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A COLLABORATIVE Q DETAILS

We derive the gradient and provide the training details for Eq. [5]

Gradient for Training Objective. Taking derivative w.r.t 6% and 65, in Eq. [5, we arrive at the
following gradient:

VouLn(02,05) = By, oo pymnss’ el (0 Fymax Qs ,a',73:05_1,05 1) — Qi(oi,a,7:360%,65))

Vegl Q?(Szﬁ a, T3 971)]
(6a)

va (en’erCL) = sl,awp(-),ri;SINE[(T+fyma,‘XQi(Slva'/ari;H?z—lagrcz—l) Ql(ol’a T“gn’erez))

Vo: Qi (0i,a,74;0,,) — Qi (i, a,74;05,) Ve Q5 (54, a,7i507)]
(6b)

Soft CollaQ. In the actual implementation, we use a soft-constraint version of CollaQ: we subtract
Qeolab (g8tone ) from Eq. | The Q-value Decomposition now becomes:

Qi(0i7 ai) — Q;_ilone (Oi_zlom:7 ai) + C2Zc‘ollab(0i7 ai) _ Qcollab(oglone, ai) (7)
The optimization objective is kept the same as in Eq.[5. This helps reduce variances in all the
settm%s in resource collection and Starcraft multi-agent challenge. We sometimes also replace
Q2P (o¢lone q;) in Eq. [7]by its target to further stabilize training.

B ENVIRONMENT SETUP AND TRAINING DETAILS

Resource Collection. We set the discount factor as 0.992 and use the RMSprop optimizer with a
learning rate of 4e-5. e-greedy is used for exploration with e annealed linearly from 1.0 to 0.01
in 100k steps. We use a batch size of 128 and update the target every 10k steps. For temperature
parameter o, we set it to 1. We run all the experiments for 3 times and plot the mean/std in all the
figures.

StarCraft Multi-Agent Challenge. We set the discount factor as 0.99 and use the RMSprop
optimizer with a learning rate of Se-4. e-greedy is used for exploration with e annealed linearly from
1.0 to 0.05 in 50k steps. We use a batch size of 32 and update the target every 200 episodes. For
temperature parameter o, we set it to 0.1 for 27m_vs_30m and to 1 for all other maps.

All experiments on StarCraft II use the default reward and observation settings of the SMAC
benchmark. For ad hoc team play with different VIP, an additional 100 reward is added to the original
200 reward for winning the game if the VIP agent is alive after the episode.

For swapping agent types, we design the maps 3s1z_vs_16zg, 1s3z_vs_16zg and 2s2z_vs_16zg (s
stands for stalker, z stands for zealot and zg stands for zergling). We use the first two maps for training
and the third one for testing. For adding units, we use 27m_vs_30m for training and 28m_vs_30m for
testing (m stands for marine). For removing units, we use 29m_vs_30m for training and 28m_vs_30m
for testing.

We run all the experiments for 4 times and plot the mean/std in all the figures.

C DETAILED RESULTS FOR RESOURCE COLLECTION

We compare CollaQ with QMIX and CollaQ with attention-based model in resource collection setting.
As shown in Fig.[9, QMIX doesn’t show great performance as it is even worse than random action.
Adding attention-based model introduces a larger variance, so the performance degrades by 10.66 in
training but boosts by 2.13 in ad ad hoc team play.

D DETAILED RESULTS FOR STARCRAFT MULTI-AGENT CHALLENGE

We provide the win rates for CollaQ and QMIX on the environments without random agent IDs on
three maps. Fig. [10[shows the results for both method.
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Figure 9: Results for resource collection. Adding attention-based model to CollaQ introduces a larger variance
so the performance is a little worse. QMIX doesn’t show good performance in this setting.
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Figure 10: Results for StarCraft Multi-Agent Challenge without random agent IDs. CollaQ outperforms QMIX
on all three maps.

We show the exact win rates for all the maps and settings mentioned in StarCraft Multi-Agent
Challenge. From Tab. [T, we can clearly see that CollaQ improves the previous SoTA by a large
margin.

