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ABSTRACT
With the continuous development of imaging technology and the
gradual expansion of the amount of image data, how to achieve
high compression efficiency of high-resolution images is a chal-
lenge problem for storage and transmission. Image rescaling aims to
reduce the original data amount through downscaling to facilitate
data transmission and storage before encoding, and reconstruct the
quality through upscaling after decoding, which is a key technol-
ogy to assist in high-ratio image compression. However, existing
rescaling approaches are more focused on reconstruction quality
rather than image compressibility. In repetitive observation sce-
narios, multi-temporal images brought by periodic observations
provide an opportunity to alleviate the conflict between reconstruc-
tion quality and compressibility, that is, the historical images as
reference indicates what information can be dropped at downscal-
ing to reduce the information content in downscaled image and
provides the dropped information to improve the image restora-
tion quality at upscaling. Based on this consideration, we propose
a novel multi-temporal assisted reference-based image rescaling
framework (RefScale). Specifically, a referencing network is pro-
posed to calculate the similarity map to provide the referencing
condition, which is then injected into the conditional invertible
neural network to guide the information drop at the downscaling
stage and information fusion at the upscaling stage. Additionally,
a low-resolution guidance loss is proposed to further constrain
the data amount of the downscaled LR image. Experiments con-
ducted on both satellite imaging and autonomous driving show
the superior performance of our approach over the state-of-the-art
methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Deep learning, Image rescaling, Multi-temporal fusion, Invertible
neural networks, Image compression

1 INTRODUCTION
With the rapid advancements in imaging technology, high-resolution
(HR) images and videos carry more visually pleasing details, de-
livering great benefits to human visual entertainment. However,
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Figure 1: Schematic of image rescaling frameworks. (a) fixed
downscaling & SR methods, (b) joint-optimized downscaling
and upscalingmethods, (c) INN-based rescalingmethods, and
(d) our reference-based rescaling method.

the huge amount of data has resulted in significant challenges re-
lated to data storage and transmission. Therefore, a high effective
compression method is urgently required to alleviate the conflict
between limited bandwidth and high data volume, which is crucial
for the storage, transmission, and management of image data, and
even for technologies like Internet of Things and Cloud Computing.

In order to achieve high-ratio compression, the rescaling-based
coding, which contains rescaling module and compression module
to form a Downscaling-Compression-Upscaling pipeline, stands
out from other methods due to its low cost and high efficiency.
Specifically, image downscaling is quite indispensable for storing
and transferring large-size images, as the reduction of spatial reso-
lution naturally removes part of the spatial information redundancy
and significantly release the data amount. Additionally, when the
content needs to be viewed, upscaling techniques are used to re-
store image details to their original resolution or adapt them to
screens with varying resolutions. However, high-frequency details
inevitably get lost during downscaling, posing a great challenge for
reverse image reconstruction, which are generally referred to as
“ill-posed" problems [4, 21, 36, 45].

To tackle the inverse problem of downscaling and upscaling,
image rescaling has been studied mainly in three categories [42].
The first category is composed of methods that downscale images
with fixed kernels, and upscale the LR images with image super-
resolution (SR) techniques [3, 35, 49] (Figure 1(a)). Although ad-
vanced SR methods can restore some high-frequency textures, the
crucial information lost during downscaling is hard to be fully
recovered. With the insight that proper downscaling designs are
influential in preserving beneficial information in LR images, the
second category attempts to preserve the critical information for
inverse restoration by optimizing both processes within a unified
framework [9, 16, 33] (Figure 1(b)). They have achieved remarkable

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

visual reconstruction quality, but the authenticity of generated tex-
tures cannot be guaranteed. To fulfill the requirement of faithful
image recovery, invertible neural network (INN) [2, 10, 32] based
methods were proposed to build downscaling and upscaling into an
invertible process [17, 43] (Figure 1(c)). Up till now, these rescaling
methods have greatly boosted the quality of reconstructed HR im-
ages, but little attention has been paid to the data amount of their
LR counterparts, which may be overly informative for storage and
transmission.

This research aims to address the two challenges simultaneously:
minimizing the amount of information conveyed in the downscaled
images while maximizing the quality of the upscaled images. In-
spired by the recent reference-based SR methods [24, 44, 50, 52], we
propose leveraging multi-temporal images as historical reference
to achieve this goal. Specifically, reference images could guide the
removal of redundant information that is similar to them in the
downscaling process and provide the dropped information from
the reference in the upscaling process to compensate for the loss
of details. This strategy can be deployed in repetitive observed
scenarios, such as satellite imaging with repetitive observations at
specific locations or autonomous driving with repeated excursions
along predetermined paths, for reducing their data storage and
transmission costs [1, 24, 41, 44, 52].

