): Realism and Depth Accuracy.
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Foreground    Object                       Image MPI              IP-Adapter              Paint by example      Anydoor                Ours

Method2

Method4Ours

This is a 
good 
example

Kettle handle is 
distorted: change 
example

Slid on the 
monitor

All the results are equally 
good, change sample

Image MPI Anydoor LAMA+Anydoor         LAMA+PBE       Anydoor cutpaste  

Highly cluttered 
scene, remove

Distortion in 
background

+Harmonization

Figure 13: Comparison of depth-aware object placement: Image MPI + Harmonization results in
an unnatural ‘cut-paste’ appearance for the inserted object. Inpainting models IP-adapter and Paint
by example struggle to insert objects with consistent identity given the amodal bounding box. Any-
door achieves decent placement but has significant artifacts at the mask border (marked in red). Our
method achieves realistic object placement while preserving the object identity and scene consis-
tency.

F ADDITIONAL RESULTS

In this section, we provide additional results for comparison with other baseline methods on both
tasks and additional results for various scenes by our method.
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Different background and different object

Depth-aware object insertion

Placing a object at multiple scene locations

Same
change

Same
change

Color 
change

Blue vase,
Good scene 

Figure 14: a) Results for depth-aware object placement. b) Our method can also place the given
object at multiple locations in a depth-consistent manner
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    Foreground             Background                      Image MPI                  SDEdit                     PAIR Diffusion          Ours

Similar outputs

Image MPI
+Harmonization

Figure 15: Comparison for depth-aware scene composition: SDE edit and Pair Diffusion generate
unnatural compositions and distort the identity in some cases. Our approach realistically blends the
two scenes in a depth-aware manner with consistent intra-scene illumination.
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Too much, can you 
reduce the extent of 
the background light. 

LOTR - second part 
Harry potter 
GOT

backgrooud

Scene composition

Scene relightingb)
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a)

Figure 16: a) Results for scene composition b) Given a foreground scene, we can compose it with a
background scene with only the sky to achieve realistic lighting of the foreground subject.
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