
Published as a conference paper at ICLR 2024

MMD GRAPH KERNEL: EFFECTIVE METRIC LEARNING
FOR GRAPHS VIA MAXIMUM MEAN DISCREPANCY

Yan Sun1,2 Jicong Fan1,3∗
1School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
2School of Computing, National University of Singapore, Singapore
3Shenzhen Research Institute of Big Data, Shenzhen, China
yansun@comp.nus.edu.sg fanjicong@cuhk.edu.cn

ABSTRACT

This paper focuses on graph metric learning. First, we present a class of maximum mean
discrepancy (MMD) based graph kernels, called MMD-GK. These kernels are computed
by applying MMD to the node representations of two graphs with message-passing prop-
agation. Secondly, we provide a class of deep MMD-GKs that are able to learn graph
kernels and implicit graph features adaptively in an unsupervised manner. Thirdly, we
propose a class of supervised deep MMD-GKs that are able to utilize label informa-
tion of graphs and hence yield more discriminative metrics. Besides the algorithms,
we provide theoretical analysis for the proposed methods. The proposed methods are
evaluated in comparison to many baselines such as graph kernels and graph neural net-
works in the tasks of graph clustering and graph classification. The numerical results
demonstrate the effectiveness and superiority of our methods. Our code is available at
https://github.com/yan-sun-x/MMD-Graph-Kernel.

1 INTRODUCTION

Graphs, as mathematical structures, represent entities and their interrelationships. They are indispensable in
various domains such as bioinformatics for representing proteins or molecules (Aittokallio & Schwikowski,
2006; Huber et al., 2007), and social networks for identifying communities (Girvan & Newman, 2002;
Cuvelier & Aufaure, 2012). Graph comparison, with an explicit distance or similarity metric, has been a
topic of great interest beyond merely classifying graphs. Graph kernels have emerged as a class of effective
methods for measuring the similarities between graphs (Nikolentzos et al., 2021). They often recursively
break down graphs into substructures—like paths (Borgwardt & Kriegel, 2005), graphlets (Shervashidze
et al., 2009), walks (Vishwanathan et al., 2010), and subtrees (Shervashidze et al., 2011), and then compare
these substructures between two graphs (Kriege et al., 2018).

However, early graph kernels face two notable limitations. Firstly, the substructures derived from graphs
share nodes or edges, leading to overlapping features within the generated feature map, which inflates the
dimensionality of the feature space and may reduce the efficiency of the kernel method (Ye et al., 2020).
Secondly, these kernels often depend on manually crafted features, missing the nuanced relationships be-
tween vertices, thus not integrating higher-level vertex information into the graph feature maps. To address
the first limitation, Yanardag & Vishwanathan (2015) proposed the Deep Graph Kernels (DGK) that lever-
age natural language processing techniques to get latent substructure representations and create a similarity
matrix between these substructures for graph kernel matrix calculations. However, if there is a large number

∗Corresponding author

1

https://github.com/yan-sun-x/MMD-Graph-Kernel

Published as a conference paper at ICLR 2024

of substructures, calculating the similarity matrix is time-consuming. The second limitation of graph kernels
can be partially addressed by Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al.,
2017; Gilmer et al., 2017; Hamilton et al., 2017; Xu et al., 2018; Sun et al., 2019; You et al., 2020; Sun et al.,
2023), that have shown promising performance in both node-level tasks (e.g. node classification and link
prediction) and graph-level tasks (e.g. graph classification). While GNNs may not capture more substructure
patterns than WL kernels, they can learn complex functions of features across graph neighborhoods that can
be more useful for certain prediction tasks. However, for graph-level tasks, GNNs have to use a readout
function or operation (e.g. summation or averaging) to convert the nodes’ representations (a matrix) of each
graph to a single vector that can be used as the representation of the entire graph. The readout functions
or operations are generally heuristic, potentially leading to the loss of structural information and further
lowering the classification accuracy. Although there have been many efforts and algorithms for better graph
representation learning such as Infograph (Sun et al., 2019), GraphCL (You et al., 2020), Lovász Principle
(Sun et al., 2023), and GCKM (Wu et al., 2023), the final graph representation vector is still obtained by a
readout operation on the node representations.

Rather than investigating substructure and graph-level representations, we can regard each graph as a discrete
distribution or a sample from a distribution, to be more specific, all nodes in a graph are sampled from a
population. Thus, the similarity between two distributions is a proxy to graph similarity or graph kernel.
Without prior knowledge about how each graph behaves, we cannot rely on any parametric distribution to
describe the graph. Fortunately, Maximum Mean Discrepancy (MMD) (Smola et al., 2006) provides an
effective and efficient solution to measure the difference between two parameter-free distributions, though
one may consider other integral probability metrics such as Wasserstein distance (Sriperumbudur et al.,
2012; Panaretos & Zemel, 2019). The MMD-based approach can be applied: 1) even when the two graphs
have unequal sizes (number of nodes) which is often the case in real data; 2) without relying on permutation
on nodes; 3) for unsupervised settings where graph labels are missing.

In this study, we develop a novel approach to graph metric learning, Maximum Mean Discrepancy-Graph
Kernel (MMD-GK), and its extension Deep MMD-GK. The experimental results of graph clustering and
graph classification on benchmarks demonstrate our methods surpass many baselines. Additionally, we
analyze the theoretical robustness of our methods and provide practical guidance on model configurations.

2 PRELIMINARY

We present the following definitions for convenience.

Definition 1. (Attributed Labeled Graph) An attributed labeled graph is a graph G = (V,E,X, Y) with n
vertices , endowed with an attribute function f : V 7→ X ∈ Rn×d that assigns d-dimensional real-valued
vectors to the vertices of the graph and with a label function ζ : V 7→ Y ∈ Rn that assigns labels to the
vertices of the graph from a discrete set of labels. The adjacency matrix of G is denoted as A ∈ {0, 1}n×n.

In many settings, we represent the discrete labels as one-hot vectors, then Y becomes a matrix. Note that we
separate the labels from the attributes of graph, since many graph datasets (e.g. protein structure) include
both attributes and labels.

Definition 2. (l-Level Node Features) Given an attributed labeled graph G, the l-level features of a node
aggregate all features in its l-order neighbors, including edges, node attributes, and labels. Mathematically,
let U := D̃− 1

2 ÃD̃− 1
2 , where Ã = A + I and D̃ = diag(

∑
j Ã1j , . . . ,

∑
j Ãnj), all l-level features of a

graph are X(l) = U lX, Y (l) = U lY .

Message propagation gives rise to l-level node attributes. The representations X(l) and Y (l) can better
capture the local structure and node features (attributes and labels). The choice of l depends on the case.

2

Published as a conference paper at ICLR 2024

Vanilla:

퐺��:

（ ， ）

MMD-GK (퐺�, 퐺�)

unsupervised supervised

Vanilla:
퐺��: update

/

graph kernel

Tasks:
1. clustering
2. classification

M
ai

n
St

ep
s

Figure 1: Architecture of MMD-Graph Kernel (MMD-GK) in vanilla and deep version, where the model
is Graph Convolutional Networks (GCN) (Kipf & Welling, 2016). The main steps consist of embedding
aggregation, kernel mapping, distance-to-similarity, and for GCN, updating parameters. MMD-GK can be
evaluated in downstream tasks such as graph clustering and classification.

Definition 3. (Maximum Mean Discrepancy, MMD) Given two distributions P, Q and a kernel k, the square
of MMD distance between P and Q is defined as

d2k(P,Q) = ∥µP − µQ∥2H= EP[k(x, x
′)]− 2EP,Q[k(x, y)] + EQ[k(y, y

′)], (1)

where µP and µQ represent the means of distributions P and Q in the reproducing kernel Hilbert space
(RKHS), from which x, x′ and y, y′ are sampled respectively.