In this paper, we propose a multi-temporal assisted reference-
based framework for image rescaling (RefScale) (Figure 1(d)) to
alleviate the conflict between low information content and high
visual quality by exploiting the relevance between the HR image
and its historical reference. On one hand, during downscaling, we
expect to drop as much mutual information that is comparable to
reference images as possible, while preserving individual informa-
tion that cannot be recovered from the reference. Additionally, the
mutual information supplied by the reference can provide guidance
for HR image reconstruction. To achieve this, we build a referencing
network (Ref-Net) that collects the relevance between the HR and
reference image and propose a novel conditional INN that embeds
the mutual information into a latent variable that follows a specified
distribution while retaining the individual information in the LR
image. The HR image is then reconstructed based on the LR input,
the condition, and random samples of latent variables. We employ
a bottleneck structure and a quantization module to generate the
similarity map with low bandwidth expense for recording the rele-
vance. A similarity-based LR guidance loss is also designed to guide
the redundancy elimination during training.

In summary, the main contributions of this paper are:
1) We introduce multi-temporal images as reference in the repet-

itive observation scenarios for image rescaling to achieve a joint
optimization of compression-friendly downscaling and high-quality
upscaling as dropping the mutual information between the refer-
ence and the current images helps to reduce information content
in the downscaled image whilst the reference will bring back the
dropped information for image reconstruction.

2) A novel rescaling framework called RefScale is proposed to in-
tegrate the reference in an invertible rescaling network, through the
designs of referencing condition generation to indicate the similar-
ity between the reference and the current image, and the condition-
based downscaling and upscaling network to conditionally drop
and recover the mutual information in the rescaling process.

3) Extensive experimental results demonstrate that our approach
performs state-of-the-art results on both remote sensing and driving
scenarios for both high reconstruction quality and low information
content in LR images.

2 RELATEDWORK
2.1 Image Rescaling
Image rescaling refers to the resizing of a digital image, including im-
age downscaling and upscaling. Previous work typically treated the
two processes separately. The widely used downscaling approaches
employ high-frequency filters, such as bilinear and bicubic. Later
methods [11, 23, 37] attempted to preserve more structure and de-
tails in downscaled images for higher visual quality. Kopf et al.[11]
proposed a content-adaptive method to optmize the shape and
locations of downsampling kernels. Oeztireli et al.[28] optimized
downscaled images with structural similarity index (SSIM). We-
ber et al.[37] preserved visually significant details by emphasizing
the distinctive pixels, while Liu et al.[23] introduced a gradient-
ratio prior to preserving salient edges. On the other hand, the
upscaling process is typically achieved by image SR techniques.
Since Dong et al. [3] proposed the convolutional neural networks
(CNNs)-based single image SR (SISR), various effective SR mod-
els [5, 14, 35] have been proposed for deeper models and higher
accuracy, some of which developed more powerful modules, e.g.,
residual connections [5, 14], dense connections [6, 35] for deeper
models and higher accuracy. Suffering from blurry results, some
methods [27, 46] employed generative adversarial networks (GANs)
to produce visually more perceptible results. More recently, normal-
izing flow [25, 48] and diffusion models [29] have been introduced
to SISR and achieved superior performance.

Recognizing the potential relevance between image downscaling
and upscaling, recent studies [9, 16, 33] developed rescaling models
that are jointly optimized for both processes and achieved more
vivid reconstruction. Kim et al. [9] first proposed an autoencoder-
based method, where the encoder and decoder simulate the down-
scaling and upscaling procedures, respectively. Li et al. [16] aimed
to learn a compact-resolution image that is both visually pleasing
and informative compared to HR images. Sun et al. [33] learned
a content-adaptive downscaling kernel to maintain the structure
of the HR input. More recently, INN-based methods [17, 43] were
proposed to explicitly model the lost information during downscal-
ing, resulting in remarkable reconstruction quality. IRN [43] was
proposed to model the entire rescaling procedure using a bijective
INN. HCFlow [17] further modeled the high-frequency component
conditioned on the generated low-frequency component. Though
these methods achieved outstanding reconstruction quality, they
also introduced more information to LR images, which significantly
increases the burden on data storage and transmission.

2.2 Reference-based Image Processing
The emergence of deep learning has led to significant advancements
in computer vision tasks. However, there is still a lack of prior infor-
mation learned from large-scale training data for restoration-related
tasks such as image SR and image inpainting [19, 22, 34]. To break
this dilemma, some methods have introduced reference images to
provide auxiliary information. Reference-based image SR (RefSR)
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Figure 2: Overview of our reference-based rescaling framework. At the downscaling stage, Ref-Net extracts the correlation
between 𝐼𝑟𝑒 𝑓 and 𝐼𝐻𝑅 as condition 𝐹𝑐 , based on which 𝐼𝐻𝑅 is downscaled to a less informative 𝐼𝐿𝑅 by conditional INN. At the
upscaling stage, we store 𝑆𝑚𝑎𝑝 to extract the same 𝐹𝑐 as when downscaling and the conditional INN reconstructs the 𝐼𝐻𝑅 from
𝐼𝐿𝑅 , 𝐹𝑐 and random sampled 𝑧. Furthermore, a similarity-based LR guidance loss leads to an adaptively smooth 𝐼𝐿𝑅 .

methods [8, 24, 31, 44, 50, 52] transfer high-frequency details from
the reference image to the super-resolved image and exhibit promis-
ing results over SISR. Image inpainting methods [7, 15, 51, 53] take
reference images as guidance for realistic texture and structure in-
ference, effectively alleviating artifacts and unreasonable contents
caused by large holes. The reference also frees users from the labo-
rious interaction process for image generation [13, 38–40]. While
reference-based image processing algorithms call for more specific
application scenarios, they have shown to be vastly superior to
approaches with no reference.

