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1 MORE VISUAL RESULTS

Fig. 1-2 and Fig. 3 show more qualitative results of the downscaled
and upscaled images at a scale of 4x on both ACDC-snow and our
RS dataset, respectively. We present more comparisons with LDL
and IRN. Our method can achieve blurred informative downscaled
images and favorably better reconstruction results, as it eliminates
redundancy between images at the downscaling stage and utilizes
reference images to reconstruct the structures and details at the
upscaling stage.

2 MORE ABLATION STUDIES
2.1 Sampling of Latent Variable

The latent variable z is randomly sampled from standard Gaussian
distribution, thus we would like to explore some discussions on the
influence of different samples of z in this subsection.

We calculate and visualize the difference of reconstructed HR
images on different samples of z. The results in Fig. 4 show that
the differences are only slight meaningless random high-frequency
noise without typical textures, indicating that the proposed Ref-
Scale reconstructs meaningful high-frequency contents with the
assistance of reference and embedding senseless noise into ran-
domness. We speculate that the reason for this could be that one
of our optimization objectives is to encourage pixel-level similar-
ity (L1 loss) between the reconstructed image and the original HR
image, thus the diversity of different z shows the randomness of
imperceptible high-frequency details.

In addition, we further verify the influence of the deviation
degree of z from the center of the standard Gaussian distribution.
We take downscaled image y and scaled latent variable az as input,
where « is the scaling factor, to explore changes in reconstructed
images. Note that the probability distribution density of sampling
az decreases as « increases. As illustrated in Fig. 5, fidelity images
can still be reconstructed with a smaller a, and more distortion
is introduced by the larger deviation, meaning that the proposed
RefScale faithfully embeds mutual information to the specified
distribution and is robust to a slight distribution deviation.

2.2 Robustness to Affine Transformations

Although the preprocessing technology of image registration can
align the geographical coordinates between remote sensing im-
ages, considering the fact that the reference images may not be
perfectly aligned in practical application scenarios, we examine the
robustness of the proposed RefScale to geometric deformation. We
perform translation and rotation transformations to the reference
image. As depicted in Fig. 6, we perform 2 scales of translation trans-
formation, 20-pixel, 40-pixel, and 2 scales of rotation transformation
5°,10°. The results show excellent stability for the small-scale affine
transformation of the reference image, as our method enable to
discard the information adaptively and the transformed texture can
still contribute to the HR image reconstruction.

Table 1: Computational complexity comparison of
various rescaling methods

Model Size

Bicubic EDSR RCAN NLSN | LDL LTE
x2 / 40.7M 15.4M 418M | 167M | 12IM
X4 / 43.1M 15.6M 44.2M 16.7M 12.1M

TTSRT | C? Matching” | TAD & TAU | IRN | HCFlow' | Ours
x2 - - 0.7M 1.7M - 2.8M
x4 | 6.4M 8.9M 0.7M 44M | 232M | 35M

Computational Cost

Bicubic EDSR RCAN NLSN LDL LTE
x2 - 127.7G 88.5G 267.5G | 140G | 61.6G
x4 - 157.6G 92.0G 3284G | 562G | 1004G

TTSR™ | C? Matching” | TAD & TAU | IRN | HCFlow' | Ours
X2 - - 053G 10.4G - 683G
x4 | 76.0G 132.5G 10.7G 586G | 3187G | 80.6G

+ denotes the method can only implement 4X rescaling.

Table 2: Computational complexity of compression w/o pro-
posed RefScale

Rescaling Compression Sum
Size | FLOPS | Input Scale | Size | FLOPS | Size | FLOPS
GMM - - 1 31.7M | 108.2G | 31.7M | 108.2G
GMM:+ 2.8M | 68.3G 1/2 31.7M | 27.0G | 345M | 953G
RefScale2x
GMM+ 3.5M | 80.6G 1/4 31.7M 6.7G | 35.2M | 87.3G
RefScale4x

3 COMPUTATIONAL COMPLEXITY
3.1 Model Complexity of Rescaling

We compare the detailed computational complexity between the
proposed RefScale and other image rescaling methods with open-
source code on our RS test set. We demonstrate the results of 2x
and 4% here. As shown in Table 1, our method consumes fewer
parameters than most methods, benefiting from the lightweight
property of INNs. In addition, we calculate the FLOPs for models
to downscale and upscale images, and our method demonstrates
moderates computational complexity in terms of FLOPS.

