
Under review as a conference paper at ICLR 2021

APPENDIX

A EXTENDED BACKGROUND

Reinforcement Learning from Images We formulate image-based control as an infinite-horizon
partially observable Markov decision process (POMDP) (Bellman, 1957; Kaelbling et al., 1998). An
POMDP can be described as the tuple (O,A, p, r, �), where O is the high-dimensional observation
space (image pixels), A is the action space, the transition dynamics p = Pr(o0t|ot, at) capture the
probability distribution over the next observation o0t given the history of previous observations ot

and current action at, r : O ⇥A ! R is the reward function that maps the current observation and
action to a reward rt = r(ot, at), and � 2 [0, 1) is a discount factor. Per common practice (Mnih
et al., 2013), throughout the paper the POMDP is converted into an MDP (Bellman, 1957) by stacking
several consecutive image observations into a state st = {ot, ot�1, ot�2, . . .}. For simplicity we
redefine the transition dynamics p = Pr(s0t|st, at) and the reward function rt = r(st, at). We then
aim to find a policy ⇡(at|st) that maximizes the cumulative discounted return E⇡[

P1
t=1 �

trt|at ⇠
⇡(·|st), s0t ⇠ p(·|st, at), s1 ⇠ p(·)].

Soft Actor-Critic The Soft Actor-Critic (SAC) (Haarnoja et al., 2018) learns a state-action value
function Q✓, a stochastic policy ⇡✓ and a temperature ↵ to find an optimal policy for an MDP
(S,A, p, r, �) by optimizing a �-discounted maximum-entropy objective (Ziebart et al., 2008). ✓ is
used generically to denote the parameters updated through training in each part of the model. The actor
policy ⇡✓(at|st) is a parametric tanh-Gaussian that given st samples at = tanh(µ✓(st) + �✓(st)✏),
where ✏ ⇠ N (0, 1) and µ✓ and �✓ are parametric mean and standard deviation.

The policy evaluation step learns the critic Q✓(st, at) network by optimizing a single-step of the soft
Bellman residual

JQ(D) = E(st,at,s
0
t)⇠D

a0
t⇠⇡(·|s0t)

[(Q✓(st, at)� yt)
2]

yt = r(st, at) + �[Q✓0(s0t, a
0
t)� ↵ log ⇡✓(a

0
t|s0t)],

where D is a replay buffer of transitions, ✓0 is an exponential moving average of the weights as done
in (Lillicrap et al., 2015). SAC uses clipped double-Q learning (van Hasselt et al., 2015; Fujimoto
et al., 2018), which we omit from our notation for simplicity but employ in practice.

The policy improvement step then fits the actor policy ⇡✓(at|st) network by optimizing the objective

J⇡(D) = Est⇠D[DKL(⇡✓(·|st)|| exp{
1

↵
Q✓(st, ·)})].

Finally, the temperature ↵ is learned with the loss

J↵(D) = E st⇠D
at⇠⇡✓(·|st)

[�↵ log ⇡✓(at|st)� ↵H̄],

where H̄ 2 R is the target entropy hyper-parameter that the policy tries to match, which in practice is
usually set to H̄ = �|A|.

Deep Q-learning DQN (Mnih et al., 2013) also learns a convolutional neural net to approximate
Q-function over states and actions. The main difference is that DQN operates on discrete actions
spaces, thus the policy can be directly inferred from Q-values. The parameters of DQN are updated
by optimizing the squared residual error

JQ(D) = E(st,at,s0t)⇠D[(Q✓(st, at)� yt)
2]

yt = r(st, at) + �max
a0

Q✓0(s0t, a
0).

In practice, the standard version of DQN is frequently combined with a set of tricks that improve
performance and training stability, wildly known as Rainbow (van Hasselt et al., 2015).

12

Under review as a conference paper at ICLR 2021

B THE DEEPMIND CONTROL SUITE EXPERIMENTS SETUP

Our PyTorch SAC (Haarnoja et al., 2018) implementation is based off of Yarats & Kostrikov (2020).

B.1 ACTOR AND CRITIC NETWORKS

We employ clipped double Q-learning (van Hasselt et al., 2015; Fujimoto et al., 2018) for the critic,
where each Q-function is parametrized as a 3-layer MLP with ReLU activations after each layer
except of the last. The actor is also a 3-layer MLP with ReLUs that outputs mean and covariance for
the diagonal Gaussian that represents the policy. The hidden dimension is set to 1024 for both the
critic and actor.