Table 1: Win rates for StarCraft Multi-Agent Challenge. CollaQ show superior performance over all baselines.

IQL VDN QTRAN  QMIX CollaQ CollaQ
with Attn
Sm_vs_6m 62.81% 69.37% 35.31% 66.25% 81.88% 80.00%
MMM2 4.22% 6.41% 0.32% 36.56% 79.69% 84.69%
2c_vs_64zg 33.75% 22.66% 8.13% 34.06% 87.03% 62.66%
27m_vs_30m  1.10% 6.88% 0.00% 19.06% 41.41% 50.63%

8m_vs_9m 71.09% 82.66% 28.75% 77.97% 92.19% 96.41%
10m_vs_l1lm  70.47% 86.56% 31.10% 81.10% 91.25% 97.50%

We also check the margin of winning scenarios, measured as how many units survive after winning
the battle. The experiments are repeated over 128 random seeds. CollaQ surpasses the QMIX by over
2 units on average (Tab. 2, which is a huge gain.

Table 2: Number of survived units on six StaCraft maps. We compute mean and standard deviation over 128
runs. CollaQ outperforms all baselines significantly by managing more units to survive.

Sm_vs_6m MMM?2 2c_vs_64zg 27m_vs_30m 8m_vs_9m 10m_vs_l1m

IQL 091 £0.28 0.024+0.03 0.05+£0.04 0.00+£0.00 095+036 0.6=+0.44
VDN 1.35+£0.13 028 +£0.32 023+0.12 055£093 3.16£0.61 3.39+144
QTRAN 1.76 £ 0.53 0.31 £044 036+035 0.00£0.00 243+0.53 3.06+2.11
QMIX 172+ 05 192+£1.02 047+£0.11 1.79+£0.72 275+048 3.89=£1.74
CollaQ 1.95+041 4.89+132 148+0.15 280=£094 3.98+0.56 4.91+ 148

CollaQ with Attn 2.77 £0.17 473 +£1.08 1.00£0.49 5.22+1.79 3.68 £0.63 4.73 +0.41

13



Under review as a conference paper at ICLR 2021

In a simple ad hoc team play setting, we assign a new VIP agent whose survival matters at test time.
Results in Tab. [3|show that at test time, the VIP agent in CollaQ has substantial higher survival rate
than QMIX.

Table 3: VIP agents survival rates for StarCraft Multi-Agent Challenge. CollaQ with attention surpasses QMIX
by a large margin.

IQL VDN QTRAN  QMIX CollaQ CollaQ
with Attn
Sm_vs_6m 30.47% 46.72% 16.72% 38.13% 56.72% 61.72%
MMM2 0.31% 0.63% 0.16% 30.16% 62.34% 81.41%
8m_vs_9m 37.35% 47.34% 6.25% 48.91% 59.06% 78.13%

We also test CollaQ in a harder ad hoc team play setting: swapping/adding/removing agents at test
time. Tab[d] summarizes the results for ad hoc team play, CollaQ outperforms QMIX by a lot.

Table 4: Win rates for StarCraft Multi-Agent Challenge with swapping/adding/removing agents. CollaQ
improves QMIX substantially.

QL VDN QTRAN  QMIX CollaQ  CollaQ
with Attn
Swapping 0.00% 18.91% 0.00% 37.03% 46.25% 46.41%
Adding* 13.44% 23.28% 0.16% 70.94% - 79.22%
Removing™* 0.94% 16.41% 0.16% 58.44% - 73.12%

* IQL, VDN, QTRAN and QMIX here all use attention-based models.

E VIDEOS AND VISUALIZATIONS OF STARCRAFT MULTI-AGENT CHALLENGE

We extract several video frames from the replays of CollaQ’s agents for better visualization. In
addition to that, we provide the full replays of QMIX and CollaQ. CollaQ’s agents demonstrate
super interesting behaviors such as healing the agents under attack, dragging back the unhealthy
agents, and protecting the VIP agent (under the setting of ad hoc team play with different VIP agent
settings). The visualizations and videos are available at https://sites.google.com/view/
collag-starcraft

F PROOF AND LEMMAS
Lemma 1. Ifa} > ay, then 0 < max(a}, az) — max(a1,as) < af — a;.

