
A Proof

A.1 Proof of Theorem 1

We leverage the results in [49, 50] that the structure (5) with ReLU activation is a universal approx-
imation for any convex function. However, ReLU activations are not strictly convex, and thus we
design the Softplus-β activation. By showing that the structure (5) with Softplus-β activation can
approximate neural networks with the ReLU activations arbitrarily closely when β is sufficiently
large, we then prove that the structure (5) with Softplus-β can universally approximate any strictly
convex function.

To prepare for the proof of Theorem 1, we first derive the following Lemma about the difference
between ReLU activations and Softplus-β activation.

Lemma 3. Consider the ReLU activation σReLU
l (x) := max(x, 0). For all x ∈ R and ∆ > 0, we

have 0 <
(
σSoftplusβ
l (x+∆)− σReLU

l (x)
)
< ∆+ 1

β log(2).

Proof. Note that(
σSoftplusβ
l (x+∆)− σReLU

l (x)
)
=

(
σSoftplusβ
l (x+∆)− σSoftplusβ

l (x)
)
+
(
σSoftplusβ
l (x)− σReLU

l (x)
)
,

we prove the lemma by deriving the bound for
(
σSoftplusβ
l (x+∆)− σSoftplusβ

l (x)
)

and(
σSoftplusβ
l (x)− σReLU

l (x)
)

as follows

(i) Since dσSoftplusβ
l (x)

dx = eβx/(1 + eβx) ∈ (0, 1), then 0 <
(
σSoftplusβ
l (x+∆)− σSoftplusβ

l (x)
)
<

∆ for ∆ > 0.
(ii) Explicitly represent σSoftplusβ

l (x)− σReLU
l (x) yields

σSoftplusβ
l (x)− σReLU

l (x) =

{ 1
β log(1 + eβx)− x, x ≥ 0

1
β log(1 + eβx), x < 0

Thus,
d
(
σSoftplusβ
l (x)− σReLU

l (x)
)

dx
:=

{
−1/(1 + eβx), x ≥ 0
eβx/(1 + eβx), x < 0

and therefore
(
σSoftplusβ
l (x)− σReLU

l (x)
)

≤
(
σSoftplusβ
l (0)− σReLU

l (0)
)

= 1
β log(2). Note

that 1
β log(1 + eβx) > 1

β log(eβx) = x, then 0 <
(
σSoftplusβ
l (x)− σReLU

l (x)
)
≤ 1

β log(2).

Combining (i) and (ii), 0 <
(
σSoftplusβ
l (x+∆)− σReLU

l (x)
)
< ∆+ 1

β log(2).

The proof of Theorem 1 is given below.

Proof. Previous works [49, 50] have shown that the structure (5) with ReLU activation is a universal
approximation for any convex function. Hence, for any q(z) : Z 7→ R , there exists g(z;θ)ReLU

constructed by (5) where the activation function is ReLU and satisfying |g(z;θ)ReLU − q(z)| < 1
2ϵ.

Note that

|g(z;θ)Softplusβ − q(z)| ≤ |g(z;θ)Softplusβ − g(z;θ)ReLU|+ |g(z;θ)ReLU − q(z)|,

then it suffices to prove |g(z;θ)Softplusβ − q(z)| < ϵ by showing the existence of g(z;θ)Softplusβ such
that |g(z;θ)Softplusβ − g(z;θ)ReLU| < 1

2ϵ for all z ∈ Z .

Next, we compute the difference of the structure (5) with softplus-β and ReLU activations by tracing
through the first layer to the last layer, under the same weights θ =

{
W

(z)
0:k−1,W

(o)
1:k−1, b0:k−1

}
.

15

The difference between the output of the first layer in g(z;θ)Softplusβ and g(z;θ)ReLU is

oSoftplusβ
1 − oReLU

1 = σSoftplusβ
1

(
W

(z)
0 z + b0

)
− σReLU

1

(
W

(z)
0 z + b0

)
, (10)

which yields 0 < oSoftplusβ
1 − oReLU

1 ≤ 1
β log(2)1 by Lemma 3.

