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ABSTRACT

We focus on prediction problems with high-dimensional outputs that are subject
to output validity constraints, e.g. a pseudocode-to-code translation task where the
code must compile. For these problems, labeled input-output pairs are expensive
to obtain, but “unlabeled” outputs, i.e. outputs without corresponding inputs,
are freely available and provide information about output validity (e.g. code on
GitHub). In this paper, we present predict-and-denoise, a framework that can
leverage unlabeled outputs. Specifically, we first train a denoiser to map possibly
invalid outputs to valid outputs using synthetic perturbations of the unlabeled
outputs. Second, we train a predictor composed with this fixed denoiser. We
show theoretically that for a family of functions with a high-dimensional discrete
valid output space, composing with a denoiser reduces the complexity of a 2-layer
ReLU network needed to represent the function and that this complexity gap can
be arbitrarily large. We evaluate the framework empirically on several datasets,
including image generation from attributes and pseudocode-to-code translation.
On the SPOC pseudocode-to-code dataset, our framework improves the proportion
of code outputs that pass all test cases by 3-5% over a baseline Transformer.

1 INTRODUCTION

We study problems whose outputs have validity constraints. For example, in pseudocode-to-code
translation, the output code must compile. Other examples include natural language translation and
molecule generation, where outputs should be grammatically correct or chemically valid, respectively.
State-of-the-art models typically learn the input-output mapping from expensively-obtained labeled
data Kulal et al. (2019); Vaswani et al. (2017); Méndez-Lucio et al. (2020); Senior et al. (2020), which
may not contain enough examples to learn a complex validity structure on high-dimensional output
spaces. However, there are often lots of “unlabeled” outputs—outputs without a corresponding input
(e.g., GitHub has over 40 million public code repositories). How do we leverage these with a much
smaller amount of labeled input-output pairs to improve accuracy and validity?

In this paper, we present predict-and-denoise, a framework in which we compose a base predictor,
which maps an input to a possibly invalid output, with a denoiser, which maps the possibly invalid
output to a valid output. We first train the denoiser on synthetic perturbations of unlabeled outputs.
Second, we train the base predictor composed with the fixed denoiser on the labeled data (Figure 1
left). By factorizing into two modules, base predictor and denoiser, the framework allows the base
predictor to be simpler by offloading the complexity of modeling the output validity structure to the
denoiser, which has the benefit of being trained on much more data.

We aim to lay down a principled framework for using unlabeled outputs with theoretical justification
for improving sample efficiency by reducing the complexity of the learned base predictor. Figure 1
(middle,right) shows a pictorial example of a staircase function where valid outputs are integers and
requires a complex spline to represent. When composed with a denoiser (which rounds to the nearest
integer), a simple linear base predictor can represent the staircase function. We theoretically show
that our framework reduces the complexity of a 2-layer ReLU network needed to represent a family of
functions on a discrete valid output set in high-dimensions. This complexity gap can be arbitrarily large
depending on the stability of the target function being learned. We expect such a lower complexity
function to be learnable with fewer samples, improving generalization.

Empirically, we show on image generation and two pseudocode-to-code datasets (synthetic and
SPOC Kulal et al. (2019)) that predict-and-denoise improves test performance across continuous and
discrete output data modalities. In image generation, our framework improves the clarity and styling
of font images by learning a low-complexity base predictor to generate an abstract image while the
denoiser sharpens the image. For pseudocode-to-code, we consider the more difficult full-program
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Figure 1: (Left) The predict-and-denoise framework: First, a denoiser is learned using synthetic
perturbations of a large number of unlabeled outputs. Second, a base predictor composed with the
denoiser is learned with labeled data. Composing with a denoiser allows the base predictor to be
simpler, improving generalization. (Middle) Univariate regression example where a staircase function
requires a complex linear spline fit. (Right) A simple linear function can fit a staircase function when
composed with a denoiser which projects onto the valid outputs (the integers).

translation task rather than line-by-line translation (with compiler side information) studied by previous
work Kulal et al. (2019); Yasunaga and Liang (2020). We first study a synthetic pseudocode-to-code
dataset where the denoiser simplifies the base predictor by helping with global type inference. On
SPOC, a recent pseudocode-to-code dataset on programming competition problems, we improve the
proportion of correct programs by 3-5% points over a baseline Transformer.

2 SETUP

We consider prediction problems from an input spaceX (e.g., pseudocode) to an output space Y (e.g.,
code) where there is an unknown subset of valid outputs V⊆Y (e.g., code that compiles), where the
true output is always valid (in V). We have a labeled dataset (x1,y1),...,(xn,yn) where xi ∈X and
yi∈V and access to many unlabeled outputs (ỹ1,...,ỹm) from V . We do not assume access to any black
box function for testing validity (whether y∈V or not), allowing for general problems (e.g. language
generation) where output validity is imprecisely characterized.

A predictor f : X →Y from a chosen hypothesis class H maps from inputs to the ambient output
space. Our goal is to improve the predictor by leveraging information about the valid space V from
the unlabeled examples {ỹi}mi=1. We leverage a denoiser Π:Y→V , which projects a possibly invalid
output inY and to the valid set V . We can use unlabeled outputs to learn an approximate denoiser.

Base, composed, and direct predictors. Let ‖·‖ be a norm onH. Let Π◦fbase be a composed pre-
dictor that is supposed to represent the target function f? (that is, Π◦fbase =f? onX ). In the context of
a composed predictor, we call fbase the base predictor. We compare against fdirect∈argminf∈H{‖f‖ :
f(x)=f?(x),x∈X}, a minimum norm direct predictor which represents f?.

3 DENOISERS CAN REDUCE MODEL COMPLEXITY

In this section, we study direct and composed predictors from an approximation standpoint and use
complexity measures on predictors as surrogates for sample complexity. We aim to represent a target
function f? :X →V . We assume access to a denoiser Π :Y→V which projects to the nearest valid
output for an appropriate metric on the output space (breaking ties arbitrarily). In Section 3.1, we
give a simple example for when composing with a denoiser (Π ◦ fbase) can drastically reduce the
complexity of the learned predictor. Since fbase becomes easier to approximate, we may expect better
generalization Bartlett et al. (2017); Neyshabur et al. (2017); Wei and Ma (2020; 2019). In Section 3.2,
we theoretically show for two-layer ReLU networks that the complexity required to directly represent
f? can be arbitrarily larger than representing with a composed predictor depending on the stability of f?.

3.1 MOTIVATING EXAMPLE

Figure 1 shows a staircase function f? that requires a complex direct predictor fdirect but the
minimum norm base predictor f∗base has low complexity. For 0 < δ < 1, let the input space
X =]Ni=1[i−(1−δ)/2,i+(1−δ)/2] be a union ofN disjoint intervals and the valid outputs V =Z
be the integers, a subset of the ambient output space Y =R. The staircase function is f?(x) = bxe
defined onX , which rounds a linear function onto the integers. Following Savarese et al. (2019), we
define the norm of a univariate function f :R→R as

‖f‖=
1

2
max

(∫ ∞
−∞
|f ′′(x)|2dx,|f ′(−∞)+f ′(+∞)|

)
. (1)
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This norm measures the (lack of) stability of f . Complex functions will have a higher norm.

Consider representing f? with linear splines, a family of piecewise linear functions. In linear splines,
the norm in Equation (1) becomes roughly the sum of absolute changes in slope between piecewise
segments. If we represent f? directly with a linear spline fdirect, the norm of fdirect has to be large due
to the large number of slope changes: ‖fdirect‖=(N−1)/δ (Figure 1 left).

Suppose we have access to a denoiser Π(y)=bye, which projects onto V=Z. Then a linear function
f∗base composed with Π can represent the staircase onX , reducing the norm to 1 (Figure 1 right). By
not requiring f∗base to represent the local complexity and discreteness in f?, the base predictor f∗base
better captures the underlying globally linear structure of f?.

