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A Metrics and Quasimetrics

A metric space (M, d) is composed of a set M and a metric d : M×M 7 −→ R+∪{∞} that compares
two points in that set. Here R+ is the set of non-negative real numbers.
Definition 2. A metric d : M×M 7 −→ R+ ∪ {∞} compares two points in set M and satisfies the
following axioms ∀m1,m2,m3 ∈M:

• d(m1,m2) = 0 ⇐⇒ m1 = m2 (identity of indiscernibles)

• d(m1,m2) = d(m2,m1) (symmetry)

• d(m1,m2) ≤ d(m1,m3) + d(m3,m2) (triangle inequality)

A variation on metrics that is important to this paper is quasimetrics.
Definition 3. A quasimetric [66] is a function that satisfies all the properties of a metric, with the
exception of symmetry d(m1,m2) 6= d(m2,m1).

As an example, consider an MDP where the actions and transition dynamics allow an agent to navigate
from any state to any other state. Let T (s2|π, s1) be the random variable for the first time-step that
state s2 is encountered by the agent after starting in state s1 and following policy π. The time-step
metric dπT for this MDP can then be defined as

dπT (s1, s2) : =E [T (s2|π, s1)]

dπT is a quasimetric, since the action space and transition function need not be symmetric, meaning the
expected minimum time needed to go from s1 to s2 need not be the same as the expected minimum
time needed to from s2 to s1. The diameter of an MDP [39, 43] is generally calculated by taking
the maximum time-step distance between over all pairs of states in the MDP either under a random
policy or a policy that travels from any state to any other state in as few steps as possible.

B Optimal Transport and Wasserstein-1 Distance

The theory of optimal transport [74, 14] considers the question of how much work must be done to
transport one distribution to another optimally. More concretely, suppose we have a metric space
(M, d) where M is a set and d is a metric on M. See the definitions of metrics and quasimetrics
in Appendix A. For two distributions µ and ν with finite moments on the set M, the Wasserstein-p
distance is denoted by:

Wp(µ, ν) : = inf
ζ∈Z(µ,ν)

E(X,Y )∼ζ [d(X,Y )p]
1/p (10)

where Z is the space of all possible couplings between µ and ν. Put another way, Z is the space of
all possible distributions ζ ∈ ∆(M ×M) whose marginals are µ and ν respectively. Finding this
optimal coupling tells us what is the least amount of work, as measured by d, that needs to be done to
convert µ to ν. This Wasserstein-p distance can then be used as a cost function (negative reward) by
an RL agent to match a given target distribution [75, 19].

Finding the ideal coupling (meaning finding the optimal transport plan from one distribution to the
other) which gives us an accurate distance is generally considered intractable. However, if what we
need is an accurate estimate of the Wasserstein distance and not the optimal transport plan (as is the
case when we mean to use this distance as part of our intrinsic reward) we can turn our attention
to the dual form of this distance. The Kantorovich-Rubinstein duality [74] for the Wasserstein-1
distance on a ground metric d is of particular interest and gives us the following equality:

W1(µ, ν) = sup
Lip(f)≤1

Ey∼ν [f(y)]− Ex∼µ [f(x)] (11)
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where the supremum is over all 1-Lipschitz functions f : M 7 −→ R in the metric space, and the
Lipschitz constant of a function f is defined as:

Lip(f) : = sup

{
|f(y)− f(x)|

d(x, y)
∀(x, y) ∈M2, x 6= y

}
(12)

That is, the Lipschitz condition of this function f (called the Kantorovich potential function) is
measured according to the metric d. Recently, Jevtić [40] has shown that this dual formulation where
the constraint on the potential function is a smoothness constraint extends to quasimetric spaces as
well. If defined over a quasimetric space, the Wasserstein distance also has properties of a quasimetric
(specifically, the distances are not necessarily symmetric).