B.2 ENCODER NETWORK

We employ an encoder architecture from Yarats et al. (2019). This encoder consists of four convo-
lutional layers with 3⇥ 3 kernels and 32 channels. The ReLU activation is applied after each conv
layer. We use stride to 1 everywhere, except of the first conv layer, which has stride 2. The output
of the convnet is feed into a single fully-connected layer normalized by LayerNorm (Ba et al.,
2016). Finally, we apply tanh nonlinearity to the 50 dimensional output of the fully-connected
layer. We initialize the weight matrix of fully-connected and convolutional layers with the orthogonal
initialization (Saxe et al., 2013) and set the bias to be zero.

The actor and critic networks both have separate encoders, although we share the weights of the conv
layers between them. Furthermore, only the critic optimizer is allowed to update these weights (e.g.
we stop the gradients from the actor before they propagate to the shared conv layers).

B.3 TRAINING AND EVALUATION SETUP

Our agent first collects 1000 seed observations using a random policy. The further training obser-
vations are collected by sampling actions from the current policy. We perform one training update
every time we receive a new observation. In cases where we use action repeat, the number of training
observations is only a fraction of the environment steps (e.g. a 1000 steps episode at action repeat 4
will only results into 250 training observations). We evaluate our agent every 10000 true environment
steps by computing the average episode return over 10 evaluation episodes. During evaluation we
take the mean policy action instead of sampling.

B.4 PLANET AND DREAMER BENCHMARKS

We consider two evaluation setups that were introduced in PlaNet (Hafner et al., 2018) and
Dreamer (Hafner et al., 2019), both using tasks from the DeepMind control suite (Tassa et al., 2018).
The PlaNet benchmark consists of six tasks of various traits. Importantly, the benchmark proposed to
use a different action repeat hyper-parameter for each task, which we summarize in Table 2.

The Dreamer benchmark considers an extended set of tasks, which makes it more difficult that the
PlaNet setup. Additionally, this benchmark requires to use the same set hyper-parameters for each
task, including action repeat (set to 2), which further increases the difficulty.

Table 2: The action repeat hyper-parameter used for each task in the PlaNet benchmark.

Task name Action repeat
Cartpole Swingup 8
Reacher Easy 4
Cheetah Run 4
Finger Spin 2
Ball In Cup Catch 4
Walker Walk 2

13

Under review as a conference paper at ICLR 2021

B.5 PIXELS PREPROCESSING

We construct an observational input as an 3-stack of consecutive frames (Mnih et al., 2013), where
each frame is a RGB rendering of size 84⇥ 84 from the 0th camera. We then divide each pixel by
255 to scale it down to [0, 1] range.

B.6 OTHER HYPER PARAMETERS

Due to computational constraints for all the continuous control ablation experiments in the main
paper and appendix we use a minibatch size of 128, while for the main results we use minibatch of
size 512. In Table 3 we provide a comprehensive overview of all the other hyper-parameters.

Table 3: An overview of used hyper-parameters in the DeepMind control suite experiments.

Parameter Setting
Replay buffer capacity 100000
Seed steps 1000
Ablations minibatch size 128
Main results minibatch size 512
Discount � 0.99
Optimizer Adam
Learning rate 10�3

Critic target update frequency 2
Critic Q-function soft-update rate ⌧ 0.01
Actor update frequency 2
Actor log stddev bounds [�10, 2]
Init temperature 0.1

14

Under review as a conference paper at ICLR 2021

C THE ATARI 100K EXPERIMENTS SETUP

For ease of reproducibility in Table 4 we report the hyper-parameter settings used in the Atari 100k
experiments. We largely reuse the hyper-parameters from OTRainbow (Kielak, 2020), but adapt them
for DQN (Mnih et al., 2013). Per common practise, we average performance of our agent over 5
random seeds. The evaluation is done for 125k environment steps at the end of training for 100k
environment steps.

Table 4: A complete overview of hyper parameters used in the Atari 100k experiments.

Parameter Setting
Data augmentation Random shifts and Intensity
Grey-scaling True
Observation down-sampling 84⇥ 84
Frames stacked 4
Action repetitions 4
Reward clipping [�1, 1]
Terminal on loss of life True
Max frames per episode 108k
Update Double Q
Dueling True
Target network: update period 1
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: �1 0.9
Optimizer: �2 0.999
Optimizer: ✏ 0.00015
Max gradient norm 10
Training steps 100k
Evaluation steps 125k
Min replay size for sampling 1600
Memory size Unbounded
Replay period every 1 step
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8⇥ 8, 4⇥ 4, 3⇥ 3
Q network: stride 4, 2, 1
Q network: hidden units 512
Non-linearity ReLU

Exploration ✏-greedy
✏-decay 5000

15

Under review as a conference paper at ICLR 2021

D FULL ATARI 100K RESULTS

Besides reporting in Figure 5 median human-normalized episode returns over the 26 Atari games
used in (Kaiser et al., 2019), we also provide the mean episode return for each individual game
in Table 5.