3.2 ANALYSIS FOR 2-LAYER RELU NETWORKS

We extend to more general hypothesis classes and high dimensional outputs. Our setting is motivated
by the task of generating images of font characters from attributes, which we study empirically in
Section 5.1. In font image generation, there is a discrete set of valid font images in the continuous
ambient output space. Formally, we take the valid set V={y∗1 ,...,y∗N} to be a discrete set overN output
values in Rk and f? is a piecewise constant function defined onN disjoint intervalsX =]Ni=1[xli,x

u
i ]

(in ascending order), where there is a δ>0 gap between each interval and the next. The target function
f? is defined such that if x∈ [xli,x

u
i ], then f?(x)=y∗i .

We study 2-layer ReLU networks, often studied as a first step towards understanding the expressivity
of neural networks Neyshabur et al. (2014); Savarese et al. (2019); Eldan and Shamir (2016).
Following Savarese et al. (2019), we define fθ∈H as

fθ(x)=

h∑
l=1

w
(2)
l

[
〈w(1)

l ,x〉+b(1)
l

]
+

+b
(2)
l

on x∈Rd, where we will take d= 1 throughout. Here, [x]+ = max(x,0) is the element-wise ReLU
nonlinearity. The parameters θ contain the hidden unit size h∈N and all weights and biases. We let
W (1) ∈Rh×d denote the matrix with w(1)

l ∈Rd as rows and let b(1),b(2),w(2) ∈Rh be vectors with
b
(1)
l ,b

(2)
l ,w

(2)
l ∈R as elements respectively. We let Θ denote this parameter space.

Measure of complexity. Following Savarese et al. (2019), the complexity of a network is associated
with the squared Euclidean norm of the weights

C(θ)=
1

2
(‖w(2)‖22+‖W (1)‖2F ).

The norm of f ∈H is the minimum norm required to represent f :

‖f‖= inf
θ̂∈Θ

C(θ̂) s.t. fθ̂=f. (2)

Savarese et al. (2019) showed that this norm is equivalent to Equation 1 for univariate networks. Since
these complexity measures typically appear in generalization bounds Bartlett et al. (2017); Neyshabur
et al. (2017), we expect to improve generalization error by reducing these complexity measures.

Minimum complexity reduces with a denoiser. Given Π(y) ∈ argminy∗∈V ‖y∗− y‖2 which is
projection onto V (breaking ties arbitrarily), we want to compare the norms of fdirect that represents
f? directly and the minimum norm base predictor that represents f?:

f∗base =argmin
f∈H

{‖f‖ :Π◦f(x)=f?(x),x∈X}. (3)

Note that ‖f∗base‖≤‖fdirect‖ since fdirect is a feasible solution. Thus composing cannot increase the norm.

Adjacent intervals measure stability. Our result depends crucially on the number of non-adjacent
pairs of intervals in f?. Suppose the output dimension is k = 1. We define a pair of interval
indices (i,i+1) as adjacent if there is no valid output value y ∈V such that either y∗i <y<y

∗
i+1 or

y∗i+1<y<y
∗
i hold. The number of non-adjacent interval pairs characterizes the instability of f?. Let

|J | be the number of non-adjacent pairs and |I| be the number of adjacent pairs, where |I|+|J |=N−1.
Our bound also depends onL=mini|y∗i −y∗i+1| andU=maxi|y∗i −y∗i+1|, the min and max separation
between valid points. For higher output dimensions (k>1), let y∗i,j be the j-th output coordinate of the
i-th valid point and let |Jj |,|Ij |,Lj ,Uj be the analogous quantities for each output coordinate j∈ [k].
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1
2 instantiate var_7;
3 read var_7 from stdin;
4 instantiate var_5;
5 read var_5 from stdin;
6 set var_9 to 34;
7 set var_9 to 10 plus var_9;
8 add "str_0" to the end of var_7;
9 set var_5 to max of var_5 and var_9;
10 print var_7;
11 output var_5;
12 print var_9;

1 int main() {
2 string var_7;
3 cin >> var_7;
4 int var_5;
5 cin >> var_5;
6 int var_9 = 34;
7 var_9 += 10;
8 var_7 += "str_0";
9 var_5 = max(var_5, var_9);

10 cout << var_7;
11 cout << var_5;
12 cout << var_9;
13 return 0; }

1 int main() {
2 string var_7;
3 cin >> var_7;
4 bool var_5;
5 cin >> var_5;
6 int var_9 = 34;
7 var_9 += 10;
8 var_7 += "str_0";
9 var_5 = max(var_5, var_9);
10 cout var_7;
11 cout << var_5;
12 cout << var_9;
13 return 0; }

Figure 2: (Left-Middle) Example pseudocode and code from the synthetic dataset. Since the
pseudocode is ambiguous, variable types and whether to instantiate a variable must be inferred. (Right)
Random corruption used to train a denoiser from corrupted to valid code. The denoiser must infer
the correct type of var_5 from other lines.

Theorem 1. Let the valid output space V⊂Rk be a set overN multivariate output values {y∗1 ,...,y∗N}
in V . Let f? :R→Rk be a piecewise constant function defined onX =]Ni=1[xli,x

u
i ] where f?(x)=y∗i

if x∈ [xli,x
u
i ]. Let ∆x be the length of the smallest interval inX . Then

‖fdirect‖
‖f∗base‖

=Ω

 NmaxjLj∑k
j=1Uj

(
|Jj |+δ |Ij |∆x

)
 (4)

See Appendix A for a proof. If |Jj | are sublinear in N and valid points are evenly spaced, then the
gap is Ω(1/δ) which can be arbitrarily large for a fixed output dimension as δ→ 0 and N→∞. If
any |Jj | is linear in N (many non-adjacent intervals), then there is only a constant factor gap in the
worst case. Overall, if f? is stable with respect to its discrete output space, we can learn a simpler
base predictor that still represents f? when composed with the denoiser. Note that in practice, we
need to regularize the base predictor to find this low complexity solution.

4 PREDICT-AND-DENOISE FRAMEWORK

In Section 3, we assumed access to a denoiser Π that maps output y∈Y to a valid output Π(y)∈V ,
allowing the min-norm base predictor f∗base to have much lower complexity. In this section, we are
not given a denoiser but instead have access to a large number of unlabeled outputs ỹ1,...,ỹm ∈ V .
We present predict-and-denoise, a framework for utilizing unlabeled output examples to simplify
models. In this framework, we first use self-supervised learning on the unlabeled outputs to learn an
approximate denoiser Π, and then use Π (which is now fixed) to learn a composed predictor Π◦fθ.
Here, fθ is the learned base predictor with parameters θ.

Figure 2 (left-middle) gives an example input-output pair in a pseudocode-to-code task. Using the
predict-and-denoise framework, the model could learn to make code translations on a mostly local,
line-by-line basis (a simpler solution) while relying on the denoiser to correct types globally.

Learning the denoiser. Assume that as domain knowledge, we have a noising distribution q(ỹ′ | ỹ)
over outputs given a valid output ỹ. Figure 2 (middle) gives an example of an output program in a
pseudocode-to-code translation task. Here, a noising distribution may make random semantic and
syntactic corruptions such as changing types or removing semicolons and parentheses (Figure 2 right).
The denoising objective here is to recover the original code from corrupted code. More generally,
given the noising distribution, we train a probabilistic model pβ(ỹ | ỹ′) on output pairs (ỹ′,ỹ) where
ỹ′∼q(· | ỹ). We train the probabilistic model by maximizing the log-likelihood

maximizeβ Eỹ[Eỹ′∼q[logpβ(ỹ | ỹ′)]] (5)

using unlabeled output samples. The denoiser Πβ(ỹ′) = argmaxỹ pβ(ỹ | ỹ′) is defined via the
probabilistic model.