If the given metric space is a Euclidean space (d(x, y) = ‖y − x‖2), the Lipschitz bound in Equation
2 can be computed locally as a uniform bound on the gradient of f .

W1(µ, ν) = sup
‖∇f‖≤1

Ey∼ν [f(y)]− Ex∼µ [f(x)] (13)

meaning that f is the solution to an optimization objective with the restriction that ‖∇f(x)‖≤ 1 for
all x ∈M. This strong bound on the dual in Euclidean space is the one that has been used most in
recent implementations of the Wasserstein generative adversarial network [3, 31] to regularize the
learning of the discriminator function. Such regularization has been found to be effective for stability
in other adversarial learning approaches such as adversarial imitation learning [27].

Practically, the Kantorovich potential function f can be approximated using samples from the two
distributions µ and ν, regularization of the potential function to ensure smoothness, and an expressive
function approximator such as a neural network. A more in depth treatment of the Kantorovich
relaxation and the Kantorovich-Rubinstein duality, as well as their application in metric and Euclidean
spaces using the Wasserstein-1 distance we lay out above, is provided by Peyré and Cuturi [57].

Now consider the problem of goal-conditioned reinforcement learning. Here the target distribution ν
is the goal-conditioned target distribution ρg which is a Dirac at the given goal state. Similarly, the
distribution to be transported µ is the agent’s goal-conditioned state distribution ρπ .

The Wasserstein-1 distance of an agent executing policy π to the goal sg can be expressed in a fairly
straightforward manner as:

W1(ρπ, ρg) =
∑
s∈S

ρπ(s|sg)d(s, sg) (14)

The above is a simplification of Equation 1, where p = 1 and the joint distribution is easy to specify
since the target distribution ρg is a Dirac distribution.

C Lipschitz constant of Potential function

For a given goal sg and all states s0 ∈ S, recall that function f is L-Lipschitz if it follows the
Lipschitz condition as follows.

|f(sg)− f(s0)| ≤ LdπT (s0, sg) ∀s0 ∈ S (15)

Proposition 4. If transitions from the agent policy π are guaranteed to arrive at the goal in finite
time and f is L-bounded in expected transitions, i.e.,

sup
s∈S

E
s′∼π,P

[|f(s′)− f(s)|] ≤ L,

then f is L-Lipschitz.

Proof. Since f(sg)−f(s0) is a scalar quantity, we may write f(sg)−f(s0) = Eπ,P [f(sg)−f(s0)].
Using this fact and that P (T (s0) < ∞) = 1 where T (s0) = Tπ(sg|π, s0) for notation simplicity,
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the LHS of the expression above becomes a telescopic sum

|f(sg)− f(s0)| = E
π,P

[f(sg)− f(s0)]

= E
π,P

∣∣∣∣∣∣
T (s0)−1∑
t=0

(f(st+1)− f(st))

∣∣∣∣∣∣
 .

≤ E
π,P

T (s0)−1∑
t=0

|f(st+1)− f(st)|

 .
Now let us assume that for all transitions (s, a, s′), E[|f(s′)− f(s)|] ≤ L. Then

E
π,P

T (s0)−1∑
t=0

|f(st+1)− f(st)|

 = E
T (s0)

 E
π,P

T (s0)−1∑
t=0

|f(st+1)− f(st)|
∣∣∣T (s0)


≤ E
T (s0)

T (s0)−1∑
t=0

L


= L E

T (s0)
[T (s0)]

= LdπT (s0, sg),

showing that |f(sg)− f(s0)|≤ LdπT (s0, sg) as desired.

D Proofs of Claims

The Bellman optimality condition gives us the following optimal distance to goal:

d�T (s, sg) =

{
0 if s = sg
1 + mina∈A

∑
s′∈S P (s′|s, a, sg)d�T (s′, sg) otherwise

(16)

Proposition 1. A lower bound on the value of any state under a policy π can be expressed in terms
of the time-step distance from that state to the goal: V (s0|sg) ≥ γd

π
T (s0,sg).