Note that a kernel is characteristic if the mapping P 7→ µP is injective and then dk(P,Q) = 0 ⇐⇒ P = Q
holds. There are many classes of characteristic kernels, such as the Gaussian kernel Kg := {e−∥x−y∥2

2/h :
x, y ∈ Rd, h ∈ R+}. Fukumizu et al. (2009) generalized the MMD to families of unnormalized kernels.
Definition 4. (Generalization of MMD) Give a family of positive definite kernels K , the generalized MMD
between P and Q over K is

d2K(P,Q) = sup{d2k(P,Q) : k ∈ K} = sup{∥µP − µQ∥2H: k ∈ K}. (2)

In practice, we distinguish two distributions by Two-Sample Test and estimate MMD from finite samples as
a distance metric. The estimator of d2K(P,Q) is defined as follows.
Definition 5. (Estimated MMD) With finite samples X = {xi}nX

i=1 ∼ P and Y = {yj}nY
j=1 ∼ Q, one

estimator of d2K(P,Q) with a kernel family K is

(3)d̂2K(X,Y) = sup
k∈K

 1

n2
X

nX∑
i,i′=1

k(xi, xi′) +
1

n2
Y

nY∑
j,j′=1

k(yj , yj′)−
2

nXnY

nX ,nY∑
i,j=1

k(xi, yj)

 .

3

Published as a conference paper at ICLR 2024

Note that the kernel family contains the same class of kernel, such as a group of Gaussian kernels with
different bandwidths {kh : h ∈ R+}. Compared to the single-kernel MMD, the generalized MMD has the
following advantages in practice: 1) auto-search for a suitable and robust bandwidth; 2) avoid the distance
collapse as a k → 0 or k → 1 leads to d2k → 0 (Fukumizu et al., 2009).

3 VANILLA MMD GRAPH KERNEL

3.1 MMD BETWEEN GRAPHS

Graphs stand apart due to their node attributes, labels, and edge structures. This distinctiveness suggests that
each graph can be viewed as a manifestation of a specific distribution, especially for graphs sharing identical
labels. Therefore, we consider a set of graphs as emerging from a specific distribution when they share the
same label. From this perspective, we propose the concept of graph distribution.

Definition 6. (Graph Distribution) Consider a collection of attributed labeled graphs G := {Gi :=
(Vi, Ei, Xi, Yi)}Ni=1. Each graph is assigned a label through a surjective function c : G 7→ C. The la-
bels C ∈ {C1, · · · , CK} represent distinct distributions of node attributes and labels. For a given label C,
the graph distribution Pl,C

· is defined with respect to node attribute X , label Y and their combined feature
(X,Y) at a specific level l.

We make an assumption regarding the properties of node features at various levels.

Assumption 1. For any l ∈ R+, the l-level node features in graphs with the same label follow specific
distributions. This is represented as:

{X(l)
i : Ci = C} ∼ Pl,C

X , {Y (l)
i : Ci = C} ∼ Pl,C

Y , {(X(l)
i , Y

(l)
i) : Ci = C} ∼ Pl,C

(X,Y). (4)

To quantify the differences between graph distributions, we extend Definition 4 as below.

Definition 7. (MMD between Two Graphs) Given two attributed labeled graphs G1, G2 and a family of
positive definite kernelsK, the l-level squared Maximum Mean Discrepancy between the graph distributions
induced by G1, G2 over K is defined as follows

d2K(G
(l)
1 , G

(l)
2) := d2K(P

l,C1

Z ,Pl,C2

Z) = sup

{∥∥∥µPl,C1
Z

− µPl,C2
Z

∥∥∥2
H

: k ∈ K
}
. (5)

For Z = (X,Y), the squared MMD captures the overall discrepancy between graphs by considering both
node attributes and labels. The distance focuses on the discrepancy between node attributes when Z = X
or node labels when Z = Y .

3.2 VANILLA MMD-GK

In this section, we introduce MMD-Graph Kernel, delineated in Algorithm 2 (see Appendix C), to estimate
the similarity between two graphs without information in graph labels. For convenience, we denote the
graphs by G1 = (X1, Y1, U1) and G2 = (X2, Y2, U2), where the graph structures or the edge information
are encoded by the normalized and self-looped adjacency matrices U1 and U2 (see Definition 2).

Key Steps: The model employs an embedding aggregation mechanism to iteratively update these node
representations till L levels. Specifically, at each level l, the node representations are updated according
to the normalized adjacency matrix. Subsequently, the model utilizes MMD to quantify the dissimilarity
between two sets of node representations, Z(l)

1 with a size of n1 and Z
(l)
2 with a size of n2. The squared

4

Published as a conference paper at ICLR 2024

MMD is estimated using a family of Gaussian kernels K, described as follows:

d̂2K(Z
(l)
1 , Z

(l)
2) = sup

k∈K

»

–

1

n2
1

n1∑
i,i′=1

k(zi,1, zi′,1) +
1

n2
2

n2∑
j,j′=1

k(zj,2, zj′,2)−
2

n1n2

n1,n2∑
i,j=1

k(zi,1, zj,2)

fi

fl . (6)

Note that d̂K is a distance metric that satisfies the metric space axioms (e.g. triangle inequality). By default,
a Gaussian kernel parameterized by a bandwidth h > 0 is employed for this purpose. The kernel function
measures the similarity between two node representations zi and zj , and is defined as k(zi, zj) = exp p −
∥zi−zj∥2

hk
q. Finally, we obtain a graph kernel s as

sL(G1, G2) = exp
´

−γ · d̂2K(Z
(L)
1 , Z

(L)
2)

¯

, (7)

where γ > 0 is a hyperparameter. This kernel serves as a metric for comparing and quantifying the similarity
between different graphs. Since d̂K is a distance metric in Hilbert space and the exponential function is
positive and monotonic increasing, sL is a strictly positive-definite kernel.

3.3 ROBUSTNESS ANALYSIS

We conduct the robustness analysis of the vanilla MMD-GK. As mentioned by O’Bray et al. (2021), a
suitable metric such as MMD should be robust to small perturbations. We need to find an ideal upper-
bound function of the amplitude of the perturbation taking effects in the metric. Let ∆X , ∆Y , and ∆A be
some perturbations on node attributes, node labels, and graph structure and denote the perturbed graph as
G̃ = (A+∆A, X +∆X , Y +∆Y). To simply notations, we let Z = (X,Y) and ∆Z = (∆X ,∆Y).

Theorem 1. For any two graphs G1, G2, without loss of generality, suppose n1 = n2 = n and the minimum
node degrees of G1, G2 are both α. Suppose ∥Ai∥2≤ βA, ∥Xi∥2≤ βX , ∥Yi∥2≤ βY , and ∥Zi∥F≤ η,
i = 1, 2. Denote the effects of structural perturbation as κ = min(1⊤∆Ai) and ∆Di = diag(1⊤(Ãi +

∆Ai
))

1
2 diag(1⊤Ai)

− 1
2 − I for i = 1, 2. Then the following inequality for MMD-GK holds

d̂2K(G̃
(l)
1 , G̃

(l)
2)≤ d̂2K(G

(l)
1 , G

(l)
2)+

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+2∆4

G2
+n(∆G1 +∆G2)

2+
ϵ

?
n
(∆G1 +∆G2)

)

where ∆
G

(l)
i

= 2η
´

4βA∥∆Di
∥2+∥∆Ai

∥2

1+α

¯l

+
´

2βA+∥∆Ai
∥2

1+α+κ

¯l

∥∆Zi
∥F for i = 1, 2, ϵ = 2(1 + α)−l(1 +

βA)
l(βX + βY), and h is the optimal kernel bandwidth among family K.

In the theorem, the norm assumptions by βA, βX , βY , and η are quite standard. ∆Di
quantifies the perturba-

tion on node degrees and is zero if ∆Ai
= 0. The bound is bi-quadratically with η. Due to space limitation

and the presence of Theorem 2, we defer the detailed discussion to Appendix C.1.

