Under review as a conference paper at ICLR 2023

* Proofs of propositions
Additional details on experimental setup, including:

— Additional details on evaluation metrics
— Details on datasets

e Additional results and ablation studies:

— Results with ¢ pg g g metric

— Analysis on the choice of domain specific language

— Analyzing the depth of synthesized program structures
— Analysis on Twins dataset

* Example of program synthesis application - FlashFill
» Example of a neurosymbolic program - solving XOR problem
* Interpretability of Synthesized Programs - A real-world example

7 PROOFS OF PROPOSITIONS

Proposition 4.1. In an informed search algorithm, let the cost of the leaf edge (u;,u;) (edge
connecting internal node u; to leaf node u;) be s(r) + ((P,0*), where 8* = arg min, ((P,0) and r
is the rule used to create u; from u;. If NNs N parameterized by their capacity (architecture width and
height) are used to substitute the non-terminals in the partial structure of u;, the resultant program’s
training loss is equal to the e—admissible heuristic value at the node u;. Such an e—admissible
heuristic returns a solution whose path cost is at most an additive constant € away from the path cost
of the optimal solution (Shah et al.| |2020).

Proof. Let G denote the program graph that is being generated by an informed search algorithm. At
any node v in G, let s(u) be the structural cost of i.e., the sum of costs of rules used to construct

u. Now, let ufaq, . .., ax] be any structure (that is not partial) obtained from u by using the rules
a1, ..., a. Then the cost to reach goal node from w is given by:
J(u) = min [s(u(aq, ..., o)) — s(u) + ((ulaq, ..., ax], (04,6))] 2)

at,...,0m,0(u),0

where 6(u) is the set of parameters of u and @ is the set of parameters of aq, ..., ag. Now, let the
heuristic function value h(u) at u be obtained as follows: substitute the non-terminals in u with neural
networks parametrized by the set of parameters w (these networks are type-correct— for example, if
a non-terminal is supposed to generate sub-expressions whose inputs are sequences, then the neural
network used in its place is recurrent). Now, let us denote the program obtained by this construction
with (P(u), (6(u),w)). The heuristic function value at u is now given by:

h(u) = i C(P(u), (0(u),w)) A3)

In practice, neural networks may only form an approximate relaxation of the space of completions
and parameters of architectures; also, the training of these networks may not reach global optima. To
account for these issues, consider an approximate notion of admissibility (Harrisl [1974; [Pearl, |[1984)).
For a fixed constant € > 0, let an e-admissible heuristic be a function 2*(u) over architectures such
that h*(u) < J(u) + ¢ Vu.

As neural networks with adequate capacity are universal function approximators, there exist parame-
ters w* for our neurosymbolic program such that for all u, vy, . . ., ag, 6(u), 0:

C(P(u)> (Q(U)’W*)) < C(P(u[alv s >akD7 (H(U), 0)) +e “
If s(r) > 0;Vr € L (where L is the DSL under consideration), then s(u) < s(u[a, ..., ag]), which
implies:
h(u) < min Clu[aq, ..., ar], (04,0))) +€

Qe 0n,0(u),0

Clular, ..., o], (04,0))) + s(u(aq,...,ax)) — s(u) + € 5)

A1,y ,0(u),0

=J(u)+e

IN

In other words, h(u) is e-admissible.

13

Under review as a conference paper at ICLR 2023

Let C denote the optimal path cost in G. If an informed search algorithm returns a node u, as the
goal node that does not have the optimal path cost C, then there must exist a node u’ on the frontier
(nodes to explore) that lies along the optimal path but has not yet explored. Let g(u,) denote the
path cost at u, (note that path cost includes the prediction error of the program at u). This lets us
establish an upper bound on the path cost of u,.

glug) < g(u')+h(u') <gu)+J(u)+e<C+e (6)

In an informed search algorithm, the heuristic estimate at the goal node h(u,) is 0. That is, the path
cost of the optimal program returned by the informed search algorithm is at most an additive constant
€ away from the path cost of the optimal solution. O

Proposition 4.2. Given an e—admissible heuristic, for any trained 1-hidden layer NN N with m
inputs, n hidden neurons, and one output, there exist a Domain Specific Language L such that the
error/loss incurred by the synthesized program (P, 0) is e—close to the error/loss incurred by N in
approximating any continuous function.