Proof.

V π(s|sg) = E
[
γT (sg|π,s)

]
≥ γd

π
T (s,sg) ∀ s ∈ S

where the inequality follows as a consequence of Jensen’s inequality and the convex nature of the
value function.

Proposition 2. If the transition dynamics are deterministic, the policy that maximizes expected return
is the policy that minimizes the time-step metric (π∗ = π�).

Proof. Consider the value of a state s given goal sg . If the transitions are deterministic and the agent
policy π is deterministic (as is the case for the optimal policy), then the time to reach the goal satisfies
Var(T (sg|π, s)) = 0, implying that ∆Jensen vanishes and therefore

V π(s|sg) = γd
π
T (s,sg).

Since γ ∈ [0, 1), V π is monotonically decreasing with dπT

arg max
π

V π(s|sg) = arg min
π

dπT (s, sg) ∀ s ∈ S

That is, in the deterministic transition dynamics scenario, π∗ = π�.
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Proposition 3. For a given policy π, the Wasserstein distance of the state visitation measure of that
policy from the goal state distribution ρg under the ground metric dπT can be written as

Wπ
1 (ρπ, ρg) = E

s0∼ρ0

[
h(dπT (s0, sg)) +

γ

1− γ
(∆π

Jensen(s0)− 1)

]
(6)

where h is an increasing function of dπT .

Proof. The first step of the proof is to obtain an analytical expression for the the expected distance to
the goal after t steps as a function of the expected distance at t = 0. To reduce the notation burden,
denote T (s0) = T (sg|π, s0) and let st(s0) be the state after t steps conditional on some starting state
s0 where actions are taken according to π. We have excluded sg and π from the notation since they
are fixed for the purpose of this proposition. Using the law of total expectation we have that for every
initial s0

Est [d(st(s0), sg)] = ET (s0)[Est [d(st(s0), sg) | T (s0)]] = ET (s0)[max(T (s0)− t, 0)],

Now, by expanding the definition of ρπ(s | sg) in equation 5, exchanging the order of summation,
and using the previous equation we may write

Wπ
1 (ρπ, ρg) =

∑
s∈S

∞∑
t=0

(1− γ)γtEs0 [P (st = s | π, sg)]dπT (s, sg)

= Es0

[
(1− γ)

∞∑
t=0

γtEst [d(st(s0), sg) | s0]

]

= Es0

[
ET (s0)

[
(1− γ)

∞∑
t=0

γt max(T (s0)− t, 0)
∣∣∣s0

]]

Standard but tedious algebraic manipulations given in Lemma 1 in the Appendix show that
∞∑
t=0

(1− γ)γt max(T (s0)− t, 0) = T (s0)− γ

1− γ
(1− γT (s0)).

Combining the two identities above we arrive at

Wπ
1 (ρπ, ρg) = Es0

[
ET (s0)

[
T (s0)− γ

1− γ
(1− γT (s0))

∣∣∣s0

]]
= Es0

[
d(s0, sg)−

γ

1− γ
(1− E[γT (s0) | s0])

]
= Es0

[
d(s0, sg) +

γ

1− γ
γd(s0,sg) − γ

1− γ
(1− E[γT (s0) | s0] + γd(s0,sg))

]
= Es0

[
d(s0, sg) +

γ

1− γ
γd(s0,sg) +

γ

1− γ
(∆π

Jensen(s0)− 1)

]
.

(17)

To finalize the proof, we only need to show that the function h(µ) = µ+ γ
1−γ γ

µ is monotonically
increasing for every γ ∈ [0, 1). This is a standard calculus exercise that we show in Lemma 2 in
Appendix E.

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein
distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.