The difference of the second layer is

oSoftplusβ
2 − oReLU

2 = σSoftplusβ
2

(
W

(o)
1 oSoftplusβ

1 +W
(z)
2 z + b2

)
− σReLU

2

(
W

(o)
1 oReLU

1 +W
(z)
2 z + b2

)
= σSoftplusβ

2

(
W

(o)
1

(
oSoftplusβ
1 − oReLU

1

)
+W

(o)
1 oReLU

1 +W
(z)
2 z + b2

)
− σReLU

2

(
W

(o)
1 oReLU

1 +W
(z)
2 z + b2

)
.

(11)

Since all the element of W (o)
1 is positive, we have 0 < W

(o)
1

(
oSoftplusβ
1 − oReLU

1

)
≤ 1

β log(2)W
(o)
1 1.

Applying Lemma 3 element-wise yields 0 ≤ oSoftplusβ
2 − oReLU

2 ≤ 1
β log(2)W

(o)
1 1 + 1

β log(2)1.

Similarily 0 ≤ oSoftplusβ
3 −oReLU

3 ≤ 1
β log(2)W

(o)
2 W

(o)
1 1+ 1

β log(2)W
(o)
2 1+ 1

β log(2)1. By induction

0 ≤ oSoftplusβ
l+1 − oReLU

l+1 ≤ 1

β
log(2)

1 +

 l∑
i=1

l∏
j=i

W
(o)
j 1

 (12)

Hence,

0 ≤ g(z;θ)Softplusβ − g(z;θ)ReLU ≤ 1

β
log(2)

1 +

k−1∑
i=1

k−1∏
j=i

W
(o)
j 1

 , (13)

where
∏k−1

j=i W
(o)
j := W

(o)
k−1W

(o)
k−2 · · ·W

(o)
i .

Let β > 2
ϵ log(2)

(
1 +

(∑k−1
i=1

∏k−1
j=i W

(o)
j

)
1
)

, then 0 ≤ g(z;θ)Softplusβ − g(z;θ)ReLU ≤ 1
2ϵ. We

complete the proof using

|g(z;θ)Softplusβ − q(z)| ≤ |g(z;θ)Softplusβ − g(z;θ)ReLU|+ |g(z;θ)ReLU − q(z)| < 1

2
ϵ+

1

2
ϵ = ϵ.

A.2 Proof of Theorem 2

Proof. At an equilibrium, the right side of (4b) equals to zero gives y∗ = ȳ and the corresponding
set of equlibrium E = {x∗, s∗|f(x∗, r(s∗)) = 0,y∗ = ȳ,h(x∗) = y∗}. We construct a Lyapunov
function to prove that if there is a feasible equilibrium in E , then the system is locally asymptotically
stable around it.

We construct a Lyapunov function using the storage function in Assumption 2 and the Bregman
distance in Lemma 2 as

V (x, s)|x∗,s∗ = S(x,x∗) +B(s, s∗;θ(I),β(I)), (14)

where the functions by construction satisfy S(x,x∗) ≥ 0, B(s, s∗;θ(I),β(I)) ≥ 0 with equality
holds only when x = x∗ and s = s∗, respectively. Hence, V (x, s)|x∗,s∗ is a well-defined function
that is positive definite and equals to zero at the equilibrium.

To prepare for the calculation of the time derivative of the Lyapunov function, we start by calculating
the time derivative of the function B(s, s∗;θ(I),β(I)):

Ḃ(s, s∗;θ(I),β(I)) =
(
∇sg

(I)(s;θ(I), β(I))−∇sg
(I)(s∗;θ(I), β(I))

)⊤
ṡ

1
= (r(s)− r (s∗))

⊤
(−(y − y∗)) ,

(15)

16

where 1 follows from ∇sg
(I)(s;θ(I), β(I)) = r (s) and ṡ = (−(y − ȳ)) = (−(y − y∗)).