Learning the composed predictor. In this step, we fix the learned denoiser Πβ and learn the
composed predictor Πβ ◦ fθ on labeled examples. We train a probabilistic model pθ for the base
predictor by optimizing

maximizeθ Ex,y[Ey′∼pθ [logpβ(y |y′)]]+λEx,y[logpθ(y |x)]. (6)

The first term maximizes a lower bound on the log-likelihood of the composed predictor via pβ and
pθ (see Appendix D). We optimize a lower bound since optimizing the log-likelihood directly requires
computing an intractable partition function over the high-dimensional output space. The second term
is the log-likelihood of only pθ. We define the base predictor fθ(x)=argmaxypθ(y |x).
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(a) Direct (b) Composed (c) Base

Figure 3: Generated letters A-J for 10 randomly selected fonts. (a) The direct predictor makes blurry out-
puts with many artifacts. (b) The composed predictor (base + denoiser) makes clearer outputs with more
distinct font patterns. (c) The improvement comes from leveraging output structure learned by the de-
noiser. This allows the base predictor to produce blurrier outputs corresponding to a lower norm model.

Since the learned Πβ is imperfect, the hyperparameter λ in the objective trades off between fitting
the composition Πβ ◦fθ and fitting fθ directly to the data. For discrete output spaces, the first term
in this objective involves an expectation over a discrete space of outputs. Depending on the model and
the task, optimizing this objective may require REINFORCE Williams (1992) or a Gumbel-softmax
reparameterization Jang et al. (2017); Maddison et al. (2016). The direct predictor is only trained with
the second term of our objective Ex,y[logpθ(y |x)].

Choice of noising distribution. Learning the base predictor composed with the denoiser allows
for some distribution mismatch between the errors of the base predictor and the noising distribution the
denoiser is trained on. By learning in a composed manner, the base predictor can adapt to the choice
of noising distribution. In our experiments in Appendix B, we find that predict-and-denoise gives
gains across a variety of noising distributions.

5 EXPERIMENTS

We evaluate predict-and-denoise on image generation from given attributes and full-program
psuedocode-to-code translation, showing its benefits on both continuous and discrete output spaces.
In image generation, composed models generate clearer images with less artifacts with few labeled
examples. For full-program pseudocode-to-code translation in SPOC Kulal et al. (2019), a recent
pseudocode-code dataset, our framework improves the proportion of correctly generated programs
by 3-5% points over a baseline Transformer and achieves comparable or better results to a line-by-line
translation model from previous work Kulal et al. (2019).

5.1 IMAGE GENERATION FROM ATTRIBUTES

We evaluate predict-and-denoise on font image generation, where the ambient output space is
continuous. This task closely mirrors the theoretical setup, where the input is low-dimensional (index
of the font and character type) to a high-dimensional output (image). We also validate the theory from
Section 3, which suggested that regularization is required to realize the complexity reduction of the
minimum-norm base predictor f∗base. Qualitatively, image samples from our composed predictor are
clearer and has less artifacts.

Prediction task and denoising objective. We mapping two one-hot vectors corresponding to the
character identity (out of 62 possible) and the font of the character to generate (out of 100 fonts) 32×32
grayscale font images. Here, valid font images have cleanly defined lines and adhere to the font styling.
We train using the pixel-wise squared error loss for all models and tune L2 regularization strength
on a validation set. To train the composed predictor, we set λ= 0 in (6), using only the composed
loss. The denoising objective is to sharpen unlabeled font images distorted by a Gaussian blur filter
with randomly sampled radii in [0,2]. We also report gains with other noising functions (embossing,
contrast perturbations) in Appendix B.

Data. We use a dataset of 56k fonts originally scraped from the Internet Bernhardsson (2016). Out of
the 6200 labeled examples (62 characters× 100 fonts), we split randomly into 2500 training examples,
100 validation examples, and 3600 test examples. The training examples contain a random subset
of the characters for each font. The models must generate the unseen characters of each font with the
correct font styling at test-time. The denoiser uses additional unlabeled images for∼50k other fonts.
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Figure 4: Test MSE on font image generation. (Left) Results when L2 regularization strength is
tuned with the validation set. (Right) Varying L2 regularization strength (1e-6 to 1e-2) for direct
and composed predictors. While similar at low regularization, increasing the regularization strength
improves the composed predictor while hurting the direct predictor.

Models and metrics. The base predictor fθ and the direct predictor fdirect are both 7-layer
fully-connected networks (see Appendix B). The denoiser Πβ is a 3-layer U-Net Ronneberger et al.
(2015). We test image sample quality directly by computing the pixel-wise squared error with respect
to ground truth test images.

Results. For regularization strength tuned on the validation set (Figure 4 left), the composed predictor
achieves an 11% reduction in test MSE compared to the best direct predictor test error. The direct predic-
tor test MSE increases when its outputs are processed by the denoiser at test time. We visualize the pre-
dicted images for some randomly-selected fonts for comparison (Figure 3). The base predictor trained
with L2 regularization outputs noisy gray images, suggesting that it has learned a lower complexity
model. In contrast, L2 regularization does not improve the direct predictor (Figure 4 right) since directly
outputting clearly defined lines and transitions between black and white pixels requires a relatively
high complexity model. Note that we study L2 regularization as motivated by theory, but we expect any
reasonable regularization method to help. Indeed, we find that adding dropout to the composed model
improves the MSE further to 0.165. Additional results on varying labeled and unlabeled data size are
in Appendix B, where the performance of the Composed model improves upon Direct on all instances.

5.2 PSEUDOCODE-TO-CODE

We evaluate predict-and-denoise on pseudocode-to-code translation, where the ambient output space
is discrete. We evaluate on two pseudocode-to-code datasets (synthetic in Section 5.2.1 and SPOC in
Section 5.2.2. On SPOC, our framework improves the proportion of programs that pass all test cases
by 3-5% points over a baseline Transformer and has competitive or better results to line-by-line
models Kulal et al. (2019).

Prediction task and denoising objective. We consider full-program pseudocode-to-code transla-
tion, where inputs X are human-generated pseudocode. The ambient output space Y is all possible
strings and the set of valid outputs V are strings that compile with the g++ compiler. In contrast
to previous works which decompose the problem into line-by-line translation and use information
from the compiler Kulal et al. (2019); Yasunaga and Liang (2020), we translate the entire program
at once without compiler access. Following Yasunaga and Liang (2020), the denoising objective for
both pseudocode-to-code datasets consists of repairing random semantic and syntactic corruptions
of unlabeled code examples (see Appendix E).

Models and regularization. We use a Transformer Vaswani et al. (2017) for both the base predictor
and the denoiser. In all models, we use a combination of weight decay, dropout, attention dropout, and
ReLU dropout as regularization. To train the composed predictor, we use λ=1 to balance between the
fitting the composed and direct objectives. During inference, we use a greedy decoding for simplicity
(without beam search). Problem-specific optimizations such as beam search and querying a compiler
during inference can improve the results further.

Pretraining models. In machine translation, a standard way to incorporate unlabeled outputs is
to pretrain the encoder/decoder on monolingual data Ramachandran et al. (2018); Skorokhodov
et al. (2018); Devlin et al. (2019). We consider a pretrained predictor which is pretrained with the
denoising objective on unlabeled code and then trained on labeled examples, utilizing a shared
encoder/decoder vocabulary. We employ predict-and-denoise on top by initializing from the pretrained
model (Pretrained+Composed), which provides complementary benefits beyond pretraining.

Back-translation models. Back-translation methods use an output to input model (learned on
the labeled data) applied on unlabeled outputs to generate additional synthetic inputs Sennrich
et al. (2016b). We employ predict-and-denoise on top by initializing from a back-translation model
(Back-translation + Composed), showing complementary benefits.
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Compile Err Exec Err Correct

Direct 51.4 12.0 36.6
Composed 19.2 12.8 68.0
Pretrained 11.2 10.8 78.0
Pretrained + Composed 9.0 4.8 87.6
Backtranslation 0.8 10.0 89.2
Backtranslation + Composed 1.2 7.0 91.8

Table 1: Results on synthetic pseudocode-
to-code task. Proportion of generated
code (%) resulting in a compilation error,
execution-time error, or correct code.