Proof. Proposition 2 shows that the Jensen gap vanishes for the optimal policy of an MDP with
deterministic transitions and that it minimizes the expected distance from start for all initial states.
Proposition 3, on the other hand, implies that when the Jensen gap vanishes, the Wasserstein distance
is monotonically increasing in the expected distance from the start. Together, the two propositions
show that π∗ minimizes the Wasserstein distance.
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Algorithm 1: AIM + HER

Input: Agent policy πθ, discriminator fφ, environment env,
number of Epochs N , number of time-steps per epoch K,
policy update period k, discriminator update period m, episode length T ,
replay buffer (for HER), smaller replay buffer (for discriminator)

1 Initialize discriminator parameters φ;
2 Initialize policy parameters θ;
3 for n = 0, 1, . . . , N − 1 do
4 t = 0;
5 goal_reached = True;
6 while t < K do
7 if goal_reached or episode_over then
8 Sample goal sg ∼ σ(G);
9 Sample start state s ∼ ρ0(S);

10 goal_reached = False;
11 episode_over = False;
12 tstart = K;
13 end
14 Sample action a ∼ πθ(·|s, sg);
15 s′ = env.step(a);
16 if s′ = sg then
17 goal_reached = True;
18 end

// end episode if goal not reached in T steps
19 if t− tstart = T then
20 episode_over = True;
21 end
22 Add (s, a, s′, sg, goal_reached) to replay buffer and smaller replay buffer;
23 if goal_reached or episode_over then
24 Add hindsight goals to both buffers;
25 end

// Update policy parameters θ every k steps
26 if t%k = 0 then
27 Sample tuples (s, a, s′, sg, goal_reached) from replay buffer;
28 Get intrinsic reward (Equation 9);
29 Update policy parameters θ using any off-policy learning algorithm;
30 end

// Update discriminator parameters φ every m steps
31 if t%m = 0 then
32 Sample tuples (s, a, s′, sg, goal_reached) from smaller replay buffer;
33 Update discriminator parameters φ using Equation 8;
34 end
35 t = t+ 1;
36 end
37 Evaluate agent policy;
38 end

E Auxiliary results for Proposition 3

Lemma 1. Let T be a positive integer. Then

∞∑
t=0

(1− γ)γt max(T − t, 0) = T − γ

1− γ
(1− γT ).
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Proof. Direct computation gives

(1− γ)

∞∑
t=0

γt max(T − t, 0) = (1− γ)

T−1∑
t=0

γt(T − t)

= (1− γ)T

T−1∑
t=0

γt − (1− γ)

T−1∑
t=0

tγt

We will now simplify the two terms of the last expression. For the first one, have

(1− γ)T

T−1∑
t=0

γt = (1− γ)T
1− γT

1− γ
= T − TγT .

For the second one, the computations are a bit more involved

(1− γ)

T−1∑
t=0

tγt = (1− γ)γ

T−1∑
t=1

tγt−1

= (1− γ)
T−1∑
t=1

γ
d

dγ
γt

= γ(1− γ)
d

dγ

T−1∑
t=0

γt

= γ(1− γ)
d

dγ

1− γT

1− γ
=

γ

(1− γ)

(
−TγT−1(1− γ) + (1− γT )

)
= −TγT +

γ

(1− γ)
(1− γT ).

When combining the two simplified expressions the terms with TγT will cancel out, yielding the
desired expression.

Lemma 2. The function hγ(µ) = µ+ γ
1−γ γ

µ is monotonically increasing for every γ ∈ [0, 1).

Proof. We must show that d
dµhγ(µ) > 0 for every γ ∈ [0, 1) and every µ > 0. Computing the

derivative directly we obtain

d

dµ
hγ(µ) = 1 +

log(γ)γµ+1

1− γ
.

Thus, it will suffice to show that the second term above is greater than -1. For this purpose, first note
that log(γ)γµ+1 > log(γ) since γ < 1. Now, we use the fact that log(γ) < 1− γ for γ < 1. This
can be verified noting that 1− γ is the tangent line to the concave curve log(γ) and the curves meet
at γ = 1. And therefore log(γ)/(1− γ) > −1. Putting these observation together,

d

dµ
hγ(µ) = 1 +

log(γ)γµ+1

1− γ
> 1 +

log(γ)

1− γ
> 1− 1 = 0,

concluding the proof.