Proof. Consider a trained 1-hidden layer neural network A/ with m inputs x1, ..., Z,,, n hidden
neurons hq, ..., hy,, and output y. Let the activation function used in hidden and output layers be
g(+); 6;; be the weight connecting i*" input to j** hidden neuron; and 6; be the weight connecting
j*" hidden neuron to output y. The output i of A/ can be expressed in terms of inputs, activations,
and parameters as:

Since the expression for y consists of additions, multiplications, and a known activation function
g, we can synthesize the same expression (Equation [/ using the following DSL £ where mul, add
represent usual multiplication and addition operations.

a=g(a) |mul(d, o) | add(a,a) |x1] ... | Xa 8)
For example, if m = 2 and n = 2, the synthe-
sized program that matches the expression for Y looks like:

g (add (mul (0, g(add (mul (0, x1),mul(6, x,)))), mul(f, g (add (mul(f, x;),mul(f, x3)))))).

Side note: 6 is overloaded in the previous expression only for convenience and staying in line with
typical program synthesis expressions. Each 6 is however updated independently while training the
above program using gradient descent.

It is clear that the expression for y can be synthesized using £ for any given m,n. Now, as part
of our construction, set s(r) = 0;Vr € L to synthesize programs of arbitrary depth and width
without worrying about structural cost of the synthesized program. Now the path cost p of a node
u returned by the synthesizer contains only the prediction error value of the program at the node
u. Using Proposition[4.1] p is at most e away from the path cost of the optimal solution (node with
the expression for g, the output of \'). Since path cost of any node only contains the prediction
error values, we conclude that the error/loss incurred by the synthesized program is e—close to the
error/loss incurred by NV. O

8 EXPERIMENTAL SETUP

8.1 ADDITIONAL DETAILS ON EVALUATION METRICS

For the experiments on IHDP and Twins datasets where we have access to both potential outcomes,
following (Shalit et al., 2017; |Yoon et al., [2018}; |Shi et al., 2019; [Farajtabar et al., 2020), we use
the evaluation metrics: Error in estimation of Average Treatment Effect (e org) and Precision in
Estimation of Heterogeneous Effect (epppg). These are defined as follows for finite sample datasets
of n data points.

eare = S0 1) — fxi, 0] = = S -V ©)
i=1 i=1
pmie = - (70 1)~ F(xi,0) — (V= V)P (10)
=1

14

Under review as a conference paper at ICLR 2023

For the experiment on the Jobs dataset where we observe only one potential outcome per data point,
following (Shalit et al., 2017} |Yoon et al.| 2018 Shi et al.,[2019} [Farajtabar et al.,2020), we use the
metric Error in estimation of Average Treatment Effect on the Treated (e o7T), which is defined as
follows.

1
earr = |ATT'™e — il D (i 1) = £(xi,0)]] (11)
€T

where ATT! "¢ is defined as:

1 1
ATTHve = — Nyl = Y0 12
T2 T 2, =

and T is the treated group, U is control group, and E is the set of data points from a randomized
experiment (Shalit et al.,[2017) (see description of Jobs dataset below for an example of E, T, and
U).

In k-NN where k=1, if treatment value t=1, f(x;, 1) is exactly same as Y;!. If treatment value t=0,
f(xi,0) is exactly same as Y;? because of the way k-NN works during test time on in-sample data.
For this reason, the estimated value of € 47 is biased towards 0. This bias exists even for higher
values of k in k-NN while taking the average outputs of k nearest data points. However, we do not
observe such bias w.r.t. out-sample data. Hence, following earlier work [63], we only consider K-NN
results for out-sample performance. We updated Table 3 caption to clarify this.

8.2 DETAILS ON DATASETS

IHDP: Infant Health and Development Program (IHDP) is a randomized control experiment on 747
low-birth-weight, premature infants. The treatment group consists of 139 children, and the control
group has 608 children. The treatment group received additional care such as frequent specialist
visits, systematic educational programs, and pediatric follow-up. The Control group only received
pediatric follow-up. (Hill, 2011} created the semi-synthetic version of IHDP dataset by synthesizing
both potential outcomes. Following (Hill, 2011} Shalit et al., [2017} [Yoon et al.l 2018} |Shi et al.,
2019), we use simulated outcomes of the IHDP dataset from NPCI package (Doriel [2016). This
experiment aims to estimate the effect of treatment on the 1Q score of children at the age of 3.