4 DEEP MMD-GRAPH KERNEL

We propose an extension termed Deep MMD-Graph Kernel (Deep MMD-GK), which enhances the model’s
flexibility and expressiveness. In Algorithm 1, it introduces trainable parametersW := {W (i)}Li=1 into the
embedding aggregation step, allowing the model to learn optimal transformations of node representations
based on the graph structure. The loss function of Deep MMD-GK depends on the availability of graph
labels. To train the model in a supervised manner, we adopt the supervised version of InfoNEC loss function.

5

Published as a conference paper at ICLR 2024

Algorithm 1: Deep MMD-Graph Kernel

Input : G := {Gi}Ni=1, L, K (with parameters {hi}|K|
i=1), γ, L, {Ci}Ni=1 (∅ if unsupervised), σ.

Output: Similarities {s(Gi, Gj)
L}i<j and model parameters {W (i)}Li=1.

1 Initialize {W (i)}Li=1 and let Z(0)
i ← (Xi, Yi), for i = 1, · · · , N .

2 repeat
3 for l = 1 to L do
4 for i = 1 to N do
5 Z

(l)
i ← σ

´

UiZ
(l−1)
i W (l)

¯

// Embedding Propagation with Parameters W (l)

6 end for
7 end for
8 for i = 1 to N − 1 do
9 for j = i to N do

10 Compute d̂2K(Z
(L)
i , Z

(L)
j) using Eq. 6 with Z

(L)
i , Z(L)

j , K. // MMD

11 s(Gi, Gj)
L ← exp

´

−γd̂2K(Z
(L)
i , Z

(L)
j)

¯

// Distance-to-Similarity

12 end for
13 end for
14 {W (i)}Li=1 ← BackpropagationpL, {s(Gi, Gj)

L}i<j , {Ci}Ni=1q // Update Parameters

15 until stop criterion is reached
16 return {s(Gi, Gj)

L}i<j and {W (i)}Li=1

Specifically, inspired by (Oord et al., 2018), we use the following Supervised Contrastive Loss (SCL):

LSCL(W) = −
∑
i ̸=j

ICi=Cj

˜

log sij − log

«∑
k

I[Ci=Ck,i̸=k]sik + α
∑
k

I[Ci ̸=Ci]sik

ff¸

(8)

When all training graphs are unlabeled, we can still learn Deep MMD-GK using the following two loss
functions. The first one is an Unsupervised Contrastive Loss (UCL), which is a modification of SCL
where the negative samples come from the least similar pairs in each epoch, i.e.,

LUCL(W) = −
∑
i ̸=j

Isij∈S+

˜

log sij − log

«∑
k

I[sik∈S+,i̸=k]sik + α
∑
k

I[sik∈S−]sik

ff¸

(9)

where the sets S+ and S− contain the most and the least similar pairs, respectively. For each batch of
training data B, there is a hyparameter λ balancing the sizes as |S−|= |S+|= ⌊λ|B|⌋. The primary benefit
of UCL is that it facilitates the learning of discriminative features from a set of graphs. The second choice
of unsupervised loss is the following KL Divergence adapted from (Xie et al., 2016):

LKL(W) = KL(s, s′) (10)

where s′ij =
s2ij/fj∑
j′ s

2
ij′/fj′

and fj =
∑

i sij are soft cluster frequencies. By minimizing the KL Divergence,

the model learns to adjust its embeddings to better reflect the natural cluster property of the data.

4.1 ROBUSTNESS ANALYSIS

Similar to Section 3.3, we analyze the robustness of our Deep MMD-GK. For Deep MMD-GK, the robust-
ness not only shows the sensitivity of the kernel to noise or perturbation but also implies the generalization
ability to new graph pairs. For the detailed proof, please refer to Appendix D.2.

6

Published as a conference paper at ICLR 2024

Theorem 2. For any two graphs G1, G2, without loss of generality, suppose n1 = n2 = n and the minimum
node degrees of G1, G2 are both α. Suppose for i = 1, 2, ∥Ai∥2≤ βA,∥Xi∥2≤ βX ,∥Yi∥2≤ βY , ∥Zi∥F≤ η,
∥W (l)∥2≤ βW (l) , l = 1, 2, . . . , L, and the activation function σ is ρ-Lipschitz continuous. Denote the effects
of structural perturbation as κ = min(1⊤∆Ai

). Then the inequality for Deep MMD-GK holds:

d̂2K(G̃
(l)
1 , G̃

(l)
2)≤ d̂2K(G

(l)
1 , G

(l)
2)+

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+2∆4

G2
+n(∆G1

+∆G2
)2+

ϵ
?
n
(∆G1

+∆G2
)

)

where ∆G· =
´

ρ
1+α+κ

¯l∏l
i=1 βW (i)

ˆ

pβA + ∥∆A·∥2q
l ∥∆Z∥F+η

∑l−1
j=0 β

j
A

´

a

(βA + ||∆A· ||2)2 − β2
A

¯l−j
˙

,

ϵ = 2(1 + α)−l(1 + βA)
l(βX + βY), and h is the optimal kernel bandwidth among kernel family K.

The theorem implies how the perturbed distance metric deviates from the original: 1) the deviation in Deep
MMD-GK grows bi-quadratically with ∥∆Z∥F ; 2) the deviation would be affected by ∥∆A∥2 growing expo-
nentially with power of l; 3) when ∆A occurs, it also amplifies the perturbation ∥∆Z∥F ; 4) ∆G1

and ∆G2

take an interaction effect in contaminating Deep MMD-GK; 5) the deviation is the most significant when
n = ϵ3

8(∆G1
+∆G2

)3 . 6) a larger h implies a smoother kernel that may be more robust to perturbations.

Besides, the bound can be used to evaluate the generalization ability of Deep MMD-GK. Specifically, given
a test pair G̃1, G̃2, we find their closest graphs, denoted by G1, G2 in G. Then according to Theorem 2,
d̂2K(G̃

(l)
1 , G̃

(l)
2) ≤ d̂2K(G

(l)
1 , G

(l)
2)+ ∆̄, where ∆̄ is small provided that G1, G2 are similar to G̃1, G̃2 in terms

of the adjacency matrices and node features. Note that the robustness-based generalization framework (Xu
& Mannor, 2012) is not applicable to our method, where the training data (graph pairs) are non-i.i.d.

4.2 GENERALIZATION ERROR BOUND OF SUPERVISED LEARNING

SupposeW are known, Algorithm 1 with SCL is guaranteed with a uniform stability parameter ω (see Theo-
rem 5 of Appendix F). Let E rℓ(W)s be the empirical risk, defined by Eq. 8 (E rℓ(W)s = 1

N(N−1)LSCL(W))
and let E rℓ(W)s be the true risk. According to (Bousquet & Elisseeff, 2002; Feldman & Vondrak, 2019),
the estimation error of supervised loss has a high-probability generalization bound that for some constant c
and any δ ∈ (0, 1), the following inequality holds:

Pr

«

|E rℓ(W)s− E rℓ(W)s| ≥ c

˜

ω log(N) log(N/δ) +

c

log(1/δ)

N

¸ff

≤ δ. (11)

We see that a smaller ω (higher stability) leads to a tighter generalization error bound. Note that the objective
is highly nonconvex and the optimalW are hard to obtain, thus we will work in the future to find the explicit
form of the generalization bound.

4.3 COMPUTATIONAL COMPLEXITY ANALYSIS

The theoretical computational complexity of vanilla and Deep MMD-GKs are shown by the following two
theorems (proved in Appendix G).

Theorem 3. The MMD-GK using kernels K on a pair of graphs G and G′, with L-level of d-dimensional
node features, can be computed in O(Lmd + κn2d), where n is the number of nodes, m is the number
of edges, and κ is the size of the kernel family, i.e. κ = |K|. For N graphs, all pairwise MMD-GKs are
computed in O(NLmd+N2κn2d).