F Grid World Experiments

Basic experiment The environment is a 10× 10 grid with 4 discrete actions that take the agent in
the 4 cardinal directions unless blocked by a wall or the edge of the grid. The agent policy is learned
using soft Q-learning [32], with an entropy coefficient of 0.1 and a discount factor of γ = 0.99. We
do not use hindsight goals for this experiment, and use a single buffer with size 5000 for both the
policy as well as the discriminator training. The results are discussed in the main text. The compute
used to conduct these experiments was a personal laptop with an Intel i7 Processor and 16 GB of
RAM.

22



(a) Grid world with wind
affecting transitions in last 6

columns

(b) Learned Reward (50 training
iterations)

(c) Agent state distribution
learning with AIM reward (50

training iterations)

Figure 4: Windy grid world (Figure 4a) experiments. The columns with arrows at the top and bottom
have stochastic and asymmetric transitions induced by wind blowing from the top. Learned reward
function (Figure 4b). Reward at each state of the grid world after training for 50 iterations with AIM.
Hollow red circle indicates the goal state. White lines indicate the walls the agent cannot transition
through. The agent’s state visitation (Figure 4c): The hollow blue circle indicates agent’s start state.
The hollow red circle is the goal. Blue bubbles indicate relative time the agent’s policy causes it to

spend in respective states. Black lines indicate walls.

Additional experiments We conducted variations form the basic experiment in the grid world to
show that AIM and its novel regularization can learn a reward function which guides the agent to the
goal even in the presence of stochastic transitions as well as transitions where the state features vary
wildly from one step to the next.

First, we evaluate AIM’s ability to learn in the presence of stochastic and asymmetric transitions in a
windy version (Figure 4a) of the above grid world. Transitions in the last six columns of the grid are
affected by a wind blowing from the top. Actions that try to move upwards only succeed 60% of the
time, and actions attempting to move sideways cause a transition diagonally downwards 40% of the
time. Movements downwards are unaffected. The rest of the experiment is carried out in the same
way as above, but with 128 hidden units in the hidden layer of the agent’s Q function approximator
(the reward function architecture is unchanged from the previous experiment). In Figure 4 we see
that AIM learns a reward function that is still useful and interpretable, and leads to a policy that can
confidently reach the goal, regardless of these stochastic and asymmetric transitions. Notice the effect
of the stochastic transitions in the increased visitation in the sub-optimal states in the bottom two
rows of column number 4.

The next experiment tests what happens when the transition function causes the agent to jump between
states where the state features vary sharply. As an example consider a toroidal grid world, where
if an agent steps off one side of the grid it is transported to the other side. The distance function
here should be smooth across such transitions, but might be hampered by the sharp change in input
features. In Figure 5 we see show the policy and reward for a 10× 10 toroidal grid world with start
state at (2, 2) and goal at (7, 7). Transitions are deterministic but wrap around the edges of the grid
as described above: a down action in row 0 will transport the agent to the same column but row 9.
The start and the goal state are set up so that there are multiple optimal paths to the goal. The entropy
maximizing soft Q-learning algorithm should take these paths with almost equal probability. From
Figure 5 it is evident that AIM learns a reward function that is smooth across the actual transitions in
the environment and allows the agent to learn a Q-function that places near equal mass on multiple
trajectories.