Twins: The Twins dataset is derived from all births in the USA between 1989-1991 (Almond et al.,
2005). Considering twin births in this period, for each child, we estimate the effect of birth weight on
1-year mortality rate. Treatment ¢ = 1 refers to the heavier twin and ¢ = 0 refers to the lighter twin.
Following (Yoon et al., |2018), for each twin-pair, we consider 30 features relating to the parents,
the pregnancy, and the birth. We only consider twins weighing less than 2kg and without missing
features. The final dataset has 11,400 pairs of twins whose mortality rate for the lighter twin is 17.7%,
and for the heavier 16.1%. In this setting, for each twin pair we observed both the case ¢t = 0 (lighter
twin) and ¢ = 1 (heavier twin) (that is, since all other features such as parent’s race, health status,
gestation weeks prior to birth, etc. are same except the weight of each twin, the choice of twin (lighter
vs heavier) is associated with the treatment (f = Ovst = 1)); thus, the ground truth of individualized
treatment effect is known in this dataset. In order to simulate an observational study from these 11,400
pairs, following (Yoon et al.|2018), we selectively observe one of the two twins using the feature
information x (to create selection bias) as follows: ¢|x ~ Bernoulli(s igmoid(wlx + n)) where
wl ~ U((—0.1,0.1)3*1) and n ~ N(0,0.1).

Jobs: The Jobs dataset is a widely used real-world benchmark dataset in causal inference. In this
dataset, the treatment is job training, and the outcomes are income and employment status after job
training. The dataset combines a randomized study based on the National Supported Work Program
in the USA (we denote the set of observations from this randomized study with E') with observational
data (A. Smith & E. Todd, 2005). Each observation contains 18 features such as age, education,
previous earnings, etc. Following (Shalit et al.l 2017} [Yoon et al. 2018), we construct a binary
classification task, where the goal is to predict unemployment status given a set of features. The
Jobs dataset is the union of 722 randomized samples (t = 1 : 297,¢ = 0 : 425) and 2490 observed
samples (t = 1:0,¢ = 0 : 2490). The treatment variable is job training (¢ = 1 if trained for job else
t = 0), and the outcomes are income and employment status after job training. In Equations [TT{T2}
we then have |T'| = 297, |C| = 2915, |E| = 722. Since all the treated subjects T" were part of the

15

Under review as a conference paper at ICLR 2023

Metrics — EPEHE €EATE

Primitives ~ In-Sample Out-of=Sample In-Sample Out-of-Sample
of DSL

1-4 318 +.003 319 £ .000 .0050 £.0030 .0063 + .0030
4-5 319 £.002 319 £ .000 .0170 £.0010 .0100 = .0000
1-5 318 +£.002 319 +£.000 0034 +£.0026 .0063 + .0033

Table 7: Results on Twins. Primitives 1-4 alone in our proposed DSL are achieving better results compared to
the primitives 4-5.

original randomized sample E, we can compute the true ATT (Equation and hence can study the
precision in estimation of AT'T" (Equation [TT).

Table [5] summarizes the dataset details. All experiments were conducted on a computing unit with a
single NVIDIA GeForce 1080Ti.

Dataset Number of Input Size Batch Size Training Train/Valid/Test
Data points (Including Treatment) Epochs Split (%)
IHDP 747 (1000 such instances) 26 16 100 64/16/20
Twins 11400 31 128 7 64/16/20
Jobs 3212 18 64 10 64/16/20

Table 5: Dataset details. ‘Input Size’ includes treatment variable.

9 ADDITIONAL RESULTS AND ABLATION STUDIES
9.1 RESULTS WITH €EPEHE METRIC

To study how NESTER performs with the e p gz p metric, we empirically captured the performance
of NESTER comprehensively against all baselines on the IHDP dataset. From Table 6} NESTER
achieves strong out-sample (out-of-sample) € p 7 g score on the IHDP dataset, even on this metric.

Dataset (Metric) — IHDP (\/epEHE)
Methods | In-Sample Out-Sample
OLS-1 5.80 £ .30 5.80 £ .30
OLS-2 2.50 £ .10 250+ .10
BLR 5.80 £ .30 5.80 £ .30
k-NN 2.10 £ .10 4.10 + .20
BART 2.10 £ .10 23+.10
R Forest 4.20 + .20 6.60 £ .30
C Forest 3.80 £ .20 3.80 £ .20
BNN 2.20 £+ .10 2.10 £+ .10
TARNet .88 +.02 95+ .02
MHNET 1.54 +£ .70 1.89 £ .52
GANITE 1.90 £ .40 2.40 £ .40
CFRw ass J1+£.02 .76 + .02
Dragonnet 1.37 £1.57 1424+ 1.67
CMGP 65 + .44 7+ 11
NESTER 73 +.19 76 £ .20