Compile Err Exec Err Correct

SPOC TESTP
Direct 75.5 12.3 12.2
Direct-scaled 75.3 13.4 11.2
Composed 74.6 10.2 15.2
Pretrained 75.3 10.0 14.8
Pretrained + Composed 74.2 10.4 15.4
Backtranslation 72.0 11.8 16.3
Backtranslation + Composed 71.2 11.1 17.7
Line-by-line ref. Kulal et al. (2019) - - 17.8

SPOC TESTW
Direct 48.7 16.6 34.5
Direct-scaled 48.0 18.5 33.6
Composed 47.1 16.2 36.8
Pretrained 47.5 15.4 37.0
Pretrained + Composed 46.1 15.8 38.1
Backtranslation 43.5 15.8 40.8
Backtranslation + Composed 42.4 15.5 42.1
Line-by-line ref. Kulal et al. (2019) - - 30.7

Table 2: Results on SPOC pseudocode-to-code test
sets, showing proportion of outcomes of generated code
(%). Direct-scaled has the same number of total layers
as the composed model, but roughly double the number
of trainable parameters.

1 set var_8 to "str_2";
2 instantiate var_2;
3 read var_2 from stdin;
4 add "str_4" to the beginning of var_8;
5 set var_2 to false;
6 set var_5 to true;
7 if var_2 is true, ←↩

swap the values of var_2 and var_5;
8 if var_2 is true←↩

, set var_2 to the value of var_5←↩
and var_5 to the value of var_2;

9 output var_8 to stdout;
10 print var_2;
11 output var_5 to stdout;

1 int main () {
2 string var_8 = "str_2";
3 bool var_2;
4 cin >> var_2;
5 var_8 = "str_4" + var_8;
6 var_2 = false;
7 var_5 = true;
8 if ( var_2 ) {
9 string temp = var_2;

10 var_2 = var_5;
11 var_5 = temp; }
12 if ( var_2 ) {
13 bool temp = var_2;
14 var_2 = var_5;
15 var_5 = temp; }
16 cout << var_8;
17 cout << var_2;
18 cout << var_5;
19 return 0; }

1 int main () {
2 string var_8 = "str_2";
3 bool var_2;
4 cin >> var_2;
5 var_8 = "str_4" + var_8;
6 var_2 = false;
7 bool var_5 = true;
8 if ( var_2 ) {
9 bool temp = var_2;
10 var_2 = var_5;
11 var_5 = temp; }
12 if ( var_2 ) {
13 bool temp = var_2;
14 var_2 = var_5;
15 var_5 = temp; }
16 cout << var_8;
17 cout << var_2;
18 cout << var_5;
19 return 0; }

Figure 5: (Left-Middle) Example input and output of the base predictor on the synthetic dataset.
(Right) Output of the denoiser, which instantiates var_5 and corrects the type of temp.

Metrics. A generated program has three possible outcomes: compilation error, execution error, or
correct. A program is correct if, executed on a set of input test cases, its outputs match the set of gold
outputs. We measure the proportion of programs that fall into these outcomes.

5.2.1 SYNTHETIC DATASET

Pseudocode specifies local information but there are global consistency constraints to enforce
(Figure 2). Modeling everything directly requires a complex model. With predict-and-denoise, the
base predictor fθ can do local translation while the denoiser Π enforces global constraints such as
type correctness. To test this intuition, we generate a synthetic pseudocode-to-code dataset where
the pseudocode specifies all but the declaration types (see Figure 2).

Dataset generation. The synthetic programs involve 1-4 variables (bools, ints, and strings) drawn
from 10 possible variable names, which are first initialized (by reading stdin) and then processed by up
to 1-5 random operations, including 3 unary operations per type and 2 binary operations on ints. There
are 100 possible integer values and 10 possible string values. We generate 1000 labeled examples
and 20000 unlabeled code examples.

Results. Table 1 shows the results for all models. The Pretrained+Composed predictor improves
the proportion of correct programs over direct training by 51% and over pretraining by 9.6%. We can
also apply the learned denoiser to the outputs of the direct and pretrained predictors at test time, which
reduces the improvement to 29.6% and 7.6% respectively. Similarly, Backtranslation+Composed
improves upon direct training by 55.2% and over the strong backtranslation baseline by 2.6%. The
Composed model without combining with pretraining or backtranslation still achieves a 31.4% increase
over the direct model, but requires combining with pretraining or backtranslation to achieve the best per-
formance. This suggests that predict-and-denoise offers a complementary benefit from using unlabeled
output data. Results on varying unlabeled and labeled data sizes, where the composed model improves
over the baselines in all instances, are in Appendix C. Figure 5 gives an example input with the output of
the base and composed predictors. With the denoiser, the base predictor does not have to output all the
correct variable types. Here, the denoiser correctly instantiates var_5 and corrects the type of temp.
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Compile Err Exec Err Correct

Direct-scaled 42.4 19.4 38.2
Pretrained-scaled 40.2 19.0 40.8
Backtranslation-scaled 0.2 17.2 82.6
Direct + denoiser 23.8 18.2 58.0
Pretrained + denoiser 9.4 10.6 80.0
Backtranslation + denoiser 1.2 10.2 88.6
Pretrained + Composed 9.0 4.8 87.6
Backtranslation + Composed 1.2 7.0 91.8

Table 3: Results of scaled-up baselines and baselines with a denoiser on synthetic pseudocode-to-code task.
Proportion of generated code (%) resulting in a compilation error, execution-time error, or correct code. Composed
models are copied from Table 1.

5.2.2 SPOC
Finally, we evaluate on the challenging SPOC pseudocode-to-code dataset Kulal et al. (2019), which
contains code scraped from codeforces.com and pseudocode written by crowdsourced workers.
Since we consider the full-program translation task instead of line-by-line as in previous works Kulal
et al. (2019); Yasunaga and Liang (2020), we filter out training examples where the code is longer
than 1000 tokens after pre-processing, retaining over 95% (11355/11925) of the training examples.
We use the two given SPOC test sets, TESTP and TESTW. TESTP tests for generalization to unseen
problems, while TESTW tests for generalization to pseudocode written by different workers. We report
results on the full (unfiltered) test sets.

Denoising objective. We use random syntactic and semantic corruptions of additional ∼280k
unlabeled code examples from codeforces.com as in Yasunaga and Liang (2020). Previous
program repair works Yasunaga and Liang (2020) utilize compiler error messages to guide the repair
model. We only use code as input, and thus the task is relatively difficult. We define pβ in two parts.
First, we train a binary classifier gγ :Y→{0,1}which detects if a program has an error (error is label
1), trained using the denoising dataset. For an output y′, if gγ(y′)=0 then we define pβ(y |y′)=δ(y′)
to be a delta distribution on y′. Otherwise, if gγ(y′) = 1, then pβ(y | y′) = pν(y | y′), where pν is a
Transformer. The Transformer pν is first pretrained using a linewise code repair dataset generated
from unlabeled examples, then trained on full-program repair where the input program has one random
corrupted line with probability 0.75. Thus, taking β= (γ,ν), we have Πβ(y′) =y′ if gγ(y′) = 0 and
Πβ(y′)=argmaxypν(y |y′) otherwise.

Results. On both test sets, predict-and-denoise (composed) models improve the proportion of
correct code over the direct predictor by 3-5%, and applying predict-and-denoise to pretrained
and backtranslation models improve them by about 1-2% (Table 2). Predict-and-denoise without
pretraining or backtranslation still improved over pretraining, but improving over backtranslation
requires the combining the complementary benefits of backtranslation and predict-and-denoise.
Applying the denoiser to the direct and pretrained models during test time did not improve their
performance. Backtranslation+Composed matches the top-1 performance of a line-by-line LSTM with
attention-based copying Kulal et al. (2019) on TESTP and improve upon it by 11.4% on TESTW despite
considering the more difficult full-program generation task.