7

Published as a conference paper at ICLR 2024

Table 1: Comparison of the computational complexity of selected graph kernels regarding support for node-
labeled and node-attributed graphs. k is the size of the largest subgraph considered. h is the maximum
distance between the root of the neighborhood subgraph/subtree pattern and its nodes.

Graph Kernel Node Labels Node Attributes Complexity

Graphlet O(nk)
Shortest Path O(n4)
Weisfeiler-Lehman Subtree (Shervashidze et al., 2011) O(hm+ hn)
Wasserstein Weisfeiler-Lehman (Togninalli et al., 2019) O(hm+ n3 log(n))

MMD-GK O(Lmd+ κn2d)
Deep MMD-GK O(Lnd2 + Lmd+ κn2d)

Theorem 4. Suppose the widths of the hidden layers of the neural network are O(d). The Deep MMD-
GK using kernels K on a pair of graphs G and G′, with L-level of d-dimensional node features, can be
computed in O(Lnd2 + Lmd + κn2d), where n is the number of nodes, m is the number of edges, and κ
is the size of the kernel family, i.e. κ = |K|. For N graphs, all pairwise Deep MMD-GKs are computed in
O(NLnd2 +NLmd+N2κn2d).

Table 1 shows that our MMD-GK and Deep MMD-GK are competitive with other kernels in terms of com-
putational complexity. Generally, we set a κ s.t. κd < n, so the MMD-GK is better in complexity than the
Wasserstein Weisfeiler-Lehman graph kernel, when holding L equal to h. Note that the Weisfeiler-Lehman
Subtree graph kernels scale linearly with the number of nodes; therefore, this method is faster than our
kernels. The time cost comparison is reported in Appendix G.

5 RELATED WORK

The contents are in Appendix A.

6 EXPERIMENTS

The proposed methods are compared with state-of-the-art graph kernels and GNNs in both graph classifica-
tion and graph clustering, on five benchmarks including DHFR, BZR, MUTAG, PTC FM, and PROTEINS
from (Kersting et al., 2016). Please see Appendix H for more details on configurations. We tuned the
hyperparameters of all methods and report their best performances (detailed in Appendix K).

Classification Accuracy Table 2 shows that our methods always score high in graph classification. The
vanilla MMD-GK, while not always achieving top scores, is competitive, especially on DHFR and MUTAG.
The unsupervised and supervised Deep MMD-GKs generally demonstrate superior performance. They not
only outperform traditional graph kernel methods but also surpass some of the advanced deep learning-based
models on BZR, MUTAG, and PTC FM.

Clustering Scores Table 3 presents the clustering accuracy (ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI). Our MMD-GK and Deep MMD-GK, show significant improvement over
graph kernels and GNN-based methods InfoGraph (Sun et al., 2019) and GraphCL (You et al., 2020) fol-
lowed by spectral clustering. Particularly, the Deep MMD-GK (unsupervised) exhibits consistently high
performance across all datasets. On BZR, it achieves 0.757 in NMI and 0.809 in ARI while the baselines
failed to provide meaningful clustering results in terms of NMI and ARI.

Practical Insights 1) MMD-GK: In general, as l increases, the performance tends to improve at first,
reaching a peak. Beyond a certain value of l, the performance starts to decline or plateau. For all three

8

Published as a conference paper at ICLR 2024

Table 2: Graph classification accuracy. Deep MMD-GK (unsupervised) is trained by LKL or LUCL, of which
the better is showed. Deep MMD-GK (supervised) is trained by LSCL. The best score on each dataset is
underlined. We highlight our methods that exceed the baseline by using bold text.

Method BZR DHFR MUTAG PTC FM PROTEINS

Graphlet Kernel 0.788 ± 0.005 0.609 ± 0.001 0.665 ± 0.009 0.610 ± 0.002 0.714 ± 0.003
Shortest Path 0.788 ± 0.033 0.603 ± 0.006 0.782 ± 0.041 0.639 ± 0.022 0.758 ± 0.006

Weisfeiler-Lehman 0.785 ± 0.006 0.683 ± 0.111 0.788 ± 0.048 0.645 ± 0.030 0.755 ± 0.002
Wasserstein WL (Togninalli et al., 2019) 0.785 ± 0.006 0.793 ± 0.029 0.788 ± 0.048 0.663 ± 0.030 0.755 ± 0.002

DGCNN (Zhang et al., 2018) 0.844 ± 0.002 0.793 ± 0.056 0.873 ± 0.015 0.603 ± 0.067 0.772 ± 0.009
DGK (Yanardag & Vishwanathan, 2015) 0.831 ± 0.005 0.641± 0.009 0.874± 0.003 0.645 ± 0.008 0.726 ± 0.005

GNTK (Du et al., 2019) 0.836 ± 0.029 0.735 ± 0.007 0.890 ± 0.009 0.639 ± 0.001 0.756 ± 0.042
DeepMap (Ye et al., 2020) 0.890 ± 0.048 0.852 ± 0.022 0.895 ± 0.031 0.652 ± 0.056 0.762 ± 0.029

MMD-GK 0.788 ± 0.005 0.828 ± 0.034 0.819 ± 0.073 0.665 ± 0.009 0.750 ± 0.015
Deep MMD-GK (unsupervised) 0.910 ± 0.111 0.836 ± 0.042 0.910 ± 0.026 0.667 ± 0.028 0.754 ± 0.023

Deep MMD-GK (supervised) 0.910 ± 0.111 0.848 ± 0.091 0.915 ± 0.065 0.668 ± 0.031 0.776 ± 0.025

measures (ACC, NMI, and ARI) in the graph clustering task, Figures 4, 5 and 6 in Appendix I illustrate
that there’s a notable fluctuation in performance concerning changes in l. The sensitivity to l indicates that
the method captures different levels of structural and attribute information from the graph as l changes.
2) Deep MMD-GK: When graph labels are unavailable, unsupervised Deep MMD-GKs outperform vanilla
MMD-GK. In addition, unsupervised Deep MMD-GKs trained by the loss LKL at a higher l (e.g. 4) is more
effective and stable than LUCL across all benchmarks.

7 CONCLUSION

Table 3: Graph clustering results. The best score on each dataset
is underlined. We highlight our methods that exceed the baseline
by using bold text.

Method Metric BZR DHFR MUTAG PTC FM PROTEINS

Graphlet Kernel
ACC 0.753 0.567 0.771 0.928 0.622
NMI 0.020 0.003 0.143 0.036 0.053
ARI 0.079 0.006 0.234 0.039 0.027

Shortest Path
ACC 0.654 0.679 0.676 0.962 0.604
NMI 0.005 0.004 0.211 0.032 0.027
ARI -0.019 -0.007 -0.318 0.021 0.041

Weisfeiler-Lehman
ACC 0.767 0.666 0.548 0.928 0.582
NMI 0.014 0.007 0.136 0.036 0.021
ARI 0.035 0.000 0.176 0.039 0.026

InfoGraph
ACC 0.735 0.658 0.726 0.620 0.732
NMI 0.036 0.032 0.287 0.021 0.132
ARI 0.050 0.005 0.199 0.046 0.124

GraphCL
ACC 0.729 0.652 0.732 0.621 0.728
NMI 0.019 0.040 0.322 0.021 0.140
ARI 0.035 0.003 0.234 0.034 0.115

MMD-GK
ACC 0.807 0.614 0.707 0.633 0.730
NMI 0.095 0.042 0.141 0.034 0.144
ARI 0.232 0.004 0.168 0.060 0.207

Deep MMD-GK
(unsupervised)

ACC 0.952 0.689 0.846 0.647 0.752
NMI 0.757 0.182 0.468 0.076 0.333
ARI 0.809 0.137 0.476 0.066 0.345

We have proposed MMD-based graph
kernels for calculating the similarity be-
tween graphs. MMD-GK and Deep
MMD-GK directly compare the intrin-
sic distribution between two graphs via
Maximum Mean Discrepancy. The key
steps of our approaches are embedding
aggregation, distance-to-similarity, and
for the deep model, updating parameters
in a supervised or unsupervised manner.
The empirical results show that our mod-
els outperform the classical graph kernel
and even GNN methods significantly in
the tasks of graph clustering and classifi-
cation. We also contribute theoretically
by providing upper bounds for MMD-
GK and Deep MMD-GK in robustness
analysis and analyzing the generaliza-
tion error bound for supervised learning.
Future work may focus on improving the
scalability of our methods and providing
better generalization error bounds.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant No.62376236,
the General Program JCYJ20210324130208022 of Shenzhen Fundamental Research, the research funding
T00120210002 of Shenzhen Research Institute of Big Data, and the funding UDF01001770 of The Chinese
University of Hong Kong, Shenzhen.