Table 6: Results on IHDP dataset. Lower is better.
9.2 CHOICE OF DSL

The choice of DSL has a huge impact on the performance of NESTER. We argue that the success of
NESTER is because of the specific program primitives in the proposed DSL and their connection
to the causal inference literature (Table[I). Specifically, we study the usefulness of the primitives
if — then — else, transform, subset. We conduct an ablation study where the DSL only contains
the subset of primitives from the set of primitives 1-5 in the original DSL (Table[2). When we remove

16

Under review as a conference paper at ICLR 2023

the primitives 1-3 from the DSL, we observe the degradation in the performance (Table [7). Results
improved when we added the primitives 1-3 in the DSL.
9.3 ANALYSIS ON DEPTH OF SYNTHESIZED PROGRAM STRUCTURES

We study the effect of program depth on the HDP Jobs

estimated treatment effects while keeping all ~ imsample S
other hyperparameters fixed. Figure 2] shows . il 0.06

the results on IHDP and Jobs datasets for var- & - &oos Bipediot
ious values of program depth. Since IHDP /\/\

dataset contains 1000 realizations of simulated] 002 e ——
outcomes (Hill, 2011}, we take the first instance g PrggramGDeptha 10 : Program Depth e
and verify the effect of program depth on €547 5. .

For program depth of 4, we observed a better Figure 2: Program depth vs performance.

trade-off between in-sample and out-sample € 47r. Any depth smaller than 4 and higher than 4
results in degradation of performance w.r.t. one of in-sample or out-sample € 47 . We believe that
this is because of model over-fitting for large program depths (In Figure [2]left, out-sample e o7 is
increasing while in-sample €47 is decreasing). In the Jobs dataset, we observed that almost all
program depths results in similar in-sample and out-sample € 477. Hence, in this case it is advisable
to limit the program depth to be a small number as it helps to interpret the results better. On Twins
dataset, as stated in the main paper (L 395), we observed that simple models give best results. It is
observed that, even though we set the hyperparameter that controls the depth of the program graph to
be a large value, the resultant optimal program always ends up to be of depth 1, again supporting our
claim that simple models work better for the Twins dataset.

9.4 ANALYSIS ON TWINS DATASET

We study the program synthesized for the Twins dataset. NESTER generates simple program
(subset(v,[0..|v[])) for the Twins dataset (Table {). Since the subset primitive allows us
check the performance w.r.t. different subsets of covariates, we empirically verified the effect
of choosing a subset of input covariates (other covariates are set to 0) on the predicted ATE.
Results in Figure [3|show the performance of NESTER as the

number of covariates are increased from 1 to 31 (starting with o025 | e
treatment variable, adding one covariate at a time). We observe o020/ |

that the model with all features included gives the best in- woos
sample and out-sample € 47 . While this is not a surprising .01
conclusion, the choice of the subset primitive allows us such s/
an analysis. Also, this simple program synthesized by NESTER

Vs

0.000

supports the fact that simpler models perform better on the % Nmberoffeses

Twins dataset. This can be observed from first three rows and)

final row of Table 3 Figure 3: Twins: number of features
VS €EATE.

10 FLASHFILL TASK AND SEMANTICS OF ITS DSL

Following our discussion in Section [I](L 75), for better understanding of symbolic program synthesis,
we provide an example of a symbolic program application called FlashFill (Parisotto et al.,|[2016]).
Examples of the FlashFill task and a DSL to synthesize programs that solve FlashFill task are given
in Table

17

Under review as a conference paper at ICLR 2023

Input Output String e := Concat(fy,...,f,)

William Henry Charles Charles, W. Substring f := ConstStr(s)|SubStr(v, p1,pr)
Michael Johnson Johnson, M. Position p := (r,k,dir)|ConstPos(k)
Barack Rogers Rogers, B. DirectionDir := Start|End

Martha D. Saunders Saunders, M. .

Peter T Gates Gates, P. Regexr :=s[Ty|... [T

Table 8: Left: An example FlashFill task where input names are automatically translated to an output format in
which last name is followed by the initial of the first name; Right: The DSL for FlashFill task based on regular
expression string transformations (Parisotto et al., 2016).

Semantics of the above DSL are as follows.

* Concat(fy,...,f,) - concatenates the results of the expressions fy,. .., f,.

* ConstStr(s) - returns the constant string s.

* SubStr(v,p1,pr) - returns substring v[p;..p.| of the string v, using position logic corre-
sponding to p1, pr- We denote v[i..j] to denote the substring of string v starting at index i
(inclusive) and ending at index j (exclusive), and 1len(v) denotes the length of the string v

* ConstPos(k) - returns k if k > 0 else return 1 + k where 1 is the length of the string

¢ (r,k,Start) - returns the Start of k*® match of the expression r in v from the beginning (if
k > 0) or from the end (if k < 0).