The time derivative of the Lyapunov function is

V̇ (x, s)|x∗,s∗ =Ṡ(x,x∗) + Ḃ(s, s∗;θ, β)

1
≤ − ρ ∥y − y∗∥2 + (y − y∗)⊤(u− u∗) + (r(s)− r (s∗))

⊤
(−(y − y∗))

2
= − ρ ∥y − y∗∥2 + (y − y∗)⊤(p(−y + ȳ)− p(−y∗ + ȳ))

3
≤ − ρ ∥y − y∗∥2

(16)

where 1 follows from the strict EIP property and equations derived in (15). The equality 2 is
derived by plugging in the controller design in (4a) where u = p(−y + ȳ) + r(s) and u∗ =
p(−y∗ + ȳ) + r(s∗). The inequality 3 uses strictly monotone property of p(·) .

Therefore, V̇ (x, s)|x∗,s∗ ≤ 0 with equality only holds at the equilibrium. By Lyapunov stability
theory in Proposition 1, the system is locally asymptotically stable around the equilibrium.

B Experiments

We demonstrate the effectiveness of the proposed neural-PI control in two dynamical systems: vehicle
platooning and power system frequency control. All experiments are run with an NVIDIA Tesla T4
GPU with 16GB memory. For completeness, the figures highlighted in Section 6 are also shown
below with more thorough discussions. Code is available at this link.

B.1 Vehicle platooning

B.1.1 Problem statement

The first experiment is the vehicle platoon control in [3, 23] with m vehicles, where u ∈ Rm is the
control signal to adjust the velocities of vehicles and the output y ∈ Rm is their actual velocities. The
state is x = (ζ,y), where ζ ∈ Rm is the relative position of vehicles with ζ(0) ⊥ Im(1m) (namely,
the vehicles are not in the same position at the time step 0). The dynamic model is

ζ̇ = Γy,

ẏ = κ̂
(
−(y − λ0) + ρ̂

(
u−ED̂E⊤ζ

))
,

(17)

where κ̂ = diag(κ1, · · · , κm), ρ̂ = diag(ρ1, · · · , ρm) ∈ Rm×m are constant diagonal matrices
and κi > 0, ρi > 0 for all i = 1, · · · ,m. The vector λ0 = (λ0

1, · · · , λ0
m) ∈ Rm reflects the

default velocity of vehicles. The matrix E ∈ Rm×e is the incidence matrix that indicates the
neighbouring relations for e pairs of neighbouring vehicles and satisfy ker(E⊤) = Im(1m). The
matrix Γ := Im − 1

m1m1⊤
m extracts the relative velocities of vehicles by Γy. The diagonal matrix

D̂ ∈ Rm×m represents the sensitivity to the relative distance of neighbouring vehicles.

B.1.2 Verification of Assumption 2

We start by verifying the uniqueness of x∗ for any u∗ ∈ Rm. At the equilibrium, the right side
of (17) equals zero gives(

−(y∗ − λ0) + ρ̂
(
u∗ −ED̂E⊤ζ∗

))
= 0m and Γy∗ = 0m. (18)

For a given u∗ ∈ Rm, suppose there exists x∗
a = (ζ∗

a ,y
∗
a) and x∗

b = (ζ∗
b ,y

∗
b), x

∗
a ̸= x∗

b such
that (18) holds. Plugging in (18) gives

(y∗
a − y∗

b) + ρ̂ED̂E⊤(ζ∗
a − ζ∗

b) = 0m (19a)
Γ(y∗

a − y∗
b) = 0m. (19b)

Note that ΓE = E. Left multiplying (19a) with (ED̂E⊤(ζ∗
a − ζ∗

b))
⊤Γ yields (ED̂E⊤(ζ∗

a −
ζ∗
b))

⊤ρ̂ED̂E⊤(ζ∗
a − ζ∗

b) = 0, which holds if and only if ED̂E⊤(ζ∗
a − ζ∗

b) = 0m since ρ̂ ≻ 0.