REFERENCES

Tero Aittokallio and Benno Schwikowski. Graph-based methods for analysing networks in cell biology.
Briefings in bioinformatics, 7(3):243–255, 2006.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 684–697, 2016.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE international
conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Karsten Michael Borgwardt. Graph kernels. PhD thesis, lmu, 2007.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011.

Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-lehman
meets gromov-wasserstein. In International Conference on Machine Learning, pp. 3371–3416. PMLR,
2022.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco Ruiz, and Liping Liu. Order matters: Probabilistic modeling of
node sequence for graph generation. In International Conference on Machine Learning, pp. 1630–1639.
PMLR, 2021.

Etienne Cuvelier and Marie-Aude Aufaure. Graph mining and communities detection. Business Intelligence:
First European Summer School, eBISS 2011, Paris, France, July 3-8, 2011, Tutorial Lectures 1, pp. 117–
138, 2012.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling for
sparse graphs. In International conference on machine learning, pp. 2302–2312. PMLR, 2020.

Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu Xu.
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels, chapter 0, pp. 1.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms
with nearly optimal rate. In Conference on Learning Theory, pp. 1270–1279. PMLR, 2019.

Holger Fröhlich, Jörg K Wegner, Florian Sieker, and Andreas Zell. Optimal assignment kernels for attributed
molecular graphs. In Proceedings of the 22nd international conference on Machine learning, pp. 225–232,
2005.

Kenji Fukumizu, Arthur Gretton, Gert Lanckriet, Bernhard Schölkopf, and Bharath K Sriperumbudur. Ker-
nel choice and classifiability for rkhs embeddings of probability distributions. Advances in neural infor-
mation processing systems, 22, 2009.

10

Published as a conference paper at ICLR 2024

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alter-
natives. In Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and
7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings, pp.
129–143. Springer, 2003.

Hashem Ghanem, Nicolas Keriven, and Nicolas Tremblay. Fast graph kernel with optical random fea-
tures. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3575–3579. IEEE, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks. Proceedings
of the national academy of sciences, 99(12):7821–7826, 2002.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Linus Hermansson, Fredrik D Johansson, and Osamu Watanabe. Generalized shortest path kernel on graphs.
In Discovery Science: 18th International Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015.
Proceedings 18, pp. 78–85. Springer, 2015.

Wolfgang Huber, Vincent J Carey, Li Long, Seth Falcon, and Robert Gentleman. Graphs in molecular
biology. BMC bioinformatics, 8(6):1–14, 2007.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark
data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.de.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2016.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proceedings of the 29th
International Coference on International Conference on Machine Learning, pp. 291–298, 2012.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and appli-
cations to graph classification. Advances in neural information processing systems, 29, 2016.

Nils M Kriege, Christopher Morris, Anja Rey, and Christian Sohler. A property testing framework for the
theoretical expressivity of graph kernels. In IJCAI, pp. 2348–2354, 2018.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising during
this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal of
Artificial Intelligence Research, 72:943–1027, 2021.

11

http://graphkernels.cs.tu-dortmund.de
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Published as a conference paper at ICLR 2024

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph generative
models: Problems, pitfalls, and practical solutions. In International Conference on Learning Representa-
tions, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review of statistics
and its application, 6:405–431, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Andrea Roncoli, Aleksandra Ćiprijanović, Maggie Voetberg, Francisco Villaescusa-Navarro, and Brian
Nord. Domain adaptive graph neural networks for constraining cosmological parameters across multi-
ple data sets. arXiv preprint arXiv:2311.01588, 2023.

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel. A generalized weisfeiler-lehman
graph kernel. Machine Learning, 111(7):2601–2629, 2022.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp. 488–495. PMLR,
2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Alexander J Smola, A Gretton, and K Borgwardt. Maximum mean discrepancy. In 13th international
conference, ICONIP, pp. 3–6, 2006.

Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G. Lanckriet.
On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6(none):1550
– 1599, 2012.

Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. Advances in neural information
processing systems, 28, 2015.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. In International Conference on
Learning Representations, 2019.

Ziheng Sun, Chris Ding, and Jicong Fan. Lovász principle for unsupervised graph representation learning.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt. Wasser-
stein weisfeiler-lehman graph kernels. Advances in neural information processing systems, 32, 2019.

Vladimir Vacic, Lilia M Iakoucheva, Stefano Lonardi, and Predrag Radivojac. Graphlet kernels for predic-
tion of functional residues in protein structures. Journal of Computational Biology, 17(1):55–72, 2010.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

12

Published as a conference paper at ICLR 2024

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels.
Journal of Machine Learning Research, 11:1201–1242, 2010.

Zhihao Wu, Zhao Zhang, and Jicong Fan. Graph convolutional kernel machine versus graph convolutional
networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. In
International conference on machine learning, pp. 478–487. PMLR, 2016.

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86:391–423, 2012.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Wei Ye, Omid Askarisichani, Alex Jones, and Ambuj Singh. Learning deep graph representations via con-
volutional neural networks. IEEE Transactions on Knowledge and Data Engineering, 34(5):2268–2279,
2020.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in neural information processing systems, 33:5812–5823, 2020.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

A RELATED WORK

A.1 GRAPH SIMILARITY

Graph Similarity is a fundamental concept in graph theory and deals with the problem of determining how
alike two or more graphs are. A foundational notion here is Graph Isomorphism (Babai, 2016). Two graphs
are deemed isomorphic if they contain a one-to-one correspondence between their vertices, such that the
adjacency between vertices is preserved. Delving into Graph Kernels, several kernels exist with different
methods of operation. The Shortest Path Kernel (Borgwardt & Kriegel, 2005; Hermansson et al., 2015), for
instance, examines all pairs of shortest paths in two graphs and identifies paths of the same length. Graphlet
Kernels (Shervashidze et al., 2009; Vacic et al., 2010) work by counting the number of small subgraphs,
known as graphlets, that are isomorphic between two larger graphs. Considering attributed graphs, Kriege
and Mutzel Kriege & Mutzel (2012) proposed the subgraph matching kernel which is based on structure-
preserving bijections between subgraphs. Another interesting method is the Random Walk Kernel (Gärtner
et al., 2003; Sugiyama & Borgwardt, 2015) which gauges similarity based on the number of random walks
two graphs can share, effectively calculating the likelihood that a random walk in one graph mirrors a walk
in the other. The Weisfeiler-Lehman Kernel (Shervashidze et al., 2011) employs the Weisfeiler-Lehman
isomorphism test (Leman & Weisfeiler, 1968). This involves a continuous refinement of vertex labels based
on the labels of neighboring vertices, and the kernel then counts the common labels between the two graphs.
Besides, the idea to identify the best possible matching has been used in graph kernels, from early optimal
assignment kernel (Fröhlich et al., 2005), to many variants such as Weisfeiler-Lehman optimal assignment
kernel (Kriege et al., 2016). A notable trend in recent research has been the modification of Weisfeiler-
Lehman (WL) kernels using Wasserstein distances (Togninalli et al., 2019; Chen et al., 2022; Schulz et al.,
2022). Togninalli et al. (2019) integrated the Wasserstein distance into the WL framework, allowing for a
more refined comparison of graphs, particularly those with continuous node attributes. Chen et al. (2022)

13

Published as a conference paper at ICLR 2024

proposed a novel concept of WL distance, a polynomial time computable metric that is sensitive to more
subtle graph differences than traditional WL methods.