5.3 COMPARISONS TO SCALED-UP BASELINES

Although the composed model does not optimize the denoiser during joint training with the base
predictor, the final composed model consists of roughly double the number of layers as the baselines.
Thus, we also present baseline results with the same number of layers as the composed model. We
note that these scaled-up baselines have roughly double the amount of trainable parameters as the
composed model, since the denoiser is fixed when training on labeled data.

Table 3 shows the results of scaled-up direct, pretrained, and backtranslation baselines on the synthetic
code task. While the scaled direct predictor improves with respect to the unscaled direct predictor,
scaling up worsens the pretrained and backtranslation baselines. Intruigingly, the pretraining becomes
dramatically less effective with a very large model, possibly due to the relatively large size of the model
in comparison to the unlabeled data (20k examples).

Table 2 gives results for a scaled-up direct predictor for the SPOC dataset. We find that while the
compilation error rate decreases, scaling up slightly degrades the correct rate of its output programs.

5.4 COMPARISONS TO BASELINES WITH A DENOISER

We also give comparisons to the baselines when their outputs are post-processed by the same denoiser
used by the composed model. This results in baselines with the exact same architecture and same
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number of trainable parameters. The only difference is that the Composed model trains the base
predictor jointly with the fixed denoiser.

Table 3 shows the results of the baselines with a denoiser. While the improvement between the
composed models and the baselines decreases, predict-and-denoise gives gains of 29.6%, 7.6%, and
3.2% above direct+denoiser, pretrained+denoiser, and backtranslation+denoiser respectively. We
find that using the denoiser does not improve SPOC baseline results in general. These experiments
highlight the importance of training jointly with the fixed denoiser.

6 RELATED WORK

Semi-supervised learning. Like semi-supervised learning, predict-and-denoise leverages large
amounts of unlabeled data. However, semi-supervised learning works typically use unlabeled input
data Tarvainen and Valpola (2017); Miyato et al. (2018); Shu et al. (2018); Berthelot et al. (2019),
whereas we have “unlabeled” outputs. In classification, unlabeled outputs can help with handling
label shift Lipton et al. (2018); Azizzadenesheli et al. (2019), but otherwise there is very little output
structure. If both unlabeled inputs and outputs are available, our method is complementary with
semi-supervised methods.

Denoising autoencoding. Denoising autoencoders (DAE) are classical building blocks for
unsupervised deep representation learning Vincent et al. (2008; 2010). Recently, DAEs have been
considered on the input side to combat adversarial robustness by attempting to clean the adversarial
example first using invariances learned from unlabeled data Gu and Rigazio (2015); Wong and Kolter
(2020). We consider DAEs for learning invariances and structure in the output space instead of inputs.

Machine translation. Machine translation methods use monolingual data in both the source and tar-
get languages to improve their models Sennrich et al. (2016b); Cheng et al. (2016). Pretraining methods
use language modeling on monolingual data to initialize the encoder and decoder Ramachandran et al.
(2018); Skorokhodov et al. (2018); Devlin et al. (2019). Back-translation methods generate additional
synthetic parallel examples by training on the backwards (target to source) problem Sennrich et al.
(2016b). Predict-and-denoise gives complementary gains on top of pretraining and back-translation.

Semantic parsing and structured prediction. Some recent semantic parsing works have explicitly
provided output constraints using abstract syntax trees (AST) and enforcing type constraints Yin and
Neubig (2017); Krishnamurthy et al. (2017); Xiao et al. (2016); Dong and Lapata (2016). Krishna-
murthy et al. (2017) note that enforcing type constraints during training not only prevents invalid outputs
but also improves generalization, supporting our results. While these methods are useful when the valid-
ity structure is known and well-defined, we focus on extracting unknown structure from unlabeled out-
puts. Structured prediction spans applications including speech Zhang and Wu (2013), vision Mueller
(2013), and medical diagnosis Jagannatha and Yu (2016). Many approaches use graphical models (on
top of neural models) for enforcing validity, e.g. HMMs and CRFs in OCR and sequence tagging Kassel
(1995); Huang et al. (2015). These approaches typically require carefully engineering the graphical
model to integrate with a neural component and do not consider the simplicity benefits of composition.

7 CONCLUSION

Many tasks in machine learning are no longer classification or regression but require generating outputs
with rich structure (images, text, music, proteins, etc.), for which unpaired outputs are very common.
We introduce the predict-and-denoise framework, in which we compose a predictor with a denoiser
trained on unpaired outputs. Open questions include whether we can train in a more differentiable way
for discrete output spaces and how to choose the best denoising objective for a given prediction task.
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A PROOF OF THEOREM 1
We recall the setting in Section 3, which compares the norm of 2-layer ReLU networks used to
represent a family of piecewise constant functions directly versus in a composed manner. The input
space X ⊆R is one-dimensional and the valid output space V ⊂Rk is a set of discrete points in a
k-dimensional space. We first show a result for k=1, then extend to higher k.

Suppose that the input and ambient output space are 1-dimensional (X ⊂R,Y=R) and we use a model
fbase :X →Y from the family of bounded-norm two-layer ReLU neural networksH. The valid output
space V is a discrete set of points in R, and the denoiser Π:R→V maps from real values to the nearest
point in the valid set (breaking ties arbitrarily). We show that under certain conditions on the target
function f? :X →V , we can use a small-norm base predictor composed with a denoiser (Π◦fbase)
to represent f?, while directly representing f? (without Π) requires a large norm.

Target function family. The target function f? is defined on a union of disjoint intervals
X =]N−1

i=0 [xli,x
u
i ] where the subscript index orders the intervals such that xli+1−xui = δ > 0. Thus,

there is a gap δ between any two intervals. We assume that all interval lengths xui −xli are at least ∆x.
Since V is a discrete set of points, f? is a piecewise constant function that takes a value y∗0 ,...,y

∗
N−1∈V

in each of theN intervals. Each interval has a distinct value, such that y∗i 6=y∗i+1 for any 0≤ i≤N−2.
We will slightly abuse notation throughout by referring to the index i of an interval as “interval i”.

Hypothesis class and norm. Following Savarese et al. (2019), we define the hypothesis classH
such that fθ∈H are

fθ(x)=

h∑
l=1

w
(2)
l

[
〈w(1)

l ,x〉+b(1)
l

]
+

+b
(2)
l (7)

over x ∈Rd, where we will take d= 1 throughout. Here, w(1)
l ∈Rd are rows of W (1) ∈Rh×d and

b
(1)
l ,b

(2)
l ,w

(2)
l ∈ R are elements of b(1),b(2),w(2) ∈ Rh respectively. The parameter space for this

hypothesis class is

θ∈Θ={(h,W (1),b(1),w(2),b(2)) :h∈N,W (1)∈Rh×d,w(2),b(1),b(2)∈Rh}, (8)

where the number of hidden units h can be unbounded. Note that since our function family is a
piecewise function with a finite number of segments, a 2-layer ReLU network with a finite number
of hidden units can exactly implement the function. Each network is associated with the squared
Euclidean norm of the weights

C(θ)=
1

2
(‖w(2)‖22+‖W (1)‖2F ).

The norm associated with f ∈H is the minimum norm required to implement a given f :

‖f‖= inf
θ̂∈Θ

C(θ̂) s.t. fθ̂=f. (9)

Our one-dimensional result relies on the result of Savarese et al. (2019) (Theorem 3.1) that for 2-layer
ReLU networks, the norm can be rewritten as

‖f‖=
1

2
max

(∫ ∞
−∞
|f ′′(x)|2dx,|f ′(−∞)+f ′(+∞)|

)
. (10)

As a corollary, for one-dimensional functions, the minimum norm interpolant inH has equivalent
norm to the norm of a linear spline interpolation of the points Savarese et al. (2019).

A.1 LOWER BOUND ON ‖fDIRECT‖
We use the norm equivalence between 2-layer ReLU networks and linear splines in one dimension
to compare the norm of functions fromH that represent f? with and without Π.