3 PROPOSED METHOD
3.1 Problem Formulation
Let 𝐼𝐻𝑅 ∈ R3×𝑊 ×𝐻 be the HR image, and 𝐼𝐿𝑅 ∈ R3×𝑊

𝑠
× 𝐻

𝑠 be the
corresponding LR image, where𝑊 and 𝐻 denote the width and
height, respectively, and 𝑠 is the downscaling factor. Conventionally,
𝐼𝐿𝑅 is obtained using a predefined downscaling kernel, such as
bicubic. Recent rescaling studies aim to jointly learn and optimize
the downscaling operation 𝑓 (·) and the upscaling operation 𝑔(·)
with respect to the objective of superior quality of the downscaled
image 𝐼𝐿𝑅 and the reconstructed HR image 𝐼𝐻𝑅 , given by:

L𝑖𝑚𝑔 = ∥𝐼𝐻𝑅 − 𝐼𝐻𝑅 ∥2 + 𝜆∥𝐼𝐿𝑅 − 𝐼𝐿𝑅 ∥2, (1)

where 𝜆 is a weight that balances the two terms.
In addition to the image quality constraints, our objective is to

reduce the information content (IC) contained in 𝐼𝐿𝑅 to save on
storage and transmission costs. To this end, we introduce a term
in the objective function that constrains the information entropy
of 𝐼𝐿𝑅 and encourages dropping more details during downscaling,

expressed as:

L𝑖𝑚𝑔+𝑖𝑐 = L𝑖𝑚𝑔 + 𝜆𝑒𝐸 (𝐼𝐿𝑅), (2)

where 𝐸 (·) measures the IC in 𝐼𝐿𝑅 and 𝜆𝑒 is the weight. The newly
introduced item encourages dropping more details during down-
scaling, which hinders the reconstruction process. Thus, the key to
resolving the problem is to fully use the information contained in
the reference image.

3.2 Overall Framework
In this paper, we introduce a reference image 𝐼𝑟𝑒 𝑓 ∈ R𝐶×𝑊 ×𝐻 and
exploit the correlations between 𝐼𝐻𝑅 and 𝐼𝑟𝑒 𝑓 for the image rescal-
ing task. The proposed reference-based rescaling framework (RefS-
cale) is depicted in Figure 2, which consists of two sub-networks: a
referencing network (Ref-Net) to generate a referencing condition
from the HR image and the reference image, and then a condi-
tional invertible neural network (INN) adopted the reference condi-
tion to perform image downscaling and upscaling respectively. A
similarity-guided LR guidance loss is proposed to further constrain
the IC of the downscaled image.

In particular, at the downscaling stage, the Ref-Net calculates
a similarity map 𝑆𝑚𝑎𝑝 from 𝐼𝐻𝑅 and 𝐼𝑟𝑒 𝑓 , which is subsequently
used to generate the referencing condition feature 𝐹𝑐 . 𝑆𝑚𝑎𝑝 is also
used to guide the formation of the LR guidance loss L𝐿𝑅 , under
the consideration that the information can be more eliminated at
similar regions while more information should be kept at dissimilar
regions. Then, with the guidance from 𝐹𝑐 and L𝐿𝑅 , the conditional
INN processes 𝐼𝐻𝑅 to generate a less informative LR image 𝐼𝐿𝑅 and
embed the mutual information of 𝐼𝐻𝑅 and 𝐼𝑟𝑒 𝑓 into a latent variable
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𝑧, which follows a specific distribution. At the upscaling stage, Ref-
Net takes 𝐼𝑟𝑒 𝑓 and 𝑆𝑚𝑎𝑝 as inputs to generate the condition 𝐹𝑐 ,
whilst the conditional INN samples the latent variable 𝑧 so as to
inversely reconstruct the HR image from the LR image 𝐼𝐿𝑅 by the
referencing condition 𝐹𝑐 . As 𝐼𝐻𝑅 is inaccessible, the similarity map
𝑆𝑚𝑎𝑝 needs to be transmitted with 𝐼𝐿𝑅 from the downscaling end
to the upscaling end, thus efforts have also been made to reduce
the size of 𝑆𝑚𝑎𝑝 .

In the following, we illustrate the key modules of the proposed
RefScale, including: 1) the referencing network generating the refer-
encing condition, 2) the LR guidance using the referencing similarity
to constrain the IC of LR, and 3) the conditional INN to transfer
between HR and LR images under the referencing condition and
the LR guidance.

3.3 Referencing Network
The Ref-Net captures the correlations between 𝐼𝐻𝑅 and 𝐼𝑟𝑒 𝑓 and
generates a similarity map 𝑆𝑚𝑎𝑝 for LR guidance and a condition
feature 𝐹𝑐 for conditional INN.