Proof. Note that max(ay, az) = 4159 + | 4592|. So we have:

ay —a;

2

ay — as

2

/ —

ay—a; |a;—aj

2

a1 — az
2

max(a),as) —max(ay,as) = — =aj—ay

®)
O

F.1 LEMMAS

Lemma 2. For a Markov Decision Process with finite horizon H and discount factor v < 1. For all
i€{l,...,K} allry,ro € RM all s; € S;, we have:

Vi(sisrn) = Vi(sista)| < D41 lri (2, a) — ra(, a) ©)

where |s; — x| is the number of steps needed to move from s; to x.

Proof. By definition of optimal value function V; for agent ¢, we know it satisfies the following
Bellman equation:

Vi(zn;ri) = max (ri(zi, a;) + YEu, jonan [Vi(@he1)]) (10)

a;
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Note that to avoid confusion between agents initial states s = {s1, ..., Sk } and reward at state-action
pair (s, a), we use (z, a) instead. For terminal node x g, which exists due to finite-horizon MDP with
horizon H, V;(xg) = r;(xg). The current state s; is at step 0 (i.e., zg = ;).

We first consider the case that r; and ro only differ at a single state-action pair (m?L, a%) forh < H.

Without loss of generality, we set r1 (2%, al)) > ro(z9,a?).

By definition of finite horizon MDP, V;(z};r1) = Vi(xp;r2) for A’ > h. By the property of max
function (Lemmal[I]), we have:

0 < Vi(ah;r1) — Vi(ah;r) < ri(af, ap) —ra(ah, ap) (1D
Since p(z9|zp—1,an—1) < 1, for any (z,_1,an—1) at step h — 1, we have:

0 < Y [Emhmh,],ah,l [V;(ifh; rl)] - Exh|mh,1,ah,1 [Vvi(xh; 1‘2)]] (12)
< v [riah, ap) = ra(h, ap)] (13)

Applying Lemma(T]and notice that all other rewards does not change, we have:

0 < Vi(zpo1;11) — Vi(@ho1312) < 7 [r1(2h, af) — ra(2f, af)] (14)
We do this iteratively, and finally we have:
0 < Vi(sizr1) = Vi(siira) <" [r1(af), af) — ra(ah, ap)] (15)

We could show similar case when 71 (z), af)) < ra(29, aj) ), therefore, we have:
Vi(sisr1) = Vilsisr2)| < "[ra(af, af) — ra(af, af)| (16)
where h = |29 — s;] is the distance between s; and z9.

Now we consider general r1 # ry. We could design path {r;} from ry to ra so that each time we
only change one distinct reward entry. Therefore each (s, a) pairs happens only at most once and we
have:

Vi(siitr) = Vi(sisra)| < ) [Vi(siiree) — Vi(sisy)| (17)
t

< Z’ylw_siurl(m,a)—rg(m,a)| (18)

O

F.2 TuMm.[I

First we prove the following lemma:

Lemma 3. For any reward assignments r; for agent i for the optimization problem (Eqn.[I) and a
local reward set M}°“® D {z : |x — s;| < C}, if we construct ¥; as follows:

- ri(z,a) x € Mo
ri(x,a) = { (O ) T ¢ leocal (19)

Then we have:

Vi(sis5) = Vi3 83)| <7 Rinax M (20)
where M is the total number of sparse reward sites and R,y is the maximal reward that could be
assigned at each reward site x while satisfying the constraint ¢(r1(x,a),r2(z,a),...,rKx(s,a)) <O0.