* (r,k,End) - returns the End of k*® match of the expression r in v from the beginning (if
k > 0) or from the end (if k < 0).

Based on the above semantics, a program that generates the desired output given
the input names in Table is: Concat(fy,ConstStr(”,”), f,, ConstStr(”.”)) where
f; = SubStr(v,(” 7, —1,End), ConstPos(—1)) and 5 = SubStr(v, ConstPos(0), ConstPos(1)).

11 NEUROSYMBOLIC PROGRAM EXAMPLE: SOLVING XOR PROBLEM

Following our discussion in Section 3| (L 194), for better understanding of the internal workings of a
neurosymbolic program, we provide an example on solving the XOR problem i.e., predicting the
output of XOR operation given two binary digits.

Unlike symbolic programs, neurosymbolic programs are differentiable and can be trained using
gradient descent. Program primitives in a neurosymbolic program have trainable parameters asso-
ciated with them. The program shown in Table [9] (left) is constructed using (i) if — then — else
and (ii) affine program primitives. affine primitive takes a vector as input and returns a scalar
that is the sum of dot product of parameters with the input and a bias parameter. For example, if
x = [1,0] then affinep, g,,0,(x) = 01 X 1 + 02 x 0 4 63 = 01 + 5. The subscripts of affine in
affinejy, g,.0,] contain the parameters 01, 05 and bias parameter 63 separated by semi colon (;). The
smooth approximation of this program, to enable backpropagation, is shown in Table 9] (right). The
parameter values are hard-coded for illustation purposes. In practice, these weights are learned by
training through gradient descent.

12 INTERPRETABILITY OF SYNTHESIZED PROGRAMS: A REAL WORLD
EXAMPLE

We expect that each program primitive in a domain-specific language has a semantic meaning; hence,
interpretability in program synthesis refers to understanding the decision of a synthesized program
using various aspects such as: which program primitives are used and why? what does the learned
sequence of program primitives mean for the problem? what is the effect of each program primitive
on the output? etc.

We explain more clearly with an example. Consider a causal model consisting of variables
T,X1,X5,Y where: (i) X; causes 1" and Y; (ii) T causes X5 and Y'; and (iii) X9 causes Y.

18

Under review as a conference paper at ICLR 2023

if affiney ;,0)(x) > O then

if affln.e[lyl;,l] (x) > 0 then o(8 x atfines 1.0)(x))x
atfinep oo (x) (B x affinep; s, g (x)) x affinepp o, (x)+
—o(B x affinepy 1;_1)(x))) x affine 1,9 (x))+

— O'(B X affine[l,ho] (X))) X affine[oyo;o] (X)

else El
affinep 1,0)(x) 1
else
affinep o, (%)

Table 9: Left: A neurosymbolic program to solve XOR problem. Right: Smooth approximation of the program
on the left where o is sigmoid function. S is a temperature parameter. As 5 — 0, the approximation approaches
usual if — then — else (Section EI)

A real-world scenario depicted by this causal model could be where T is the average distance walked
by a person in a day, X, is age, X5 is metabolism, and Y is blood pressure. In this example, our
goal is to estimate the effect of walking (T') on blood pressure (Y). In this case, the ideal estimator
for the quantity E[Y'|do(t)] is D_, . x, E[Y|t,z1]p(z1). However, NESTER has access to only
observational data and is unaware of the underlying causal process. Now consider the following two
possible programs py, po that are synthesized by NESTER to estimate the treatment effect of 7" on Y.
Let v = [t, 21, x2] be an input data point.

p1 : if subset(v,[0..1]) then subset(v,[0..2]) else subset(v,[0..2])

po i if subset(v,[0..1]) then subset(v,[0..3]) else subset(v,][0..3])

The only difference between p; and p, is the set of indices used in subset primitives. p; uses only
T, X (indicated by [0..2] in p1) to predict Y; while py uses T, X7, X5 (indicated by [0..3] in p2) to
predict Y. In this case, we would ideally observe p; to perform better than ps because p; controls
for the correct set of confounding variables ({ X;} in this case). Conversely, observing a strong
performance for p; tells us that { X7 } is the confounder, without knowledge of the causal model.

Observing the generated program and primitives gives us insights about the underlying data generating
process such as which features are the potential causes of treatment (e.g., age affects the average
distance a person can walk), which features should not be controlled (e.g., we need the effect of
walking on blood pressure irrespective of the metabolism rate of a person), etc. Such information
encoded in a synthesized program can also be validated with domain experts if available. Our
experimental results and ablation studies discussed above show other ways of interpreting programs.

19