With the advent and dominance of deep learning, efforts have been made to harness neural networks for
deriving learned representations of graphs. The likeness between two graphs can then be determined by
comparing these overarching representations. A notable subtype of graph neural networks is the Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2016) which employ a form of convolution to assimilate
information from neighboring nodes. Another method, Deep Graph Kernels (DGK) (Yanardag & Vish-
wanathan, 2015), combines deep learning’s expressive power with the interpretability of traditional graph
kernels by utilizing deep learning for graph representation and subsequently applying traditional kernel
methods to these representations. Du et al. (2019) presented Graph Neural Tangent Kernels (GNTK) which
correspond to infinitely wide multi-layer GNNs trained by gradient descent. Theoretically, GNTKs prov-
ably learn a class of smooth functions on graphs. Ye et al. (2020) proposed a framework called DeepMap to
learn deep representations for graph feature maps. DeepMap generates aligned vertex sequences and builds
each vertex’s receptive field to learn a dense and low-dimensional vector that captures complex high-order
interactions in a vertex neighborhood.

A.2 MAXIMUM MEAN DISCREPANCY

At its core, MMD (Smola et al., 2006) measures the distance between two distributions, providing a lens
through which we can compare them. It leverages the power of Reproducing Kernel Hilbert Space (RKHS),
enabling a non-parametric comparison between distributions. The distance is computed by taking samples
from two distributions and evaluating their difference in the RKHS. With the aid of a kernel function (often
Gaussian), MMD evaluates how close the mean embeddings of these samples are in the RKHS. If the em-
beddings are similar, it’s an indication that the two samples likely come from the same distribution. Taking
advantage of it, Gretton et al. (2012) demonstrated that MMD forms the basis for a kernel-based two-sample
test. In situations where traditional methods, such as the Kolmogorov-Smirnov or Mann-Whitney U test,
may struggle (especially in high-dimensional settings), the MMD-based test can offer greater power. Com-
bining with a graph kernel, Borgwardt (2007) obtain the two-sample test for sets of graphs. It is important
to note that, Borgwardt (2007) just proposed to estimate the MMD for two-sample test with existing graph
kernels, rather than to design a graph kernel with an MMD method. When it comes to designing a novel
graph kernel, a recent work focusing on speeding up Graphlet kernels, incorporated an MMD metric when
showing the effectiveness of their kernel design (Ghanem et al., 2021). However, the kernel itself does
not require calculating MMD. Instead, MMD is only used to demonstrate the classification power of their
embeddings.

Some recent studies have integrated MMD into the realm of GNNs. One key application is in the comparison
of graph-structured data to evaluate generated graphs (Dai et al., 2020; Chen et al., 2021), for instance, when
determining if two graphs exhibit similar structural properties or when comparing the node embeddings
generated by GNNs from different graphs. MMD also aids in the training of GNNs (Roncoli et al., 2023),
ensuring that the distribution of the generated node embeddings aligns well with the target distribution. This
can be especially crucial in semi-supervised settings where labeled data is sparse but there’s a need to ensure
that the graph’s overall structure is well captured. Recently, O’Bray et al. (2021) critically evaluated the
use of MMD in graph generative model comparison, proposing practical recommendations for its effective
application.

In our approach, we introduce a novel graph kernel that uniquely integrates the concept of Maximum Mean
Discrepancy (MMD) with Graph Neural Networks (GNNs), differing from existing efforts that either apply
MMD for two-sample tests using traditional graph kernels or use MMD to evaluate the performance of
GNNs without directly incorporating it into the kernel design.

14

Published as a conference paper at ICLR 2024

B EXAMPLE ILLUSTRATION

G1 G2 G3 G4 G5 G6

v11

v12

v13

v14

v21

v22

v23

v24

v31

v32

v33

v34

v35

v41

v42 v43

v44 v45 v46 v47

v51

v52

v53

v54

v55

v61

v62

v63

v64

v65

Figure 2: Graph Illustration: common scenario and counter-examples

To illustrate the concept of Maximum Mean Discrepancy (MMD) between graphs and its behavior, we
present some toy examples. In each example, we consider a pair of attributed labeled graphs and estimate
the supremum over MMDs (d̂K) using a class of Gaussian kernels with different bandwidths.

• Common Scenario: Consider two graphs, G1 and G2, with the same graph structure but different
node features. Both graphs have the same edges (E1 = E2), but the attributes of their nodes
are different (X1 ̸= X2). When estimating the MMD between their node attributes X1 and X2,
the supremum over the Gaussian kernel may cause d̂K to be relatively large, indicating a notable
discrepancy between the node attributes.

The MMD measures the discrepancy between the distributions of node features and labels of two graphs at
the l-level, using the kernel family K to compare individual node features. If two graphs are identical, their
MMD will be zero, as there will be no difference in the node characteristics between the graphs. However,
the estimated MMD may appear very close to zero even when the two graphs are actually distinct, i.e.
d̂K ≈ 0 when X1 ̸= X2 or Y1 ̸= Y2 or E1 ̸= E2. This is because the limited number of nodes and edges
in the graphs might not fully capture all the differences between them, leading to potentially underestimated
MMD values. Let’s consider the counter-examples:

• Counter-example 1: Consider two graphs, G3 and G4, where G3 contains a cycle and G4 contains
a tree structure. Although they have different graph structures (E3 ̸= E4), when estimating the
MMD between their node features X3 and X4, the supremum over the Gaussian kernel with a very
large bandwidth may lead to a small d̂K due to the smoothing effect. This can mistakenly suggest
that G3 and G4 are similar in terms of their node features.

• Counter-example 2: Suppose we have two attributed labeled graphs, G5 and G6, with the same
node features (X5 = X6) and almost identical labels (Y5 ≈ Y6). Additionally, the edge structures of
the two graphs are also very similar, but there exist a few edges that differ between them (E5 ≈ E6

15

Published as a conference paper at ICLR 2024

with some minor differences). Now, let’s consider the MMD at different levels l to compare the
distributions of node features, labels, and edge structures:

1. At a low level, when l = 1: In this case, the MMDs d̂2K(X5, X6), d̂2K(Y5, Y6), and
d̂2K((X5, Y5), (X6, Y6)) might still be very close to zero, indicating high similarity at the local
neighborhood level.

2. At a higher level, e.g. l = 5: As we increase the level l, the aggregated node features and
labels capture a more global perspective of the graph structure. However, since the graphs
have almost identical node features and labels in most parts, the MMD might still not be able
to fully capture the differences due to the few differing edges.

These counter-examples demonstrate that the behavior of MMD between graphs can be influenced by the
level l of aggregation and the choice of kernel bandwidth. To alleviate the problem in the first counter-
example, it is better to choose the kernel family K with a large set of bandwidths. As for the paradox within
the second counter-example, there is no “one-size-fits-all” solution, because in some cases (e.g. unsuper-
vised tasks), higher levels of aggregation might provide more informative comparisons, while in others (e.g.
supervised tasks), local neighborhood information could be sufficient. It is worth noting that an increase in
level l may hurt the performance of the MMD graph kernel, since aggregation power would lost when the
level l exceeds the graph size itself.