Proof. By Lemma[2] we know that

Vilsiir) = Vilss Tl < Y Al (s,a) = 7i(s, a)] 1)
m¢S71:ocal
< 99 )0 Iri(s,a) (22)
wgsiocal
< ARy M (23)
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Figure 11: Different reward assignments.

Note that “sparse reward site” is important here, otherwise there could be exponential sites z ¢ Sioca!
and Eqn.[23]becomes vacant.

Then we prove the theorem.

Proof. Given a constant C, for each agent ¢, we define the vicinity reward site B;(C) = {z :
|z —s;i| < C}.

Given agent i and its local “buddies” si°¢®! (a subset of multiple agent indices), we construct the
corresponding reward site set M}°¢a!:

M=) By(C) (24)

local
i

s;€Es
Define the remote agents si°™°% = s\slo¢@! as all agents that do not belong to si°a!,

Define the distance D between the M ¢! and stemote;

D= min min |z — s (25)
we]\/j’}ocal S_jGS,l;CantC

Intuitively, the larger D is, the more distant between relevant rewards sites from remote agents and
the tighter the bound. There is a trade-off between C' and D: the larger the vicinity, M °°*! expands
and the smaller D is.

Given this setting, we then construct a few reward assignments (see Fig. [IT), given the current agent
states s = {s1, s2, ..., Sk }. For brevity, we write R[M, s] to be the submatrix that relates to reward
site M and agents set s.

The optimal solution R* for Eqn.

The perturbed optimal solution R* by pushing the reward assignment of [M/}°¢al stemote] jp
R* to [M!ocal Slocal]
1 »%> °

e From R*, we get R}, by setting the region [M}™t slocal] to be zero.

The local optimal solution R;; ., that only depends on si°°®!. This solution is obtained by
setting [, s1°™°t] to be zero and optimize Eqn.

K2

Eae 2

o From R}, we get Ry, by setting [M}*"*, si°°!] to be zero.
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It is easy to show all these rewards assignment are feasible solutions to Eqn. |1} This is because if the
original solution is feasible, then setting some reward assignment to be zero also yields a feasible
solution, due to the property of the constraint ¢.

For simplicity, we define Jjoca to be the partial objective that sums over s; € s}°°! and similarly for

remote-

We could show the following relationship between these solutions:
Jremote(é*) Z Jremote(R*) - ’YDRmaxMK (26)

This is because each of this reward assignment move costs at most VP Rinax by Lemma and there
are at most M K such movement.

On the other hand, for each s; € s;-ocal, since M}°®! O B;(C), from Lemmawe have:
Vj(Rl*ocal(O)) 2 ‘/j(Rrocal) - ’YcRmaxM 27

And similarly we have: 3 ~

Vi(Rg) > Vi(R*) =7 Rinax M (28)
Now we construct a new solution &2; by combining Ry cat(oy [181°¢1] with £5[1, s5°°t]. This is still
a feasible solution since in both Rl*ocal(o) and RS, their top-right and bottom-left sub-matrices are
zero, and its objective is still good:

JEB) = Jiocat(Bear(ey) + Jremore (75) 29)
@ * C %
2 Jlocal(Rlocal) - RmaxMK + Jrcmotc(Ro) (30)
@ 5%k % C
2 Jlocal(R ) + Jremote (RO) -7 RmaxMK (31)
@ * % C
> Jlocal(R ) + Jremote (RO) — 9" RpaxM K (32)
@ Jlocal(R*) + Jremote (R*) - 'YCRInaxMK (33)
®
> Jiocal(R*) + Jremote(R*) = Runax MK (¢ +~47) (34)

Note that (D is due to Eqn. 27, @) is due to the optimality of R .., (and looser constraints for R} .. )),
@ is due to the fact that R* is obtained by adding rewards released from s}*™°* to siocal. @ is due

to the fact that RS and R* has the same remote components. (5 is due to Eqn. © is by definition
of Jlocal and Jremote-

Therefore we obtain ; = [R]Z that only depends on s}°¢®!. On the other hand, the solution Ris close
to optimal R*, with gap (¢ +vP) Ryax M K. O
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