Table 5: Mean episode returns on each of 26 Atari games from the setup in Kaiser et al. (2019). The
results are recorded at the end of training and averaged across 5 random seeds (the CURL’s results
are averaged over 3 seeds as reported in Srinivas et al. (2020)). On each game we mark as bold the
highest score. Our method demonstrates better overall performance (as reported in Figure 5).

Game Rainbow SimPLe OTRainbow Eff. Rainbow OT/Eff. Rainbow Eff. DQN Eff. DQN
+CURL +DrQ (Ours)

Alien 318.7 616.9 824.7 739.9 1148.2 558.1 702.5
Amidar 32.5 88.0 82.8 188.6 232.3 63.7 100.2
Assault 231.0 527.2 351.9 431.2 543.7 589.5 490.3
Asterix 243.6 1128.3 628.5 470.8 524.3 341.9 577.9
BankHeist 15.6 34.2 182.1 51.0 193.7 74.0 205.3

BattleZone 2360.0 5184.4 4060.6 10124.6 11208.0 4760.8 6240.0
Boxing -24.8 9.1 2.5 0.2 4.8 -1.8 5.1
Breakout 1.2 16.4 9.8 1.9 18.2 7.3 14.3
ChopperCommand 120.0 1246.9 1033.3 861.8 1198.0 624.4 870.1
CrazyClimber 2254.5 62583.6 21327.8 16185.3 27805.6 5430.6 20072.2
DemonAttack 163.6 208.1 711.8 508.0 834.0 403.5 1086.0

Freeway 0.0 20.3 25.0 27.9 27.9 3.7 20.0
Frostbite 60.2 254.7 231.6 866.8 924.0 202.9 889.9
Gopher 431.2 771.0 778.0 349.5 801.4 320.8 678.0
Hero 487.0 2656.6 6458.8 6857.0 6235.1 2200.1 4083.7
Jamesbond 47.4 125.3 112.3 301.6 400.1 133.2 330.3
Kangaroo 0.0 323.1 605.4 779.3 345.3 448.6 1282.6

Krull 1468.0 4539.9 3277.9 2851.5 3833.6 2999.0 4163.0
KungFuMaster 0.0 17257.2 5722.2 14346.1 14280.0 2020.9 7649.0
MsPacman 67.0 1480.0 941.9 1204.1 1492.8 872.0 1015.9
Pong -20.6 12.8 1.3 -19.3 2.1 -19.4 -17.1
PrivateEye 0.0 58.3 100.0 97.8 105.2 351.3 -50.4
Qbert 123.5 1288.8 509.3 1152.9 1225.6 627.5 769.1
RoadRunner 1588.5 5640.6 2696.7 9600.0 6786.7 1491.9 8296.3
Seaquest 131.7 683.3 286.9 354.1 408.0 240.1 299.4
UpNDown 504.6 3350.3 2847.6 2877.4 2735.2 2901.7 3134.8
Median human-normalised 0.020 0.135 0.208 0.147 0.240 0.094 0.270episode returns

E IMAGE AUGMENTATIONS ABLATION

Following (Chen et al., 2020), we evaluate popular image augmentation techniques, namely random
shifts, cutouts, vertical and horizontal flips, random rotations and imagewise intensity jittering. Below,
we provide a comprehensive overview of each augmentation. Furthermore, we examine effectiveness
of these techniques in Figure 6.

Random Shift We bring our attention to random shifts that are commonly used to regularize neural
networks trained on small images (Becker & Hinton, 1992; Simard et al., 2003; LeCun et al., 1989;
Ciresan et al., 2011; Ciregan et al., 2012). In our implementation of this method images of size
84⇥ 84 are padded each side by 4 pixels (by repeating boundary pixels) and then randomly cropped
back to the original 84⇥ 84 size.

Cutout Cutouts introduced in DeVries & Taylor (2017) represent a generalization of Dropout (Hin-
ton et al., 2012). Instead of masking individual pixels cutouts mask square regions. Since image
pixels can be highly correlated, this technique is proven to improve training of neural networks.

Horizontal/Vertical Flip This technique simply flips an image either horizontally or vertically
with probability 0.1.

Rotate Here, an image is rotated by r degrees, where r is uniformly sampled from [�5,�5].

16

Under review as a conference paper at ICLR 2021

Intensity Each N ⇥C⇥84⇥84 image tensor is multiplied by a single scalar s, which is computed
as s = µ+ � · clip(r,�2, 2), where r ⇠ N (0, 1). For our experiments we use µ = 1.0 and � = 0.1.

Figure 6: Various image augmentations have different effect on the agent’s performance. Overall, we
conclude that using image augmentations helps to fight overfitting. Moreover, we notice that random
shifts proven to be the most effective technique for tasks from the DeepMind control suite.