C ALGORITHM OF MMD-GK

Algorithm 2: MMD-Graph Kernel

Input : Graphs G1 and G2, number of level L, kernel family K with parameters {hi}|K|
i=1, gamma γ

Output: Estimated similarity between G1 and G2

1 Z
(0)
1 ← (X1, Y1) or Z(0)

1 ← X1 or Z(0)
1 ← Y1; Z(0)

2 ← (X2, Y2) or Z(0)
2 ← X2 or Z(0)

2 ← Y2

2 // Embedding Propgation
3 for l = 1 to L do
4 Z

(l)
1 ← U1Z

(l−1)
1 and Z

(l)
2 ← U2Z

(l−1)
2

5 end for
6 // Kernel Mapping

7 d̂2K(Z
(L)
1 , Z

(L)
2)← Eq. 6 with Z

(L)
1 , Z(L)

2 , K and {hi}|K|
i=1

8 // Distance-to-Similarity

9 sL(G1, G2)← e−γ·d̂2
K(Z

(l)
1 ,Z

(l)
2)

10 return sL(G1, G2)

C.1 ROBUSTNESS ANALYSIS

The bound in Theorem 1 provides insights into how the perturbed distance metric d̂2K(G̃
(l)
1 , G̃

(l)
2) deviates

from the original distance metric d̂2K(G
(l)
1 , G

(l)
2). Specifically:

1) the deviation in MMD-GK grows bi-quadratically with ∥∆Z∥F ;

2) the deviation would be affected by ∥∆A∥2 growing exponentially with power of l;

3) when ∆A occurs, it also amplifies the perturbation ∥∆Z∥F
4) ∆G1 and ∆G2 take an interaction effect in contaminating MMD-GK.

16

Published as a conference paper at ICLR 2024

5) the deviation in MMD-GK is the most significant when n = ϵ3

8(∆G1
+∆G2

)3 .

Reason: we take the derivative of ∆̄ w.r.t n and observe the critical point.

∂

∂n

ˆ

n(∆G1
+∆G2

)2 +
ϵ

?
n

p∆G1
+∆G2

q

˙

= (∆G1
+∆G2

)2 − ϵ

2
?
n
3 p∆G1

+∆G2
q (12)

As n ≤ ϵ3

8(∆G1
+∆G2

)3 , the increase in n leads to a larger ∆̄, which implies that the error due to

perturbations becomes larger. And if n ≥ ϵ3

8(∆G1
+∆G2

)3 , the error due to perturbations becomes
less significant when n increases.

6) a larger h implies a smoother kernel that may be more robust to perturbations.

D PROOF FOR THEOREMS

D.1 PROOF OF THEOREM 1

Proof. For perturbations to node label Ỹ = Y +∆Y and node attributes X̃ = X +∆X , we can define the
perturbation on node features as Z̃ = Z +∆Z , where ∆Z = (∆X ,∆Y). When we introduce a perturbation
∆A in A, it will also occurs in D, U , and ultimately takes effect on Z̃(l) as

Z̃(l) = U ′ · · ·U ′
looomooon

l times

(Z +∆Z) = (U ′)lZ + (U ′)l∆Z , (13)

where U ′ = D̃′−
1
2 (Ã +∆A)D̃′−

1
2 and the perturbation D̃′ = diag(1⊤(Ã +∆A)). To simplify the further

analysis, we denote Z̃(l) = U lZ +∆Z(l) where the deviation can be expressed as

∆Z(l) =
`

(U ′)l − U l
˘

Z + (U ′)l∆Z .

For this deviation, we have the following lemma (proved in Section E.1).

Lemma 1. Suppose the minimum node degrees of G1, G2 are both α, ∥Ai∥2≤ βA, ∥Xi∥2≤ βX , ∥Yi∥2≤
βY , and ∥Zi∥F≤ η, i = 1, 2. Denote the effects of structural perturbation as κ = min(1⊤∆Ai) and
∆Di

= diag(1⊤(Ãi +∆Ai
))

1
2 diag(1⊤Ai)

− 1
2 − I for i = 1, 2. Then the following inequality holds:

∥∆Z(l)∥F≤ 2η

ˆ

4βA∥∆D∥2+∥∆A∥2
1 + α

˙l

+

ˆ

2βA + ∥∆A∥2
1 + α+ κ

˙l

∥∆Z∥F . (14)

Given a kernel family K, the estimated generalized MMD between the perturbed G̃l
1 and G̃l

2 is
d̂2K(G̃

(l)
1 , G̃

(l)
2) = supk∈K d̂k(G̃

(l)
1 , G̃

(l)
2), where

d̂k(G̃
(l)
1 , G̃

(l)
2) =

1

n2
1

n1∑
i,i′=1

k(Z̃
(l)
i,1 , Z̃

(l)
i′,1) +

1

n2
2

n2∑
i,i′=1

k(Z̃
(l)
j,2, Z̃

(l)
j′,2)−

2

n1n2

n1,n2∑
i,j=1

k(Z̃
(l)
i,1 , Z̃

(l)
j,2). (15)

For the original graphs G(l)
1 and G

(l)
2 , the distance can be expressed by replacing Z̃ with Z in the equation

above. Thus, we have the following inequality:

d̂2K(G̃
(l)
1 , G̃

(l)
2)− d̂2K(G

(l)
1 , G

(l)
2) = sup

k∈K
d̂k(G̃

(l)
1 , G̃

(l)
2)− sup

k∈K
d̂k(G

(l)
1 , G

(l)
2)

≤d̂k∗(G̃
(l)
1 , G̃

(l)
2)− d̂k∗(G

(l)
1 , G

(l)
2) =∆ ∆̄d,

(16)

17

Published as a conference paper at ICLR 2024

where k∗ = argmaxk∈K d̂k(G̃
(l)
1 , G̃

(l)
2). Since the difference primarily comes from the perturbation in

kernel values, we can expand the expression as

(17)

∆̄d =
1

n2
1

n1∑
i,i′=1

(
k∗(Z

(l)
i,1 , Z

(l)
i′,1) + ∆k∗

Z
(l)

(1)

(i, i′)

)
+

1

n2
2

n2∑
i,i′=1

(
k∗(Z

(l)
j,2, Z

(l)
j′,2) + ∆k∗

Z
(l)

(2)

(j, j)

)

− 2

n1n2

n1,n2∑
i,j=1

(
k∗(Z

(l)
i,1 , Z

(l)
j,2) + ∆k∗

Z
(l)

(1,2)

(i, j′)

)

=
1

n2
1

n1∑
i,i′=1

∆k∗
Z

(l)

(1)

(i, i′) +
1

n2
2

n2∑
j,j′=1

∆k∗
Z

(l)

(2)

(j, j′)− 2

n1n2

n1,n2∑
i,j=1

∆k∗
Z

(l)

(1,2)

(i, j)

where ∆k∗
Z

(l)

(·)
(i, i′) = k∗(Z̃

(l)
i,· , Z̃

(l)
i′,·)− k∗(Z

(l)
i,· , Z

(l)
i′,·) and ∆k∗

Z
(l)

(1,2)

(i, j) = k∗(Z̃
(l)
i,1 , Z̃

(l)
j,2)− k∗(Z

(l)
i,1 , Z

(l)
j,2).

Without loss of generality, we take the Gaussian kernel as an example to further discuss the bound. The
bandwidth of k∗ is denoted as h.

Next, we examine the basic components within the Gaussian kernel as Lemma 2 shows.

Lemma 2. Suppose ∀G, ∥A∥2≤ βA,∥X∥2≤ βX ,∥Y ∥2≤ βY . Then all pairwise distances between l-level
nodes of one graph are bounded as

∥z(l)i,· − z
(l)
i′,·∥≤ 2(1 + α)−l(1 + βA)

l(βX + βY).

And all pairwise distances between l-level nodes of two graphs are bounded as

∥z(l)i,1 − z
(l)
j,2∥≤ 2(1 + α)−l(1 + βA)

l(βX + βY).

Given this and Lemma 4 in later context, both intra- and inter- exponential terms range between

exp(−∥z(l)i,j − z
(l)
i′,j∥

2/h) ≤ 1 +
8

h2
(1 + α)−4l(1 + βA)

4l(βX + βY)
4

since ∥∆
z
(l)
i,·
−∆

z
(l)

i′,·
∥≥ 0 for all nodes.

Now, let’s delve into the deviation in each kernel pairs as below.