Extraction of Similarity Map 𝑆𝑚𝑎𝑝 and Condition Feature 𝐹𝑐 . As
depicted in Figure 2, 𝐼𝐻𝑅 and 𝐼𝑟𝑒 𝑓 are processed by the same en-
coder, and the output features 𝐹𝐻𝑅 and 𝐹𝑟𝑒 𝑓 are used to calculate
𝑆𝑚𝑎𝑝 by the pixel-wise cosine distance operation:

𝑆
𝑖, 𝑗
𝑚𝑎𝑝 =

〈
𝐹
𝑖, 𝑗

𝐻𝑅

∥𝐹 𝑖, 𝑗
𝐻𝑅

∥
,

𝐹
𝑖, 𝑗

𝑟𝑒 𝑓

∥𝐹 𝑖, 𝑗
𝑟𝑒 𝑓

∥

〉
, (3)

where (𝑖 , 𝑗 ) is spatial position index. The referencing condition
feature 𝐹𝑐 is obtained by combining 𝐹𝑟𝑒 𝑓 with 𝑆𝑚𝑎𝑝 :

𝐹𝑐 = 𝐹𝑟𝑒 𝑓 ⊙ 𝑆𝑚𝑎𝑝 , (4)

where ⊙ denotes element-wise multiplication.

Shrinkage of Similarity Map 𝑆𝑚𝑎𝑝 . It should be noted that 𝐼𝐻𝑅 is
not available at the upscaling end, which means that 𝑆𝑚𝑎𝑝 needs to
be preserved and transmitted to the downscaling end to generate
the same condition with the accessible reference image 𝐼𝑟𝑒 𝑓 . To
achieve this, we employ a bottleneck structure and a quantization
module to reduce the size of 𝑆𝑚𝑎𝑝 . First, 𝐹𝐻𝑅 and 𝐹𝑟𝑒 𝑓 are processed
by downsampling layers to obtain a lower resolution for calculat-
ing 𝑆𝑚𝑎𝑝 . Second, during the calculation of 𝐹𝑐 , 𝑆𝑚𝑎𝑝 is processed
by upsampling layers to match the spatial size to 𝐹𝑐 . Then, the
quantization module is used to convert 𝑆𝑚𝑎𝑝 from floating point
to integer to further reduce the data size. As quantification is not
differentiable, we introduce uniform noise of𝑈 (−0.5, 0.5) during
training to simulate this operation and quantify the similarity map
when verifying our model.

3.4 Low-Resolution Guidance
The mutual information extracted by Ref-Net tells the conditional
INN that what can be discarded and recovered. In this section, we
present a LR guidance to tell the conditional INN how to discard
them, targeting reducing the IC of the LR image in similar regions
with the reference while keeping details in dissimilar regions.

Similarity-based LR Image Composition. Following the rescaling
studies that utilize a bicubic-based downscaled image to guide
LR image generation, we keep the bicubic as a detail-informative
guide for dissimilar regions since existing methods can already
reconstruct bicubic images well. Additionally, considering similar
information between image pairs primarily pertains to structural
features, we propose a new guide for similar regions, namely a
Gaussian blurred downscaled image, which is less informative but
still visually recognizable. It is processed by a downscaling and
Gaussian blurring pipeline, which results in a significant loss of
details and reduces the amount of information content. This new
kind of LR guidance is adopted for constraining the downscaled
image by a similarity-based LR guidance loss, which is formulated
as follows:

L𝐿𝑅 =




(𝐼𝐿𝑅𝑏𝑖𝑐 − 𝐼𝐿𝑅) ⊙ (1 − 𝑆𝑚𝑎𝑝 )



2

+



(𝐼𝐿𝑅𝑏𝑙𝑢𝑟 − 𝐼𝐿𝑅) ⊙ 𝑆𝑚𝑎𝑝




2
,

(5)

where 𝐼𝐿𝑅
𝑏𝑖𝑐

and 𝐼𝐿𝑅
𝑏𝑙𝑢𝑟

are bicubic-based and blur-based downscaled
images, respectively. This loss is to drive 𝐼𝐿𝑅 to discard more infor-
mation where the HR image is similar to the reference but keeps
irrecoverable details in 𝐼𝐿𝑅 .