Implementation Finally, we provide Python-like implementation for the aforementioned augmen-
tations powered by Kornia (Riba et al., 2020).

import torch

import torch.nn as nn

import kornia.augmentation as aug

random_shift = nn.Sequential(nn.ReplicationPad2d(4),aug.RandomCrop((84, 84)))

cutout = aug.RandomErasing(p=0.5)

h_flip = aug.RandomHorizontalFlip(p=0.1)

v_flip = aug.RandomVerticalFlip(p=0.1)

rotate = aug.RandomRotation(degrees=5.0)

intensity = Intensity(scale=0.1)

class Intensity(nn.Module):

def __init__(self, scale):

super().__init__()

self.scale = scale

def forward(self, x):

r = torch.randn((x.size(0), 1, 1, 1), device=x.device)

noise = 1.0 + (self.scale * r.clamp(-2.0, 2.0))

return x * noise

17

Under review as a conference paper at ICLR 2021

F K AND M HYPER-PARAMETERS ABLATION

We further ablate the K,M hyper-parameters from Algorithm 1 to understand their effect on perfor-
mance. In Figure 7 we observe that increase values of K,M improves the agent’s performance. We
choose to use the [K=2,M=2] parametrization as it strikes a good balance between performance and
computational demands.

Figure 7: Increasing values of K,M hyper-parameters generally correlates positively with the agent’s
performance, especially on the harder tasks, such as Cheetah Run.

G ROBUSTNESS INVESTIGATION

To demonstrate the robustness of our approach (Henderson et al., 2018), we perform a comprehensive
study on the effect different hyper-parameter choices have on performance. A review of prior work
(Hafner et al., 2018; 2019; Lee et al., 2019; Srinivas et al., 2020) shows consistent values for discount
� = 0.99 and target update rate ⌧ = 0.01 parameters, but variability on network architectures,
mini-batch sizes, learning rates. Since our method is based on SAC (Haarnoja et al., 2018), we also
check whether the initial value of the temperature is important, as it plays a crucial role in the initial
phase of exploration. We omit search over network architectures since Figure 1b shows our method
to be robust to the exact choice. We thus focus on three hyper-parameters: mini-batch size, learning
rate, and initial temperature.

Due to computational demands, experiments are restricted to a subset of tasks from Tassa et al. (2018):
Walker Walk, Cartpole Swingup, and Finger Spin. These were selected to be diverse, requiring
different behaviors including locomotion and goal reaching. A grid search is performed over mini-
batch sizes {128, 256, 512}, learning rates {0.0001, 0.0005, 0.001, 0.005}, and initial temperatures
{0.005, 0.01, 0.05, 0.1}. We follow the experimental setup from Appendix B, except that only 3 seeds
are used due to the computation limitations, but since variance is low the results are representative.

18

Under review as a conference paper at ICLR 2021

(a) Walker Walk.

(b) Cartpole Swingup.

(c) Finger Spin.

Figure 8: A robustness study of our algorithm (DrQ) to changes in mini-batch size, learning rate,
and initial temperature hyper-parameters on three different tasks from (Tassa et al., 2018). Each row
corresponds to a different mini-batch size. The low variance of the curves and heat-maps shows DrQ

to be generally robust to exact hyper-parameter settings.

19

Under review as a conference paper at ICLR 2021

Figure 8 shows performance curves for each configuration as well as a heat map over the mean
performance of the final evaluation episodes, similar to Mnih et al. (2016). Our method demonstrates
good stability and is largely invariant to the studied hyper-parameters. We emphasize that for
simplicity the experiments in Section 5 use the default learning rate of Adam (Kingma & Ba, 2014)
(0.001), even though it is not always optimal.

H IMPROVED DATA-EFFICIENT REINFORCEMENT LEARNING FROM PIXELS

Our method allows to generate many various transformations from a training observation due to
the data augmentation strategy. Thus, we further investigate whether performing more training
updates per an environment step can lead to even better sample-efficiency. Following van Hasselt
et al. (2019b) we compare a single update with a mini-batch of 512 transitions with 4 updates with 4
different mini-batches of size 128 samples each. Performing more updates per an environment step
leads to even worse over-fitting on some tasks without data augmentation (see Figure 9a), while our
method DrQ, that takes advantage of data augmentation, demonstrates improved sample-efficiency
(see Figure 9b).

(a) Unmodified SAC.

(b) Our method DrQ.

Figure 9: In the data-efficient regime, where we measure performance at 100k environment steps,
DrQ is able to enhance its efficiency by performing more training iterations per an environment step.
This is because DrQ allows to generate various transformations for a training observation.

20