3.2 Model Complexity of Compression

We compare compression model size and computational cost with
and without rescaling. We employ a learning-based codec, GMM [2],
as baseline, which is an entropy coding model using discretized
Gaussian mixture likelihoods for estimating latent representation.
As shown in Table 2, the model size of rescaling is about one-tenth of
the compression model, which does not bring significant model size
improvement. The computational complexity of compression model
decreases quadratically as a result of the reduction in image spatial
resolution caused by rescaling. The overall computational com-
plexity in the last raw (including encoding and decoding) dropped
slightly with 2x and 4X rescaling. Coupled with our method, the
size of bitstream could be reduced manyfold with only a small in-
crease in model size and no increase in computational complexity.
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4 APPLICATION

The proposed Refscale is a suitable technique for remote sensing
transmission with limited bandwidth and periodic satellite revisits.
Limited bandwidth prompts us to consider the transmission over-
head of low-resolution images, and periodic satellite revisits bring
practicality to the introduction of reference imagery. The whole
process can be described by the following five parts:

1) Selecting reference image. According to the location and
the time of the mission, a historical image is selected at ground
station as reference image.

2) Uploading to satellite. The reference image is uploaded
through uplink to the satellite along with the task command.

3) Downscaling image on-board. The captured image is down-
scaled on the satellite by the proposed RefScale based on the up-
loaded reference image.

4) Compressed transmission. The generated low-resolution
image is transmitted through the downlink to the ground station
with compression algorithms.

Anonymous Authors

5) Reference-guided reconstructing. At the ground station,
the low-resolution image is recovered to original resolution using
the same reference as the uploaded one.

Based on the dual-link transmission [1] between satellites and
the ground, uploading the reference images by uplink does not
consume the bandwidth of the downlink for transmitting captured
images, making this process practical. A similar process flow is also
mentioned in [3].
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Figure 1: More qualitative results on ACDC-snow dataset. In each group, the reconstructed image is on the left, and the
downscaled image with a zoom-in image is on the right for the convenience of observation. Our method outperforms the
state-of-the-art on road signs and characters. We reconstructed the fine structure information from more blurry downscaled
images, thanks to the assistance of the references.
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GT

LDL

IRN

Ours

Figure 2: More qualitative results on ACDC-snow dataset. In each group, the reconstructed image is on the left, and the
downscaled image with a zoom-in image is on the right for the convenience of observation. Our method outperforms the
state-of-the-art on road signs and characters. We reconstructed the fine structure information from more blurry downscaled
images, thanks to the assistance of the references.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

461
462
463
464



465
466
467

469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Supplementary Materials ACM MM, 2024, Melbourne, Australia

GT
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Figure 3: More qualitative results on RS dataset. In each group, the reconstructed image is on the left, and the downscaled
image with a zoom-in image is on the right for the convenience of observation. Our method significantly outperforms LDL in
reconstruction quality, and generates more informative and blurry downscaled images than IRN.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

(b) (© @

Figure 4: Visualisation of the difference of reconstructed images on different samples of z. (a) is the ground truth and (b-d) are
reconstructed differences of three samples of z, and are enhanced for better visualization. The differences are meaningless
random noise in high-frequency regions without structure information.

(a) Sample of z ba=1 ©a=3 @a=7 Ha=9

Figure 5: Influence of sampling deviation degree. « is the scaling factor of sampling, and (a) indicates where each case falls

in the distribution. (b-f) are the reconstructed images with different sampling of z. A larger deviation to the center of the
distribution results in more noisy textures and distortion.

_ (a) Input (b) Aligned Ref (c) 20-pixel translation (d) 40-pixel translation (e) 5° rotation (f) 10° rotation
S/PSNR/SSIM 0.692/44.43/0.993 0.681/44.25/0.990 0.669/43.29/0.989 0.678/43.24/0.987 0.671/43.03/0.986

Figure 6: The effects of affine transformation of the reference image. (c-d) and (e-f) show the effect of the translation and rotation
transformation, respectively. The first row is the reference images and the second row is the corresponding reconstructed
images.
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