Finally, we compare learning with AIM to the baselines mentioned in Section 6. RND, SMiRL, and
MC were implemented and debugged on the grid world domain with a goal that is easier to reach
before being used on the Fetch robot tasks. Hyper-parameters for the algorithms in both domains were
determined through sweeps. In the Fetch domains, the hyperparameters for all three new baselines
were decided on through sweeps on the FetchReach task, similar to how they were evaluated for AIM
and the other baselines.
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Figure 6 shows the results of executing these additional baselines on the grid world domain we use
to motivate AIM. All the plots are taken after the techniques have had the same number of training
iterations. However none of the baselines reach the goal even after providing additional time. We
show the negative L2 distance to goal as a reward in the grid world domain to highlight that the
DiscoRL [50] objective should not be considered equivalent to an oracle of the distance to goal.
Note that RND (Figure 6c) explores most of the larger room early on, and then converges to the
state distribution seen in the figure when it does not encounter the task reward. The SMiRL reward
encourages the agent to minimize surprise, and the policy trained with this reward keeps the agent in
the bottom left near its start state (Figure 6d).

G Statistical Analysis of the Results on Fetch Robot Tasks

To compare the performance of each method with statistical rigor, we used a repeated measures
ANOVA design for binary observation where an observation is successful if an agent reaches the goal
within an episode. We then conducted a Tukey test to compare the effects of each method, i.e., the
estimated odds of reaching the goal given the algorithm. The goal of the statistical analysis presented
here is twofold

1. Separate the uncertainty on the performance of each method from the variation due to
random seeds.

2. Adjust the probability of making a false discovery due to multiple comparisons. This extra
step is necessary to avoid detecting a large fraction of falsely “significant" differences since
typical tests are designed to control the error rate of only one experiment.

The data for statistical analysis comes from Nepisodes = 100 evaluation episodes per each one of
Nseeds = 6 seeds. For all environments but FetchReach, these data is collected after 1 million
environment interactions; and for FetchReach it is taken after 2000 interactions.

The repeated measures ANOVA design is formulated as a mixed effects generalized linear model and
fitted separately for each one of the four environments

yijk
iid∼ Bernoulli(pij), k ∈ {1, . . . , Nepisodes}

logit(pij) = rseedi + βalgorithmj i ∈ {1, . . . , Nseeds}, j ∈ {1, . . . , Nalgorithms}

rseedi
iid∼∼ Normal(0, σ2)

The variation due to the seed effects is measured by σ2, whereas the uncertainty about the odds of
reaching the goal using each algorithm is measured by the standard errors of the coefficients βalgorithmj .

(a) Reward function with AIM (b) Policy distribution under
AIM

(c) Reward function estimated with
WGAN loss

Figure 5: The reward function (Figure 5a) learned with AIM and subsequent policy distribution
(Figure 5b) in a toroidal grid world, where an agent can transition from one edge of the grid across to
the other. The hollow blue circle denotes the start state and the hollow red circle is the goal state. The
reward function respects the sharp transitions from one end of the grid to the other. Conversely, if the

reward function is learned using the WGAN objective [31] (Figure 5c), it does not respect the
environment dynamics.
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(a) State visitation with −L2 reward
(DiscoRL)

(b) State visitation with MC distance
estimation

(c) State visitation with added RND
reward

(d) State visitation with SMiRL
rewards

(e) DDL reward function (f) RND reward function

Figure 6: The state of the state visitation and reward functions for the new baselines. For camparison,
Figure 2a shows the state visitation of policy trained using AIM. All algorithms are compared after

100 training iterations.

The Tukey test evaluates all null hypotheses H0:βalgorithmj = βalgorithmj′ for all combinations of j, j′.
To adjust for multiple comparisons each Tukey tests uses the Holm method. Since we are also doing
a Tukey test for each environment, we further apply a Bonferroni adjustment with a factor of four.
These types of adjustments are fairly common for dealing with multiple comparison in the literature
of experimental design; the interested reader may consult [49].

The results, shown in Table 1, signal strong statistical evidence of the improvements from using
the AIM learned rewards. In three of the four environments AIM and AIM+ R have similar odds of
reaching the goal as the dense shaped reward (H0 is not rejected,) and in all four environments AIM
and AIM+ R have statistically significant higher odds of reaching the goal than the sparse reward (H0

is rejected and β is higher.)