17

https://anonymous.4open.science/r/MIMO-Neural-PI-704D/README.md

Hence, (y∗
a−y∗

b) = −ρ̂ED̂E⊤(ζ∗
a−ζ∗

b) = 0m and therefore y∗
a = y∗

b . Note that ker(ED̂E⊤) =

Im(1m) and Im(Γ) ⊥ Im(1m), thus (ζ∗
a−ζ∗

b) ⊥ Im(1m). Hence, ED̂E⊤(ζ∗
a−ζ∗

b) = 0m if and
only if ζ∗

a = ζ∗
b . Theorefore, for every equilibrium u∗ ∈ Rm, there is a unique x∗ = (ζ∗,y∗) ∈ Rn

such that f(x∗,u∗) = 0n.

Let the storage function be S (x,x∗) = 1
2 (y − y∗)⊤κ̂−1ρ̂−1(y − y∗) + 1

2ζ
⊤ED̂E⊤ζ. Then

Ṡ (x,x∗) = (y − y∗)⊤ρ̂−1κ̂−1ẏ + ζ⊤ED̂E⊤ζ̇

= (y − y∗)⊤ρ̂−1
(
−(y − λ0) + ρ̂

(
u−ED̂E⊤ζ

))
+ ζ⊤ED̂E⊤Γy

1
= −ρ̂−1||y − y∗||22 + (y − y∗)

⊤
(u− u∗)

2
≤ −(min

i
ρ−1
i)||y − y∗||22 + (y − y∗)

⊤
(u− u∗)

where 1 follows from
(
−(y∗ − λ0) + ρ̂

(
u∗ −ED̂E⊤ζ∗

))
= 0m and E⊤y∗ = E⊤Γy∗ = 0e

by definition of equilibrium. The inequality 2 follows from ρ̂ > 0. Therefore, the dynamics in (17)
satisfy conditions in Assumption 2.

B.1.3 Simulation and Visualization

Simulation and training setup We adopt the model setup and parameters in [3, 23]. The number of
vehicles is m = 20. The sensitivity parameter is κi = 1 for all vehicles. The parameters λ0

i and ρi are
randomly generated by λ0

i ∼ uniform[5, 6] and ρi ∼ uniform[1, 2], respectively. We train for 400
epochs, where each epoch trains with 300 trajectories with initial velocities yi(0) ∼ uniform[5, 6]
and initial integral variable si(0) = 0. The stepsize in time is set as ∆t = 0.02s and for K = 300
steps in a trajectory (Namely, each trajectory evolves 6s).

We implement control law in u to realize a specific output agreement at ȳ and reduce the transient
cost. The transient cost is set to be J(y,u) =

∑K
k=1 ||y(k∆t) − ȳ||1 + ĉ||u(k∆t)||22, where

ĉ = diag(c1, · · · , cm) with ci ∼ uniform[0.025, 0.075]. The loss function in training is set to be the
same as J(y,u), such that neural networks are optimized to reduce transient cost through training.
The neural PI controller can be trained by most model-based or model-free algorithms, and we use
the model-based framework in [8, 53] by embedding the system dynamic model in the computation
graph shown in Figure 4 and training Neural-PI by gradient descent through J(y,u).

Controller performances. We compare the performance of 1) Neural-PI: the learned structured
Neural-PI controllers parametrized by (7) with three layers and 20 neurons in each hidden layer. The
neural networks are updated using Adam with learning rate initializes at 0.05 and decays every 50
steps with a base of 0.7. 2) DenseNN-PI: The proportional and integral terms are parameterized
by dense neural networks (5) with three layers, 20 neurons in each hidden layer, and unconstrained
weights. The neural networks are updated using Adam with learning rate initializes at 0.035 and
decays every 50 steps with a base of 0.7. 3) Linear-PI: linear PI control where p(ȳ−y) := KP (ȳ−y),
r(s) := KI(s) with KP and KI being the trainable proportional and integral coefficients. The
coefficients are updated using Adam with learning rate initializes at 0.03 and decays every 50 steps
with a base of 0.7. All of them have no communication constraints. All of the controllers are trained
using 5 random seeds. The training time is shown in Table 1.