Lemma 1. For piecewise constant target function f? defined by endpoints at the
points (xl0, y

∗
0), (xu0 , y

∗
0), ... , (xlN−1, y

∗
N−1), (xuN−1, y

∗
N−1), any fdirect ∈ H has norm

‖fdirect‖≥
∑N−2
i=0

|y∗i+1−y
∗
i |

δ .
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Proof. By Theorem 3.3 in Savarese et al. (2019), the norm of a linear spline interpolation lower bounds
‖fdirect‖ for any fdirect∈H. We define a linear spline interpolation f of the 2N points as

f(x)=

{
y∗i +α2i(x−xli) xli≤x≤xui , 0≤ i≤N−1

y∗i +α2i+1(x−xui ) xui ≤x≤xli+1, 0≤ i≤N−2
(11)

where α2i+1 =
y∗i+1−y

∗
i

δ for 0 ≤ i ≤ N − 2 and α2i = 0 for 0 ≤ i ≤ N − 1. From Savarese et al.
(2019), we have that ‖f‖ = max(

∑2N−3
j=0 |αj+1−αj |,|α0 +αN−2|), which we lower bound with

the first term. There areN−1 nonzero slopes αj and each one contributes to the norm twice. Thus

‖fdirect‖≥‖f‖= 1
2 (2
∑N−2
i=0

|y∗i+1−y
∗
i |

δ ).

A.2 UPPER BOUND ON ‖f∗BASE‖
We compute an upper bound on the norm of a min-norm base predictor f∗base by construction. Consider
learning a function fbase∈Hwhere we make predictions as Π composed with fbase. For every value
y∗i ∈V , let (yli,y

u
i ] be the interval of values in R closest to y∗i . Thus, if y∈ (yli,y

u
i ] then Π maps y to

y∗i . Without loss of generality, we have assumed that Π breaks ties such that yli does not map to y∗i .

Adjacent intervals. Define interval i to be adjacent to i + 1 if it satisfies either yui = yli+1 or
yli = yui+1, or equivalently, there is no target value y∗j ∈ V in the interval (y∗i ,y

∗
i+1). Considering

the i-th pair of intervals to be (i, i+ 1), let I be the index set of adjacent pairs of intervals in f?
and J the index set of non-adjacent pairs, where |I|+ |J |=N −1. Assume mini |y∗i+1−y∗i | ≥ L,
maxi|y∗i+1−y∗i |≤U are the min and max separations between valid points.

Lemma 2. The norm of the minimum-norm base predictor ‖f∗base‖ is upper bounded as

‖f∗base‖≤max

(
|J |U
δ

+
|I|U
∆x

,
U

∆x

)
. (12)

Proof. We give an explicit construction f̂ in the univariate setting where the norm of f̂ upper bounds
‖f∗base‖. We define the construction f̂ via a set of points (x0, y0), ... , (x2N−1, y2N−1) to linearly
interpolate. For interval 1≤ i≤N−2, we have two different cases describing the interval’s relation
with its previous and next intervals:

1. Same direction: if y∗i−1 < y∗i < y∗i+1, set (x2i,y2i) = (xl2i,y
l
2i) and (x2i+1,y2i+1) = (xui ,y

u
i ). If

y∗i−1>y
∗
i >y

∗
i+1, set (x2i,y2i)=(xl2i,y

u
2i) and (x2i+1,y2i+1)=(xui ,y

l
i).

2. Change direction: if y∗i−1<y
∗
i >y

∗
i+1, set (x2i,y2i)=(xl2i,y

l
2i+ε) and (x2i+1,y2i+1)=(xui ,y

l
i+ε).

If y∗i−1>y
∗
i <y

∗
i+1, set (x2i,y2i)=(xl2i,y

u
2i) and (x2i+1,y2i+1)=(xui ,y

u
i ).

We will choose ε>0 to be a small, arbitrary value. For the beginning and end intervals i∈{0,N−1},
we choose (x0,y0),(x2N−2,y2N−2) to minimize the norm of the linear spline interpolation given the
other points.

We change the construction for adjacent intervals as follows:

1. Adjacent to previous interval (i>0): If interval i−1 is adjacent to i, we change the construction
such that x2i=xli−δ/2.

2. Adjacent to next interval (i<N−1): If interval i is adjacent to i+1, then x2i+1 =xui +δ/2 (unless
case 3 occurs). If 0<i<N−1 and y∗i−1<y

∗
i >y

∗
i+1, then we also set y2i+1 =yli (instead of yli+ε).

3. Adjacent to both previous and next intervals (0<i<N−1): If (i−1,i),(i,i+1) are adjacent and
y∗i−1<y

∗
i >y

∗
i+1, set x2i+1 =(xui −xli)/2 and y2i+1 =yli+ε.

The number of non-adjacent pairs of intervals in f? determines the complexity gap between ‖f∗base‖
and ‖fdirect‖.

Let f̂ be the linear spline interpolation of the points (x0,y0), ... ,(x2N−1,y2N−1) as above, where
Π◦ f̂(x) = f?(x) for x∈X by construction. As a feasible solution, ‖f̂‖≥ ‖f∗base‖. We distinguish
between interval segments with endpoints (x2i,y2i),(x2i+1,y2i+1) and interconnecting segments with
endpoints (x2i+1,y2i+1),(x2(i+1),y2(i+1)), for 0≤ i≤N−2. For any i, let α̂2i be the slope of the
interval segment and α̂2i+1 be the slope of the interconnecting segment. For some interconnecting
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segments in the construction, the segment is of length zero. For these interconnecting segments, we
define α̂2i+1 = α̂2i which does not affect the norm calculation. The norm of the construction is

‖f̂‖=
1

2
max(

N−2∑
i=0

|α̂2i+1−α̂2i|+|α̂2(i+1)−α̂2i+1|,|α̂0+α̂N−2|).

Notice that both differences in the first term involve an interconnecting segment.

We first bound the first term in the norm. Suppose (i,i+1)∈J is an non-adjacent pair. The contribution
to the norm is

|α̂2i+1−α̂2i|+|α̂2(i+1)−α̂2i+1|≤2|α̂2i+1|

≤2
|y∗i+1−y∗i |

δ
≤ 2U

δ
where in the first inequality, we note that the worst-case difference in slopes in our construction is

when α̂2i = 0 and α̂2(i+1) = 0. The second step follows from |α̂2i+1| ≤
min(|yui −y

l
i+1|,|y

l
i−y

u
i+1|)+ε

δ
which is upper bounded by the second inequality for small enough ε. For purposes of the bound, we
let yuj = ylj +U for j = argmaxiy

∗
i and ylk = yuk −U for k = argminiy

∗
i . We can do this since the

construction always ‘’changes direction” with slope going to 0 as ε→0 for the extremal-valued intervals.

Suppose (i,i+1)∈ I is an adjacent pair. LetA be the event that 0<i<N−1 and y∗i−1<y
∗
i >y

∗
i+1.

If notA, the contribution to the norm is |α̂2(i+1)−α̂2i| since the interconnecting segment has length
zero and α̂2i+1 = α̂2i. In this case, the contribution to the norm is

|α̂2(i+1)−α̂2i|≤|α̂2(i+1)|+|α̂2i|

≤
|yui+1−yli+1|
|xu−xl|

+
|yui −yli|
|xu−xl|

≤2
U

∆x
.

IfA, we have |α̂2i+1−α̂2i|≤2ε/(∆x/2) from the special case. Thus the contribution to the norm is

|α̂2i+1−α̂2i|+|α̂2(i+1)−α̂2i+1|≤
4ε

∆x
+|α̂2(i+1)|+|α̂2i+1|

≤ 4ε

∆x
+
|yui+1−yli+1|
|xu−xl|

+
ε

|xu−xl|/2

≤ U+6ε

∆x
≤2

U

∆x

for small enough ε.

For the second term in the norm, we bound

|α̂0+α̂N−2|≤|α̂0|+|α̂N−2|≤
2U

∆x
(13)

for small enough ε. Putting cases together and using ‖f∗base‖≤‖f̂‖ gives the result.