3.5 Conditional Invertible Neural Network
To accomplish this goal of integrating the referencing condition
from the reference, we propose a conditional invertible transfor-
mation 𝑓 (·): 𝐼𝐻𝑅 𝑐↔ [𝐼𝐿𝑅, 𝑧], where 𝑐 is the mutual information
between the HR and reference images, and 𝑧 is a latent variable. The
probability of HR images conditional on the mutual information is
expressed as:

𝑝 (𝐼𝐻𝑅 |𝑐) = 𝑝 (𝐼𝐿𝑅, 𝑧 |𝑐)
���� 𝜕(𝐼𝐿𝑅, 𝑧)𝜕𝐼𝐻𝑅

����
= 𝑝 (𝐼𝐿𝑅 |𝑐)𝑝 (𝑧 |𝑐)

���� 𝜕𝑓 (𝐼𝐻𝑅)
𝜕𝐼𝐻𝑅

���� . (6)

Here, we assume that 𝐼𝐿𝑅 is independent with 𝑧 as in IRN [43]
and expect to exclude the information of 𝑧 from the conditional
probability of 𝐼𝐿𝑅 given 𝑐 to exclude the information of 𝑧. To this
end, we approximate it as a multivariate Gaussian distribution with
a mean of 𝐼𝐿𝑅 , which is a LR image that excludes mutual informa-
tion. Furthermore, we formulate 𝑝 (𝑧 |𝑐) as a standard multivariate
Gaussian distribution, then the model can be defined as:

𝑝 (𝐼𝐻𝑅 |𝑐) = N(𝐼𝐿𝑅 ; 𝐼𝐿𝑅, Σ)N (𝑧; 0, 1)
���� 𝜕(𝐼𝐿𝑅, 𝑧)𝜕𝐼𝐻𝑅

���� , (7)

where Σ is a diagonal covariance matrix with all diagonal elements
close to zero. In practice, we employ the downscaled LR image as
𝐼𝐿𝑅 and the referencing condition 𝐹𝑐 as 𝑐 .

Architecture of Conditional INN. We design a conditional INN
with a newly introduced conditional affine coupling transform [10],
as illustrated in Figure 2. The proposed conditional INN consists of
a squeeze block and a stack of conditional flow blocks (CFB). The
squeeze block exchanges spatial size for channel numbers to align
the spatial dimension with the LR image. The CFB, which includes
an Actnorm layer, an invertible convolution layer, and a conditional
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Table 1: Quantitative results of different downscaling and upscaling methods for image reconstruction on RS and ACDC-snow
datasets. † denotes the method can only implement 4× upscaling. We report the mean result of our method over 5 draws of 𝑧.

Category Method
RS Dataset ACDC-snow Dataset

2× 4× 2× 4×
PSNR↑ SSIM↑ SI↓ bpp↓ PSNR↑ SSIM↑ SI↓ bpp↓ PSNR↑ SSIM↑ SI↓ bpp↓ PSNR↑ SSIM↑ SI↓ bpp↓

SISR

Bicubic & Bicubic 28.82 0.878 0.454 2.55 23.21 0.658 0.561 3.12 32.26 0.943 0.261 1.67 24.93 0.769 0.319 2.03
Bicubic & EDSR 30.90 0.903 0.454 2.55 25.04 0.727 0.561 3.12 34.88 0.959 0.261 1.67 27.06 0.836 0.319 2.03
Bicubic & RCAN 32.48 0.908 0.454 2.55 26.41 0.719 0.561 3.12 36.04 0.958 0.261 1.67 28.26 0.833 0.319 2.03
Bicubic & NLSN 31.07 0.906 0.454 2.55 25.17 0.722 0.561 3.12 34.80 0.959 0.261 1.67 27.15 0.838 0.319 2.03
Bicubic & LDL 31.77 0.872 0.454 2.55 26.24 0.694 0.561 3.12 40.56 0.955 0.261 1.67 30.23 0.800 0.319 2.03
Bicubic & LTE 31.18 0.908 0.454 2.55 26.54 0.719 0.561 3.12 38.95 0.949 0.261 1.67 31.90 0.799 0.319 2.03

RefSR Bicubic & TTSR† - - - - 26.74 0.737 0.561 3.12 - - - - 29.36 0.847 0.319 2.03
Bicubic & 𝐶2 Matching† - - - - 27.62 0.773 0.561 3.12 - - - - 29.81 0.859 0.319 2.03

Joint-optimizing TAD & TAU 31.62 0.897 0.442 2.46 26.13 0.709 0.557 3.10 36.27 0.961 0.247 1.59 28.53 0.847 0.308 1.98

INN-based IRN 38.22 0.983 0.487 2.59 30.66 0.876 0.569 3.13 40.59 0.988 0.228 1.44 33.79 0.944 0.296 1.78
HCFlow† - - - - 30.92 0.881 0.573 3.14 - - - - 33.91 0.946 0.301 1.81

RefScale Ours 43.63 0.994 0.385 2.03 31.31 0.897 0.451 2.37 47.25 0.995 0.166 1.14 34.42 0.957 0.184 1.26

affine coupling layer, further removes mutual features and separates
𝐼𝐿𝑅 based on the referencing condition 𝐹𝑐 . As all of these modules
are invertible, thereby guaranteeing the invertibility of the entire
INN. The entire downscaling and reverse reconstruction processes
can be denoted as:

[𝐼𝐿𝑅, 𝑧] = 𝑓 (𝐼𝐻𝑅 |𝐹𝑐 ), (8)

𝐼𝐻𝑅 = 𝑓 −1 (𝐼𝐿𝑅, 𝑧 |𝐹𝑐 ) . (9)