Table 1: Training time for vehicle platoon control

Method Average Training time (s) Standard Deviation (s)

Neural-PI 5232.36 30.55
DenseNN-PI 3567.01 16.28
Linear-PI 1836.93 10.09

The average batch loss during epochs of training with 5 seeds is shown in Figure 7(a). All of the
three methods converge, with the Neural-PI achieves the lowest cost. Figure 7(b) shows the transient

18

(a) Training Loss (b) Average transient and steady cost

Figure 7: (a) The average batch loss during epochs of training with 5 seeds. All converge, with the Neural-PI
achieving the lowest cost. (b) The average transient cost and steady-state cost with error bar on 100 testing
trajectories starting from randomly generated initial states. Neural-PI achieves a transient cost that is much lower
than others. DenseNN without structured design has both high costs in transient and steady-state performances.

and steady-state cost on 100 testing trajectories starting from randomly generated initial states. The
steady-state cost is C(y,u) = ||y(15)− ȳ||1 + ĉ||u(15)||22, where we use the variables at the time
t = 15s since the dynamics approximately enter the steady state after t = 15s as we will show later
in simulation. Neural-PI and Linear-PI have the lowest steady-state cost, and the output reaches ȳ as
guaranteed by Theorem 2. Neural-PI also achieves a transient cost that is much lower than others.
By contrast, DenseNN-PI without structured design has both high costs in transient and steady-state
performances.

(a) Neural-PI

(b) Linear-PI

(c) DenseNN-PI

Figure 8: Dynamics of velocity y and control action u with ȳ = 5m/s. (a) Neural-PI stabilizes to ȳ quickly. (b)
Linear-PI achieves output tracking with high control effort. (c) DenseNN leads to unstable behavior.

19

Given ȳ = 5m/s, Figure 8 shows the dynamics of velocity y and control action u on 8 nodes under
the three methods. As guaranteed by Theorem 2, Neural-PI in Figure 8(a) and Linear-PI in Figure 8(b)
reaches the required speed ȳ = 5m/s. However, Linear-PI has slower convergence and much larger
control efforts compared with Neural-PI. Even though DenseNN-PI achieves finite loss both in
training and testing, Figure 8(c) actually exhibits unstable behaviors. In particular, DenseNN-PI
appears to be stable until about 10s, but states blows up quickly after that. Therefore, enforcing
stabilizing structures is essential.

B.2 Power systems frequency control

B.2.1 Problem statement

The second experiment is the power system frequency control on the IEEE 39-bus New England
system [52] shown in Figure 9, where u ∈ Rm is the control signal to adjust the power injection
from generators and the output y ∈ Rm is the rotating speed (i.e., frequency) of generators. The
objective is to stabilize generators at the required frequency ȳ = 60Hz at the steady state while
minimizing the transient control cost. The state is x = (δ,y), where δ ∈ Rm is the rotating angle
of generators in the center-of-inertia coordinates with δ(0) ⊥ Im(1m) [54]. The model of power
systems reflects the transmission of electricity from generators to loads through power transmission
lines and is represented as follows:

δ̇ = Γy,

M̂ẏ = −D̂(y − ȳ)− d+ u−Eb̂ sin(E⊤δ),
(20)

where M̂ = diag(M1, · · · ,Mm), D̂ = diag(D1, · · · , Dm) with Mj > 0 and Dj > 0 being
the inertia and damping constant of generator j, respectively. The vector d is the net load of
the system. The matrix E ∈ Rm×e is the incidence matrix corresponding to the topology of
the power network with e transmission lines and satisfying ker(E⊤) = Im(1m). The matrix
Γ := Im − 1

m1m1⊤
m extracts the relative rotating speed of generators by Γy. The diagonal matrix

b̂ = diag(b1, · · · , be) ∈ Re×e with bj > 0 being the susceptance of the j-th transmission line.

Figure 9: IEEE 39-bus test system [52]

We adopt a common assumption in literature that the power system operates with δ satisfying
H =

{
δ|[E⊤δ]j ∈ (−π/2, π/2)∀j = 1, · · · , e

}
, where [E⊤δ]j is the angle difference between the

generators in head and tail of the j-th transmission line [55–57]. This range is sufficiently large to
include almost all practical scenarios [55–57].