A.3 UNIVARIATE RESULT

Lemma 3. Let f? be a piecewise constant function defined onX =]ni=1[xli,x
u
i ] with values in a discrete

setV⊂R, and let δ>0 be the gap between any two intervals inX . Let fdirect be a 2-layer bounded-norm
ReLU network that implements f? and f∗base =minf∈H{‖f‖ :Π◦f(x)=f?(x), x∈X}. Then

‖fdirect‖
‖f∗base‖

=Ω

(
NL

U(|J |+δ |I|∆x
)

)
. (14)

Proof. Using Lemma (1), we have ‖fdirect‖≥ NL
δ . Taking the (inverse) ratio with the upper bound

in Lemma (2) (considering the second term of the maximum as a constant) implies that the (inverse)
ratio between norms is

‖f∗base‖
‖fdirect‖

<
U

NL

(
|J |+δ |I|

∆x

)
.

Taking the inverse gives the result.
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A.4 MULTIVARIATE OUTPUTS

We extend Lemma 3 to the multivariate output case, considering functions from R→Rk. Here, the
denoiser is defined as Π(y)∈argminy∗∈V‖y∗−y‖2, breaking ties arbitrarily. We consider a 2-layer
ReLU neural network family where the j-th output of fθ(x) is fθj (x), where each fθj is a univariate
2-layer ReLU network. For each univariate network, the first layer weights are shared but each output
j has a different second layer weight. We denote the second layer weights for the j-th network as
w(2,j)∈Rh. The norm of the multivariate output model fθ is defined via

C(θ)=
1

2
(‖W (1)‖2F +

k∑
j=1

‖w(2,j)‖22). (15)

Again, the norm associated with f ∈H is the minimum norm required to implement a given f :

‖f‖= inf
θ̂∈Θ

C(θ̂) s.t. fθ̂=f. (16)

Here, we define bounds for terms analogous to those in the univariate case. We let Jj and Ij be the
index set of non-adjacent and adjacent pairs of intervals respectively in the j-th output coordinate.
Let y∗i,j be the j-th output coordinate of the i-th valid point. For the j-th output coordinate, let
Lj = mini|y∗i,j−y∗i+1,j | and Uj = maxi|y∗i,j−y∗i+1,j | be the min and max separation between valid
points. Let ∆x be the length of the smallest interval inX . Given these definitions, we show a similar
gap in the multivariate output case.

Theorem 1. Let the valid output space V be a set ofN discrete points y∗1 ,...,y
∗
N in V=Rk. Let f? be a

piecewise constant function defined onX =]ni=1[xli,x
u
i ] with values in the discrete set V , and let δ>0

be the gap between any two intervals inX . Let fdirect :R→Rk be a multivariate bounded-norm 2-layer
ReLU network inH that implements f? and f∗base =minf∈H{‖f‖ :Π◦f(x)=f?(x), x∈X}. Then

‖fdirect‖
‖f∗base‖

=Ω

 NmaxjLj∑k
j=1Uj

(
|Jj |+δ |Ij |∆x

)
. (17)

Proof. For the lower bound on ‖fdirect‖, note that fdirect must fit every coordinate of the output (a
univariate regression problem). Thus, we can lower bound by the norms on any output coordinate,
‖fdirect‖≥‖fdirect,j‖ for any j, where fdirect,j is the univariate 2-layer ReLU network for the j-th output
coordinate. In particular, we can bound by the maximum of the norms, ‖fdirect‖≥maxj‖fdirect,j‖.
For the upper bound on ‖f∗base‖, we construct a multivariate network fθ. We take fαj to be an
independent univariate 2-layer ReLU network that fits the j-th coordinate of f? and has the same norm
the corresponding univariate construction from Lemma 3 that fits the j-th output coordinate. Each
αj consists of hj hidden units with first layer weightsW (1)

αj ,b
(1)
αj ,w

(2)
αj ,b

(2)
αj ∈Rhj . We construct fθj , the

network that computes the j-th output of our construction fθ, by concatenating the first layer weights
of each fαj to define the shared first layer weights

W (1) =[W (1)
α1

;...;W (1)
αk

]∈Rh

b(1) =[b(1)
α1

;...;b(1)
αk

]∈Rh

where h=
∑k
j=1hj . The second layer weights extend the corresponding second layer weightsw(2)

αj

with zeros for the newly introduced hidden units:

w(2,j) =[0hj− ;w(2)
αj ;0hj+ ]

b(2,j) =[0hj− ;b(2)
αj ;0hj+ ]

where hj− =
∑j−1
r=1hr and hj+ =

∑k
r=j+1hr. We define the j-th output of our construction fθ(x)

to be fθj (x). The norm of this concatenated network is ‖fθ‖=
∑k
j=1‖fθj‖. We bound ‖f∗base‖≤‖fθ‖.

Then using Lemma 1 and Lemma 2 on each output coordinate, we have ‖fdirect‖ ≥ NLj
δ and

‖f∗base‖≤‖fθ‖≤
∑k
j=1(

|Jj |Uj
δ +

|Ij |Uj
∆x

). Taking the ratio gives the result.
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Test MSE

Direct 0.193
Composed (Emboss) 0.187
Composed (Contrast) 0.172
Composed (Gaussian blur) 0.171

Figure 6: Test MSE on font image generation. Results when L2 regularization strength is tuned with
the validation set for a variety of noising functions.
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Figure 7: Performance with varying labeled and unlabeled data (while fixing the other to the default
in the original experiment) in font generation. The gap between the direct and composed models
increases with increasing labeled and unlabeled examples.

B FONT IMAGE GENERATION

We use a dataset of 56k fonts scraped from the internet Bernhardsson (2016). Out of the 6200 labeled
examples (62 characters× 100 fonts), we split randomly into 2500 training examples, 100 validation
examples, and 3600 test examples. The training set contains 25 examples on average from each font,
and the model must generate new characters from those fonts at test time. We have additional unlabeled
images for∼50k other fonts to train the denoiser. After learning the denoiser, we train the base model
composed with the denoiser and minimize squared error. We set λ=0 in (6), using only the composed
component of the objective. We tune the L2 regularization strength out of {0, 0.1, 1e-2, 1e-3, 1e-4,
1e-5, 1e-6} according to squared error on the validation set. The denoiser is trained for two epochs on
unlabeled data and all other models (direct and composed) are trained for 1000 epochs on the labeled
data, using the validation set for early stopping.

The standard and base models use 7-layer feedforward networks where the one-hot vector for character
identity is first fed through an embedding layer with embedding dimension 62, and the one-hot vector
for the font uses an embedding layer of embedding dimension 100. These embeddings are then
concatenated and fed through a 7-layer feedforward network.

Robustness to choice of denoising perturbations. In Table 6, we test the robustness of the
predict-and-denoise framework on different choices of noising functions. In addition to Gaussian
blur, we change the contrast of the image by a factor of 0.5 or emboss the image. All noising functions
improve beyond the direct predictor.

Performance with varying labeled and unlabeled data size. We trained the denoiser with 100 and
5000 additional unlabeled fonts (originally 50k unlabeled fonts). The Composed test MSE was 0.182
and 0.175 for 100 and 5000 unlabeled fonts respectively, well below the Direct test MSE (0.193) and
approaching the result with 50k unlabeled fonts (0.171). Varying labeled data size in font generation
(500, 1500, 2500, 4500 examples), the Composed model has lower test MSE than Direct on all sample
sizes, with an average relative MSE decrease of 11%. We visualize these results in Figure 7.

C SYNTHETIC PSEUDOCODE-TO-CODE DATASET

Each program in the dataset is generated in two phases. Each line in the program is templated and
have pseudocode and noisy code templates to accompany it. When there are multiple options for any
of code, pseudocode, or noisy code, a uniformly random option is sampled.
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In the first phase, 1 to 4 variables with random types (bool, string, int) are instantiated. They
may be assigned a random value or take on a value from stdin. Integers take random values in 0
to 100 and there are 10 possible strings in the form str_i for i∈ {0,...,9}. There are 10 possible
variable names in the form var_i for i∈{0,...,9}.