Contrast Slide Push PickAndPlace Reach

βAIM+R − βHER+dense 0.34 (0.14) -1.74 (0.77) -0.10 (0.45) *-3.43 (0.34)
βAIM − βHER+dense 0.21 (0.14) -2.19 (0.75) *-1.50 (0.37) *-5.01 (0.35)

βAIM+R − βHER+sparse *0.69 (0.13) *5.32 (0.35) *4.71 (0.33) *4.75 (0.25)
βAIM − βHER+sparse *0.57 (0.13) *4.86 (0.30) *3.31 (0.19) *3.17 (0.24)

Table 1: Results of the Tukey test on the evaluation of Fetch tasks. The table entries are log odds
ratios with standard deviations shown in parentheses. Positive values mean that AIM or AIM+R
perform better than the method with negative sign in the contrast and viceversa. Asterisks mark
statistical significance at 95%. If there is no asterisk, then H0 is not rejected in which case the

differences could be due to random chance.
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(a) Reach (b) Pick and Place

(c) Push (d) Slide

Figure 7: Comparing [AIM + HER] with an additional baseline which also uses the external task
reward [AIM + R + HER]. The additional grounding provided by the external task reward allows the

agent’s learning to accelerate even further.

H Details of Experiments on Fetch Robot

The Fetch robot domain in OpenAI gym has four tasks available for testing. They are named Reach,
Push, Slide, and Pick And Place. The Reach task is the simplest, with the goal being the 3-d
coordinates where the end effector of the robot arm must be moved to. The Push task requires pushing
an object from its current position on the table to the given target position somewhere else on the
table. Slide is similar to Push, except the coefficient of friction on the table is reduced (causing
pushed objects to slide) and the potential targets are over a larger area, meaning that the robot needs
to learn to hit objects towards the goal with the right amount of force. Finally, Pick And Place is the
task where the robot actuates it’s gripper, picks up an object from its current position on the table and
moves it through space to a given target position that could be at some height above the table. The
goal space for the final three tasks are the required position of the object, and the goal the current
state represents is the current position of that object.

Next, we note the hyperparameters used for various baselines as well as our implementation. The
names of the hyperparameters are as specified in the stable baselines repository and used in the RL
Zoo [59] codebase which we use for running experiments. Both the stable baselines repository and
RL Zoo are available under the MIT license. These experiments were run on a compute cluster with
each experiment assigned an Nvidia Titan V GPU, a single CPU and 12 GB of RAM. Each run of the
TD3 baseline HER + R or HER + dense required 18 hours to execute, and each run which included
AIM required 24 hours to complete execution.

TD3 [25], like its predecessor DDPG [47], suffers from the policy saturating to extremes of its
parameterization. Hausknecht and Stone [35] have suggested various techniques to mitigate such
saturation. We use a quadratic penalization for actions that exceed 80% of the extreme value at
either end, which is sufficient to not hurt learning and prevent saturation. Assuming the policy
network predicts values between −1 and 1 (as is the case when using the tanh activation function),
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the regularization loss is:

La =
1

N

N∑
i=1

[max(|πθ(si)|−0.8, 0)]
2

where N is the mini-batch size and si is the state for the ith transition in the batch.

The other modification made to the stable baselines code is to use the Huber loss instead of the
squared loss for Q-learning.

For evaluation, in the Reach domain the agent policy is evaluated for 100 episodes every 2000 steps.
For the other three domains, the experiment is run for 1 million timesteps, and evaluated at every
20,000 steps for 100 episodes.

H.1 TD3 and HER (R + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 10
gradient_steps 10

τ (target policy update rate) 0.05

H.2 Dense reward TD3 and HER (dense + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
policy_delay 5

τ (target policy update rate) 0.05
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H.3 TD3 and HER with AIM (AIM + HER) and (AIM + R + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.9

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
disc_train_freq 100

disc_steps 20
τ (target policy update rate) 0.1
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