20

B.2.2 Verification of Assumption 2

At the equilibrium, the right side of (17) equals zero gives

−D̂(y∗ − ȳ)− d+ u∗ −Eb̂ sin(E⊤δ∗) = 0m and Γy∗ = 0m. (21)

We start by verifying the uniqueness of x∗ for any u∗ ∈ U where (21) has a feasible solution such
that δ ∈ H. For a given u∗ ∈ U , suppose there exists x∗

a = (δ∗a,y
∗
a) and x∗

b = (δ∗b ,y
∗
b), x

∗
a ̸= x∗

b
such that (21) holds. Plugging in (21) gives

D̂(y∗
a − y∗

b) +Eb̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
= 0m (22a)

Γ(y∗
a − y∗

b) = 0m. (22b)

Note that ΓE = E. Left multiplying (22a) with (Eb̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
)⊤ΓD̂−1 yields

(Eb̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
)⊤D̂−1(Eb̂

(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
) = 0, which holds if and

only if (Eb̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
) = 0m since D̂−1 ≻ 0. Plugging in (22a) gives D̂(y∗

a −
y∗
b) = 0m, which holds if and only if y∗

a = y∗
b since Di > 0 for all i = 1, · · · ,m.

Left multiplying (Eb̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
) = 0m with (δ∗a − δ∗b))

⊤ yields

0 =
(
E⊤δ∗a −E⊤δ∗b

)⊤
b̂
(
sin(E⊤δ∗a)− sin(E⊤δ∗b)

)
=

e∑
j=1

bj
(
[E⊤δ∗a]j − [E⊤δ∗b)]j

) (
sin([E⊤δ∗a]j)− sin([E⊤δ∗b)]j)

)
.

(23)

Since bj > 0 and sin(·) is strictly increasing in (−π/2, π/2), (23) holds if and only if E⊤(δ∗a−δ∗a) =
0e. Note that Im(Γ) ⊥ Im(1m), thus (δ∗a − δ∗b) ⊥ Im(1m). Hence, (23) holds if and only if
δ∗a = δ∗b . Therefore, for every equilibrium u∗ ∈ U , there is a unique x∗ = (δ∗,y∗) ∈ Rn such that
f(x∗,u∗) = 0n.

Let the storage function be S (x,x∗) = 1
2 (y−y∗)⊤M̂(y−y∗)−1⊤

e b̂(cos(E
⊤δ)−cos(E⊤δ∗))−

(Eb̂ sin(E⊤δ∗))⊤(δ − δ∗)). Note that −1⊤
e b̂(cos(E

⊤δ) is strictly convex in H, thus the Bregman
distance −1⊤

e b̂(cos(E
⊤δ)− cos(E⊤δ∗))− (Eb̂ sin(E⊤δ∗))⊤(δ − δ∗)) ≥ 0 with equality holds

only when δ = δ∗.

The time derivative is

Ṡ (x,x∗) = (y − y∗)⊤M̂ẏ + (Eb̂ sin(E⊤δ)−Eb̂ sin(E⊤δ∗))⊤δ̇

= (y − y∗)⊤(−D̂(y − ȳ)− d+ u−Eb̂ sin(E⊤δ))

+ (Eb̂ sin(E⊤δ)−Eb̂ sin(E⊤δ∗))⊤Γy

− (y − y∗)⊤ (−D̂(y∗ − ȳ)− d+ u∗ −Eb̂ sin(E⊤δ∗))︸ ︷︷ ︸
=0m

1
= −(y − y∗)⊤D̂(y − y∗) + (y − y∗)

⊤
(u− u∗)

− (y∗)⊤(Eb̂ sin(E⊤δ)−Eb̂ sin(E⊤δ∗))

2
≤ −(min

i
Di)||y − y∗||22 + (y − y∗)

⊤
(u− u∗)

where 1 follows from (−D̂(y∗− ȳ)−d+u∗−Eb̂ sin(E⊤δ∗)) = 0m by definition of equilibrium.
The relation 2 follows from E⊤y∗ = E⊤Γy∗ = 0e and Di > 0 for all i = 1, · · · ,m. Therefore,
the dynamics (20) of the power system frequency control satisfies conditions in Assumption 2.