Referencing Condition Injection in CFB. 𝐹𝑐 is injected into the
conditional affine coupling layer of CFB to contribute to the process
of discarding IC. The data flow of conditional INN progressively
drops the information that can be obtained from 𝐼𝑟𝑒 𝑓 based on
𝐹𝑐 . Specifically, in the conditional affine coupling layer, the input
hidden feature flow 𝐹ℎ is split into two sub-features 𝐹ℎ𝑎 and 𝐹ℎ𝑏
along the channel axis, and then both undergo the affine transform
to decidewhat information should be discarded under the constraint
of 𝐹𝑐 :

𝐹ℎ𝑎 = 𝐹ℎ𝑎 ⊙ exp(𝜓 (𝐹ℎ𝑏 , 𝐹𝑐 )) − 𝜙 (𝐹ℎ𝑏 , 𝐹𝑐 ), (10)

𝐹ℎ𝑏 = 𝐹ℎ𝑏 , (11)

where𝜓 (·) and 𝜙 (·) are learnable functions and [𝐹ℎ𝑎, 𝐹ℎ𝑏 ] are the
output features. 𝐹ℎ𝑏 and 𝐹𝑐 are concatenated and fused by𝜓 (·) and
𝜙 (·) to generate the parameters of affine transform, which is then
applied to 𝐹ℎ𝑎 to discard the information that can be recovered
using 𝐹𝑐 and 𝐹ℎ𝑏 .

3.6 Training Objectives
Theoretically, INN can be trained by minimizing the negative log-
likelihood loss. However, this loss cannot provide strong supervi-
sion for image reconstruction. Following IRN [43], we constrain
both the reconstruction quality of 𝐼𝐻𝑅 and the distribution of 𝑧.
Moreover, we use the similarity-based LR guidance on 𝐼𝐿𝑅 to en-
sure that the information discarded during downscaling can be
recovered from the reference. The objectives of HR reconstruction
and distribution matching are described below.

HR Reconstruction. We employ the widely used L1 loss to mea-
sure the difference between the reconstructed HR image and the

ground truth, as specified below:

L𝐻𝑅 = ∥𝐼𝐻𝑅 − 𝐼𝐻𝑅 ∥. (12)

Distribution Matching. The objective of distribution matching
is to encourage the generated latent variable to confirm a specific
distribution:

L𝑑𝑖𝑠𝑡𝑟 = 𝐶𝐸 (𝑝 (𝑧), 𝑓 𝑧 [𝑞(𝐼𝐻𝑅)]), (13)

where 𝑞(𝐼𝐻𝑅) and 𝑝 (𝑧) are the distributions of HR image 𝐼𝐻𝑅 and
latent variable 𝑧, respectively, 𝑓 𝑧 (·) is the partial transformation of
mutual information and𝐶𝐸 (·) is cross entropy function. We assume
that 𝑝 (𝑧) follows a Gaussian distribution, thus the distribution
matching can be easily calculated byL2 regularization on the latent
variable 𝑧.

Total Loss. We optimize our model by minimizing the total loss
composed by HR reconstruction loss L𝐻𝑅 , LR guidance loss L𝐿𝑅 ,
and distribution matching loss L𝑑𝑖𝑠𝑡𝑟 :

L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐻𝑅L𝐻𝑅 + 𝜆𝐿𝑅L𝐿𝑅 + 𝜆𝑑𝑖𝑠𝑡𝑟L𝑑𝑖𝑠𝑡𝑟 , (14)

where 𝜆𝐻𝑅 , 𝜆𝐿𝑅 and 𝜆𝑑𝑖𝑠𝑡𝑟 are the associated weights.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. To validate the effectiveness of RefScale, we utilize a
dataset from the remote sensing scenes with readily available ref-
erence images. In addition, we evaluated on a driving scenes with
repeated driving along a predetermined rout to demonstrate the ex-
tensibility of the proposedmethod. 1)Remote sensing (RS) dataset
with historical images from periodical revisiting. We collected these
8-bit RGB images from the SPOT-5 satellite from various cities and
timestamps, and their original resolution ranges from 1878×1400 to
6264×3456. We collected images of different scenes, such as railway
station, port, airport, suburb, mountain and city center. Besides, the
reference images are selected from different seasons or different
years to guarantee the reliability of verification. To construct the
training set, we crop them into non-overlapping patches of size
512×512 size, resulting in 6,690 image pairs of HR image and its
reference. For the test set, we use 58 uncropped images with five
historical images taken at different times serving as the reference
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(a) Ground Truth
from RS dataset

(b) Bicubic
18.75/0.482/0.783

(c) RCAN
21.36/0.582/0.783

(d) LDL
21.13/0.573/0.783

(e)𝐶2 Matching
21.63/0.828/0.783

(f) IRN
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(g) Ours
25.67/0.883/0.703

(a) Ground Truth
from ACDC-snow

(b) Bicubic
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(c) RCAN
28.01/0.813/0.303

(d) LDL
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(e)𝐶2 Matching
29.46/0.835/0.303

(f) IRN
34.09/0.954/0.275

(g) Ours
34.43/0.957/0.157

Figure 3: Qualitative results of RS and ACDC-snow images. The first row is downscaled LR images and the second row is
corresponding restored HR images. PSNR/SSIM/SI are tagged below each method. Our method can generate smooth LR images
and recover more details.

images. 2)ACDC-snow dataset [30] with reference images from re-
visiting routes at different weather conditions. It is a natural image
dataset consisting of cityscape driving images captured from the
same routes but with different conditions, i.e., one image captured
in sunny day and another in a snowy day. It contains 1,000 images
and is split into train set, validation set and test set for roughly 4:1:5
proportion, and the resolution of each image is 1920×1080.