In the second phase, up to 5 additional code lines are generated. Twenty percent of the time, a new vari-
able with a random type is instantiated and assigned a value. The other 80% consists of type-preserving
operations on an existing variable or variables, such as setting a value, prepending/concatenating,
adding/subtracting an integer, taking the logical AND, and conditional swap based on the value of
a boolean variable.

The dataset presents the following challenges for the predictor, both stemming from ambiguity in
the pseudocode:

1. Type inference: the words ‘set’ and ‘add’ are used almost everywhere for instantiation, initialization,
and type-preserving operations.

2. Initialization: A particular example of ambiguity is that the pseudocode for value updates and initial-
ization are often the same (set <var> to <value>), thus requiring the predictor to look in the
pseudocode context to figure out whether to insert a type and what the correct type to insert should be.

3. Scopes and variable shadowing: Initialization can be particularly tricky during a conditional swap,
where a scope is introduced with the if block. Inside the if block, one may reinitialize a variable that
already exists (shadowing) or initialize a new variable which does not already exist. If the variable
is not shadowed, it may change the value of the variable in the outer scope, causing a change in
the program output. A locally-scoped variable cannot be used outside the if-block, so they may
have to be reinitialized. In this dataset, variables are always newly initialized in the if-block.

Perturbations for denoising. We generate perturbations for denoising by inducing random semantic
and syntactic changes:

1. Replacing, deleting, or inserting a random type in instantiation, initialization, and variable
modification statements.

2. Print and input statements: removing double arrows («), reversing arrow directions, removingcout.

Experimental details. We use the sentencepiece BPE tokenizer Kudo and Richardson (2018);
Sennrich et al. (2016a) with a joined dictionary size of 600. There are 1000 labeled pairs of pseudocode
to code and 20000 unlabeled code examples. Separate validation and test sets of 500 examples are
independently generated. All predictors use a Transformer architecture with encoder/decoder using
3 layers and 2 attention heads, embedding dimension 256, and FFN embedding dimension 1024. The
denoiser uses a Transformer architecture with encoder/decoder using 5 layers and 4 attention heads,
embedding dimension 256, and FFN embedding dimension 1024. We use dropout probability 0.1,
attention dropout probability 0.2, ReLU dropout probability 0.2, weight decay 0.0001. We use the
cross entropy loss. We train the direct and pretrained predictors for 500 epochs, and train the denoiser
for 50 epochs. For all predictors, we use the validation set to do early stopping. Base predictors (of
the composed predictor) initialize from the pretrained predictor and are trained for 50 epochs, taking
the best model according to cross entropy loss of the composition Πβ◦fθ on the validation set.

Performance with varying labeled and unlabeled data. In Table 8, we show the proportion of
examples that pass the test cases for the Direct, Pretrained, and Pretrained+Composed predictors when
the number of unlabeled examples is varied. The Pretrained+Composed model improves upon the
other models across all instances, and the gap gets larger with more unlabeled data. Without tuning
the parameter λ, the performance of Pretrained+Composed can degrade quickly with fewer unlabeled
examples due to insufficient unlabeled examples to learn a good denoiser. However, we expect to
always perform better than the direct predictor for optimal λ by trading off the composed part of the
objective with the standard likelihood term.

D TRAINING THE COMPOSED PREDICTOR

Computing the gradient of the first term in the composed objective (Equation (6)) requires computing
the partition function of pβ(y | y′)pθ(y′ | x), marginalizing over outputs y′. Since the output space
is large, this is intractable. Instead, we optimize a lower bound on the log-likelihood of the composed
predictor. To see this, note that the log-likelihood of the composed predictor is lower bounded by the
first term of the objective via Jensen’s inequality:

Ex,y[log Ey′∼pθ [pβ(y |y′)]]≥Ex,y[Ey′∼pθ [logpβ(y |y′)]]. (18)
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Figure 8: Performance with varying labeled and unlabeled data (while fixing the other to the default in
the original experiment) in the synthetic pseudocode-to-code dataset. Pretrained+Composed improves
upon Pretrained and Direct in all instances, and the gap gets larger with more unlabeled data.

To optimize Equation (6) where the output space is discrete, we use the REINFORCE estimate of
the gradient for the first term Williams (1992). We do not use the Gumbel-softmax reparameterization
here since the Transformer model autoregressively conditions on its discrete outputs, but different
choices of the base model can enable use of reparameterized gradients.

The composed predictor optimizes

argmax
θ

E[Eŷ∼pθ [logpβ(y | ŷ)]]+λE[logpθ(y |x)] (19)

where the outer expectations are over the data, where the samples are (x,y) pairs. Here, θ are the
parameters of the learned model and β are the parameters of the denoiser. The score function estimate
of the gradient is

∇θE[Eŷ∼pθ [logpβ(y | ŷ)∇θlogpθ(ŷ |x)]]+λE[∇θlogpθ(y |x)]. (20)

For examples that the model predicts wrongly, the model is encouraged to put smaller probabilities on
these examples. This may cause the first term of the gradient to have a very large magnitude, causing
numerical instability. We resolve this by clamping logpβ(y | ŷ) to max(logpβ(y | ŷ),γ) where γ=−50
in all experiments. Even after clamping, the composed loss is roughly an order of magnitude larger than
the standard loss; to normalize the losses, we scale the composed loss by 0.1. In all pseudocode-to-code
experiments, we use λ=1 to balance between the fitting the objective directly and using the composed
objective.

E SPOC
Denoising objective. We use 284477 unlabeled code examples from codeforce.com to generate
1137908 pairs of noisy code to valid code. For each unlabeled program, we generate 1 unnoised
example and 3 noised examples, where each noised example has one line with an error. We
follow Yasunaga and Liang (2020) to generate error lines by random semantic and syntactic changes,
including insertion, deletion, and replacement of keywords, variables, and syntactical symbols.

Data processing. Since the SPOC dataset contains a small fraction of programs which have a large
number of tokens, we filter out the longest examples from the training data. After filtering, we retain over
95% of the original training set. Similarly to the synthetic dataset, special symbole ($ and∼) are added
to delineate lines and tabs in the pseudocode and code, and we preprocess the code using a byte-pair
encoding using SentencePiece Kudo and Richardson (2018), with joined vocabulary size 10000.

Data filtering. We train and test on a truncated version of the SPOC dataset Kulal et al. (2019).
We filter out an example during preprocessing if, after adding special tokens for tab and code lines,
the number of characters exceeds 1000. This retains 11355 examples out of the full 11925 training
examples. We use the given validation splits. When we filter the TESTP and TESTW test datasets,
we retain 1441 out of 1820 examples in TESTP and 1659 out of 1752 examples in TESTW.
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Training details. For SPOC experiments, we use a Transformer architecture for all models with
5 layers, 8 attention heads, embedding dimension 256, and FFN embedding dimension 1024. We
use this architecture for both the denoiser and the models. We use dropout probability 0.4, attention
dropout probability 0.2, ReLU dropout probability 0.2, weight decay 0.0001, taken as reasonable
defaults from Guzmán et al. (2019). We use a decaying label smoothing schedule with smoothing
parameter starting with 0.2 for 150 epochs, then 0.1 and 0.05 for 25 epochs each. We found that
reducing the label smoothing parameter near the end of training improves generalization for all models.
The composed predictor initializes from the pretrained predictor and are trained for 20 epochs, taking
the best model according to (label-smoothed) cross entropy loss of the composition Πβ ◦fθ on the
validation set. For backtranslation models, we first train a code-to-pseudocode model using the labeled
data and use this model to produce synthetic pseudocode examples for unlabeled code. Then, we
train a pseudocode-to-code model using the labeled examples and synthetically generated examples.
Finally, we use this model as initialization to finetune on the labeled data only.
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