B.2.3 Simulation and Visualization

Simulation Setup We conduct experiments on the IEEE New England 10-machine 39-bus (NE39)
power network with parameters given in [52, 8]. We implement control law for power output u
of generators to realize the track of frequency at 60Hz and reduce the power generation cost. The
state δ is initialized as the solution of power flow at the nominal frequency and s is initialized as 0.

21

The number of epochs and batch size are 400 and 300, respectively. The step-size in time is set as
∆t = 0.01s and the number of time stages in a trajectory for training is K = 400.

Apart from the accumulated frequency deviation, an important metric for the frequency control
problem is the maximum frequency deviation (also known as the frequency nadir) after a distur-
bance [8]. Hence, the transient cost is set to be J(y,u) =

∑n
i=1

(
maxk=1,··· ,K |yi(k∆t) − ȳ| +

0.05
∑K

k=1 |yi(k∆t)− ȳ|+0.005
∑K

k=1(ui(k∆t))2
)
. The loss function in training is J(y,u), such

that neural networks are optimized to reduce transient cost. The neural PI controller can be trained
by most model-based or model-free algorithms, and we use the model-based framework in [8, 53]
by embedding the system dynamic model in the computation graph shown in Figure 4 and training
Neural-PI by gradient descent through J(y,u).

Two major goals of this experiment is

1) Verifies the robustness of the controller under parameter changes. Note that the load d is a
parameter in the dynamics (20). In particular, power system operator emphasizes on the ability
of the system to withstand a big disturbance such as a step load change. To this end, we train
and test controllers by randomly picking at most three generators to have a step load change
uniformly distributed in uniform[−1, 1] p.u., where 1p.u.=100 MW is the base unit of power for
the IEEE-NE39 test system.

2) Verifies the performances under communication constraints. Most systems do not have fully
connected real-time communication capabilities, so the controller needs to respect the communi-
cation constraints and we show the flexibility of Neural-PI control under different communication
structures.

Controller Performances. We compare the performance of Neural-PI controller where 1) all
the nodes can communicate 2) half of the nodes can communicate and 3) none of the nodes can
communicate (thus the controller is decentralized), respectively. All neural-PI controllers are pa-
rameterized by (7) and (8) where each SCNN has three layers and 20 neurons in each hidden layer.
The neural networks are updated using Adam with the learning rate initializes at 0.05 and decays
every 50 steps with a base of 0.7. We compare against the following two benchmarks where all
the nodes can communicate: 4) DenseNN-PI-Full: Dense neural networks (5) with three layers, 20
neurons in each hidden layer, and unconstrained weights. The neural networks are updated using
Adam with a learning rate initializes at 0.01 and decays every 50 steps with a base of 0.7. Note that
DenseNN needs such a small learning rate to let the training converge, the reason is that DenseNN
may lead to unstable behaviors that we will see later. 5) Linear-PI-Full: linear PI control where
p(ȳ − y) := KP (ȳ − y), r(s) := KI(s) with KP and KI being the trainable proportional and
integral coefficients. The coefficients are updated using Adam with the learning rate initializes at
0.08 and decays every 50 steps with a base of 0.7. All of the controllers are trained using 5 random
seeds. The training time is shown in Table 2.