Baseline Methods. We utilized three categories of image resizing
methods as our baselines for comparison: 1) General SR methods,
including six SISR methods, i.e., Bicubic, EDSR [20], RCAN [49],
NLSN [26], LDL [18], LTE [12], and two RefSRmethods, i.e., TTSR [44]
and 𝐶2 Matching [8], with bicubic interpolation for downscaling,
2) jointly optimized rescaling methods, TAD&TAU [9], and 3) INN-
based rescaling methods, including IRN [43] and HCFlow [17].

Evaluation Metrics. We employ PSNR and SSIM for the compar-
ison of reconstruction quality. We also adopt spatial information
(SI) [47] as a metric to measure the image complexity of LR images.
SI has been proved to be strongly positively correlated with JPEG-
based image complexity measures. Specifically, it can be calculated
by:

𝑆𝐼 =

√︃
𝑠2
ℎ
+ 𝑠2

𝑣 , (15)

where 𝑠ℎ and 𝑠𝑣 denote data of Y channel filtered with horizontal
and vertical Sobel kernels, respectively. Additionally, we compress
LR images and similarity maps and use bit per pixel (bpp) as an
auxiliary metric for SI. the image as a long-term reference does not
need to be transmitted, namely not to be included in the calculation
of bpp.

Implementation Details. We implement the proposed RefScale
with Pytorch and optimize it using Adam with 𝛽1 = 0.9, 𝛽2 = 0.999,
and a learning rate of 2× 10−4. During training, the HR images and
corresponding reference images are cropped to 128 × 128 patches
and augmented with the same random flips and rotations. The batch
size is set to 8. The loss weights 𝜆𝐻𝑅 , 𝜆𝐿𝑅 , and 𝜆𝑑𝑖𝑠𝑡𝑟 are set to 1,
4, 1 for 2× rescaling, and 1, 16, 1 for 4× rescaling, respectively. We
employ RRDB [35] as the backbone of Ref-Net and initialize it by
pre-training on natural images.

4.2 Experimental Results
Quantitative Results. To ensure a fair comparison, we fine-tuned

all the baseline methods on both RS and ACDC-snow datasets. As
shown in Table 1, our method achieves superior performance on
both datasets, with increments in PSNR and SSIM and decreases in
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(a) Input
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0.558/43.43/0.279

(d) Reference 3
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Figure 4: The effects of different reference images. The first row is the reference image with different similarity levels, whose
similarity is measured by the average of similarity map as 𝑆 . The second row is the corresponding downscaled image. Our
method tends to discard more details as the increasing of similarity.

Table 2: Ablation study the influence of condition premise
(Cond.), quantification (Q), and resolution of similarity map
structure (Res.) on referencing condition extraction.

Case Cond. Q Res. RS ACDC-snow
PSNR bpp𝑠𝑚𝑎𝑝 PSNR bpp𝑠𝑚𝑎𝑝

1 - - - 37.09 - 40.32 -
2 Ref. ✗ 1 × 1 40.02 - 43.65 -
3 Sim. ✗ 1 × 1 44.63 - 48.17 -
4 Sim. ✓ 1 × 1 44.57 0.211 48.13 0.121
5 Sim. ✓ 1/2 × 1/2 43.63 0.068 47.25 0.036
6 Sim. ✓ 1/4 × 1/4 41.84 0.024 45.02 0.013

SI and bpp. Although the joint-optimizing and INN-based rescal-
ing methods outperform the general SR methods in terms of image
quality, they result in increased SI values on the RS dataset. Compar-
atively, our method can better recover image details and generate
smoother LR images with a significant reduction in SI, which is
beneficial for storage and transmission.

Qualitative Results. To illustrate the details of the downscaled
and upscaled images, we visualize some samples from both datasets
at a 4× scale. As shown in Figure 3, our method produces sharper
and more realistic HR images, which contain more details and
are more faithful to the ground truth than those reconstructed by
baseline methods, since reference images provide rich auxiliary
information. Moreover, our model leverages the reference image to
guide the downsampling process and discard mutual information,
which results in downscaled images that are smoother and contain
fewer details than other methods.

4.3 Ablation Study
Visualisation of Similarity Map. To depict how Ref-Net captures

the correlations, we present the similarity map in Figure 5. The
map shows that our method can capture similar information from
reference images that share a similar texture or structure with the
HR images. The warm region in Figure 5 indicates the presence of

abundant similarity between the reference and HR images. It can
be observed that proposed method effectively detects dissimilar
regions, such as roads in the first row and a newly built airport
runway in the second row. In this case, our method can preserve
the individual information in LR images for better restoration.

Analysis on LR Guidance. To evaluate the effectiveness of the
similarity-based LR guidance loss, we perform comparative exper-
iments using different types of downscaled image guidance, gen-
erated by a weighted average of bicubic downsampled image and
Gaussian blurred image, namely 𝐼𝐿𝑅 = 𝜔×𝐼𝐿𝑅

𝑏𝑖𝑐
+(1−𝜔)×𝐼𝐿𝑅

𝑏𝑙𝑢𝑟
, (𝜔 =

0, 0.25, 0.5, 0.75, 1). The results are shown in Figure 6 and measured
by PSNR and SI. The results from our similarity-based weighting
scheme are on the upper left of the corresponding curves in both
datasets, showing that our scheme can achieve better PSNR and
lower SI simultaneously.

Influence of Different References. To validate the impact of ref-
erence differences, we employ three reference images of varying
styles and two reference images of varying scenes, as illustrated in
Figure 4. Reference 1-3 are images taken at the same location but
on different dates, whereas Reference 4-5 are unrelated images. The
degree of similarity between each reference image and the input
image was measured using the average of the similarity matrix, de-
noted as 𝑆 . Reference 1 has the highest degree of similarity, resulting
in the lowest SI, while References 4 and 5 have the highest SI since
they are completely unrelated to the input image and thus the LR
image needs to record all necessary information for reconstruction.
Despite the diverse reference images, our method achieves stable
reconstruction quality (b-d), demonstrating that it can adaptively
discard information according to the given reference.

Analysis on the Condition Components. We explore the effects of
referencing conditions with various settings, including condition
components and the shrinkage of the similarity map. The evalu-
ations are performed in terms of reconstruction quality and SI of
the similarity map, as shown in Table 2. Case 1 shows the result
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(a) Ground Truth (b) Reference (c) Similarity map

Figure 5: Visualisation of similarity map. (a) and (b) are the
input image and reference image. (c) is the visualization of a
similarity map and the color from blue to red corresponds
to the similarity value from low to high.

Figure 6: Ablation study on LR guidance loss. The curves de-
note the results of linear weighted bicubic and blur guidance
with the weight 𝜔 chosen uniformly between 0 and 1. Our
result in a triangle is on the upper left of the curve, indicating
that our loss can achieve higher PSNR and lower SI.

without referencing condition, and the model degenerates into an
INN-based rescaling model. In Case 2, the features of the reference
image are used as conditions, and the performance boost is brought
by introducing reference images. By utilizing the correlation infor-
mation in Case 3, our model much outperforms the pure method
in Case 2, but it lacks the quantization module, resulting in a high
expense of storing and transferring the similarity map. Cases 4 to
6 show the effects of quantization and bottleneck structure on the
quality degradation and shrinkage of the similarity map. We find
that quantization has a small effect on image reconstruction qual-
ity by comparing Case 3 and 4, while the bottleneck structure is

Figure 7: Results of combination between rescaling and lossy
image compression methods. We adjust the quality of JPEG
to obtain different compression ratios. The scale of rescaling
methods is set to 2×.

the main factor, as refined correlations might be corrupted during
pooling. Case 5 results in acceptable quality degradation and IC,
while the result of Case 6 is similar to that of Case 2. Therefore, we
take Case 5 as the final reference setting.

4.4 Combination with Image Compression
We evaluate the combination of image rescaling and image compres-
sion methods on our RS dataset. We compare two rescaling method,
bicubic interpolation and another INN-based method, IRN, and the
scale of all rescaling methods is set to 2×. For a fair comparison,
we adopt the JPEG algorithm as the combined lossy compression
method since it requires no tuning. We adjust the quality of to con-
trol the similar compression ratio under different rescaling methods.
The PSNR of the reconstructed image and bit rate are evalusted, and
the R-D curves are shown in Fig. 7. As expected, the reconstruction
quality of the rescaling-based compression methods outperforms
that of the native compression method at low bit rates. IRN presents
a slight advantage over bicubic interpolation, while the proposed
Refscale shows a significant improvement over other methods, ben-
efiting from the introduction of reference information.

5 CONCLUSION
In this paper, we propose RefScale, a reference-based image-rescaling
framework for producing higher-quality reconstructed images with
lower information content in downscaled images. RefScale involves
a referencing network that exploits the correlations between the HR
image and the reference to generate a similarity map and produce
the referencing condition, which guides the generation of the LR
image. We also propose a conditional INN that incorporates the
mutual information into a latent variable, while retaining individual
information in the LR image conditioned on the reference. Experi-
ments demonstrate that RefScale outperforms the state-of-the-art
methods in terms of both image reconstruction quality and data
amount, as well as the lightweight property and high efficiency of
our model. In addition, The proposed method is expected to assist
high ratio compression to boost transmission efficiency, and show
potential applications in scenarios where long-term observations
are routinely conducted.
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