Table 2: Training time for power system frequency control

Method Average Training time (s) Standard Deviation (s)

Neural-PI-Full 4373.52 64.58
Neural-PI-Half 8034.92 115.26
Neural-PI-Dec 23549.34 300.95
DenseNN-PI-Full 2193.84 21.22
Linear-PI-Full 981.65 11.19

The average batch loss during epochs of training with 5 seeds is shown in Figure 10(a). All converge,
with the Neural-PI-Full achieving the lowest cost. Figure 10(b) shows the average transient cost and
steady-state cost with error bar on 100 testing trajectories subject to random step load changes. The
steady-state cost is C(y,u) = 0.05||y(15)− ȳ||1 + 0.005||u(15)||22, where we use the variables at
the time t = 15s since the dynamics approximately enter the steady state after t = 15s as we will
show later in simulation. Neural-PI-Full achieves the lowest transient and steady-state cost. Notably,
the steady-state cost significantly decreases with increased communication capability. The reason
is that communication serves to better allocated control efforts such that they can maintain output

22

(a) Training Loss (b) Transient and steady cost

Figure 10: (a) Average batch loss during epochs of training with 5 seeds. All converge, with the Neural-PI
achieving the lowest cost. (b)The average transient cost and steady-state cost with error bar on 100 testing
trajectories subject to random step load changes. Neural-PI achieves a transient cost that is much lower than
others. The steady-state cost significantly decreases with increased communication capability. DenseNN without
structured design has both high costs in transient and steady-state performances.

Table 3: The average transient cost on 100 testing trajectories starting from randomly generated initial
states

Number of training trajectories Neural-PI Linear-PI DenseNN

5 0.1328 0.1915 1.0
10 0.1300 0.1865 0.9833
50 0.1257 0.1838 0.9624
100 0.1234 0.1816 0.9214
300 0.1233 0.1815 0.5347

tracking with smaller control costs. Again, DenseNN without structured design has high costs both in
transient and in steady state.

With a step load change at 0.5s, Figure 11 shows the dynamics of frequency y and control action
u on 7 nodes under the five methods. Again, DenseNN-PI-Full in Figure 11(e) exhibits unstable
behavior with large oscillations. As guaranteed by Theorem 2, Neural-PI in Figure 11(a-c) reaches
the required frequency ȳ = 60Hz, but the speed of convergence is lower for reduced communication
capabilities. Hence, the guarantees provided by the structured Neural-PI controllers are robust to
parameter changes and communication constraints, which have significant practical importance.

Performance with different numbers of training trajectories. Table 3 compares the transient
cost attained by different controllers trained with different numbers of trajectories. For both Linear-PI
and Neural-PI, training with 5 trajectories for each epoch has already achieved a similar cost as
training with 300 trajectories. By contrast, unstructured DenseNN requires a much larger amount
of training data to reduce transient costs on testing trajectories. Therefore, the stabilizing structure
significantly reduces the requirement for the number of samples to learn well.

The impact of disturbances and noises. The satisfaction of the Lyapunov condition is robust
to disturbances in the system parameters and does not need to know how large the disturbances are,
as shown in the proof Theorem 2 and Remark 2. Therefore, if there is a sudden change in the load
levels, the proposed controller design still stabilizes the system and tracks the required frequency
at 60Hz. In Figure 12(a), we demonstrate the system dynamics after two disturbances in load. In
Figure 12(b)-(c), we add noises in both data measurement and dynamics with the signal-to-noise
ratio being 5 dB (much larger than typical measurement noises). The results show that the systems
are input-to-state stable, i.e., that bounded noise will lead to bounded states. Incorporating noise in
rigorous theoretical analysis is an important future direction for us.

23

(a) NeuralPI-Full

(b) NeuralPI-Half

(c) NeuralPI-Dec

(d) Linear-PI-Full

(e) DenseNN-Full
Figure 11: Dynamics of frequency y, control action u and accumulated cost on 7 nodes with ȳ = 60Hz and a
step load change at 0.5s. (a) Neural-PI when all nodes can communicate (b) Neural-PI when half of nodes can
communicate, (c) Neural-PI when none nodes can communicate. The control with different communication
capability all stabilize the system to the required ȳ = 60Hz. (d) Linear-PI-Full is stable but has slower
convergence. (e) DenseNN-PI-Full leads to large frequency deviations and oscillations.

(a) There is a step increase of load on 0.5s and a step decrease of load on 3.5s.

(b) Neural-PI with noise on data measurement

(c) Neural-PI with noise on system dynamics
Figure 12: Frequency restoration to 60Hz after the disturbances/noises are all maintained.24