Lemma 3. Denote Σj,i,i′,l = ∥∆z
(l)
i,j
−∆

z
(l)

i′,j
∥2−2∥zli,j−zli′,j∥∥∆z

(l)
i,j
−∆

z
(l)

i′,j
∥. The following inequalities

hold for an arbitrary Gaussian kernel k with its bandwidth hk:

(a) ∆k
Z

(l)

(j)

(i, i′) ≤
ˆ

−Σj,i,i′,l
hk

+
Σ2

j,i,i′,l
4h2

k

˙

exp

ˆ

−
∥z(l)

i,j−z
(l)

i′,j∥
2

hk

˙

, j = 1, 2.

(b) ∆k
Z

(l)

(1,2)

(i, j) ≥
´´

1− 1
hk
∥∆

z
(l)
i,1

+∆
z
(l)
j,2
∥2

¯ ´

1− 2
hk
∥z(l)i,1 − z

(l)
j,2∥∥∆z

(l)
i,1

+∆
z
(l)
j,2
∥

¯

− 1
¯

e
−

∥z(l)
i,1

−z
(l)
j,2

∥2

hk .

Note that the bound for Σ and its squared term isΣ·,i,i′,l ≥ −4(1 + α)−l(1 + βA)
l(βX + βY)∥∆z

(l)
i,·
−∆

z
(l)

i′,·
∥

Σ2
·,i,i′,l ≤ ∥∆z

(l)
i,·
−∆

z
(l)

i′,·
∥4+16(1 + α)−2l(1 + βA)

2l(βX + βY)
2∥∆

z
(l)
i,·
−∆

z
(l)

i′,·
∥2.

18

Published as a conference paper at ICLR 2024

Consequently, the inequalities in Lemma 3 can be expressed as

(18)

∆k∗
Z

(l)

(j)

(i, i′) ≤
(
1 +

8

h2
(1 + α)−4l(1 + βA)

4l(βX + βY)
4

)
·(

4

h
(1 + α)−l(1 + βA)

l(βX + βY)∥∆z
(l)
i,·
−∆

z
(l)

i′,·
∥+ 1

4h2
∥∆

z
(l)
i,·
−∆

z
(l)

i′,·
∥4

+
4

h2
(1 + α)−2l(1 + βA)

2l(βX + βY)
2∥∆

z
(l)
i,·
−∆

z
(l)

i′,·
∥2
)

and

(19)∆k∗
Z

(l)

(1,2)

(i, j) ≥ −
(
1 +

8

h2
(1 + α)−4l(1 + βA)

4l(βX + βY)
4

)
·
(
1

h
∥∆

z
(l)
i,1

+∆
z
(l)
j,2
∥2

+ 4(1 + α)−l(1 + βA)
l(βX + βY)∥∆z

(l)
i,1

+∆
z
(l)
j,2
∥
)
.

Denote ϵ = 2(1 + α)−l(1 + βA)
l(βX + βY). We can summarize the inequalities as

∆k∗
Z

(l)

(j)

(i, i′) ≤
´

1 + ϵ4

2h2

¯

˜

2
hϵ∥∆z

(l)
i,·
−∆

z
(l)

i′,·
∥+ 1

h2

ˆ

1
2∥∆z

(l)
i,·
−∆

z
(l)

i′,·
∥2+ϵ

˙2

− ϵ2

h

¸

∆k∗
Z

(l)

(1,2)

(i, j) ≥ −
´

1 + ϵ4

2h2

¯

1
h

ˆ

´

∥∆
z
(l)
i,1

+∆
z
(l)
j,2
∥+ϵ

¯2

− ϵ2
˙

.

(20)

By substituting Eq. 20 into Eq. 17, the deviation is bounded by a function of ∆z:

∆̄d ≤
ˆ

1

n2
1h

2
+

ϵ4

2n2
1h

4

˙ n1∑
i,i′=1

«

ˆ

1

2
∥∆

z
(l)
i,·
−∆

z
(l)

i′,·
∥2+ϵ

˙2

+ 2hϵ∥∆
z
(l)
i,·
−∆

z
(l)

i′,·
∥−ϵ2

ff

+

ˆ

1

n2
2h

2
+

ϵ4

2n2
2h

4

˙ n2∑
j,j′=1

«

ˆ

1

2
∥∆

z
(l)
j,·
−∆

z
(l)

j′,·
∥2+ϵ

˙2

+ 2hϵ∥∆
z
(l)
j,·
−∆

z
(l)

j′,·
∥−ϵ2

ff

+

ˆ

2

n1n2h
+

ϵ4

n1n2h3

˙ n1,n2∑
i,j=1

„

´

∥∆
z
(l)
i,1

+∆
z
(l)
j,2
∥+ϵ

¯2

− ϵ2
ȷ

.

(21)

Based on Equation 35 and ∥∆Z(l)∥2,1≤
?
n∥∆Z(l)∥F , we can obtain the following inequalities which apply

to every individual graph G· and pair (G1, G2).

(22a)
n·∑
i,i′

∥∆
z
(l)
i,·
−∆

z
(l)

i′,·
∥≤

n·∑
i,i′

(
∥∆

z
(l)
i,·
∥+∥∆

z
(l)

i′,·
∥
)

= 2n·∥∆Z
(l)
·
∥2,1 ≤ 2n

3
2
· ∆G·

(22b)
n·∑
i,i′

∥∆
z
(l)
i,·
−∆

z
(l)

i′,·
∥2 ≤

n·∑
i,i′

(
∥∆

z
(l)
i,·
∥+∥∆

z
(l)

i′,·
∥
)2

= 2n·∥∆Z
(l)
·
∥2F + 2∥∆

Z
(l)
·
∥22,1 ≤ 4n·(∆G·)

2

(22c)
n1,n2∑
i,j

∥∆
z
(l)
i,1

+∆
z
(l)
j,2
∥≤ n2

n1∑
i

∥∆
z
(l)
i,1
∥+n1

n2∑
j

∥∆
z
(l)
j,2
∥= n1∥∆Z

(l)
2
∥2,1 + n2∥∆Z

(l)
1
∥2,1

≤ n1
?
n2∆G2 + n2

?
n1∆G1

19

Published as a conference paper at ICLR 2024

where ∆G· = 2η
´

4βA∥∆D·∥2+∥∆A·∥2

1+α

¯l

+
´

2βA+∥∆A·∥2

1+α+κ

¯l

∥∆Z·∥F . To sum up, the deviation in MMD-GK
is bounded as

d̂2K(G̃
(l)
1 , G̃

(l)
2)− d̂2K(G

(l)
1 , G

(l)
2) ≤

(
1

h2
+

ϵ4

2h4

)[(
2∆2

G1
+

ϵ

n1

)2

+

(
2∆2

G2
+

ϵ

n2

)2

− ϵ2

n2
1

− ϵ2

n2
2

+ 4hϵ

(
∆G1
?
n1

+
∆G2
?
n2

)]

+

(
2

h
+

ϵ4

h3

)[(
?
n1∆G2 +

?
n2∆G1 +

ϵ
?
n1n2

)2

− ϵ2

n1n2

]
(23)

If n1 = n2 = n, we can simplify it as

(24)
d̂2K(G̃

(l)
1 , G̃

(l)
2)− d̂2K(G

(l)
1 , G

(l)
2) ≤

(
2

h
+

ϵ4

h3

)((
2∆2

G1
+ ϵ/n

)2
+
(
2∆2

G2
+ ϵ/n

)2
2h

− ϵ2

n2h

+
2ϵ

?
n
(∆G1

+∆G2
) +

(?
n(∆G1

+∆G2
) +

ϵ

n

)2
− ϵ2

n2

)

After further simplification, we eventually have

d̂2K(G̃
(l)
1 , G̃

(l)
2)− d̂2K(G

(l)
1 , G

(l)
2)≤

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+2∆4

G2
+n(∆G1 +∆G2)

2+
ϵ

?
n
(∆G1 +∆G2)

)
(25)

D.2 PROOF OF THEOREM 2

Proof. For Deep MMD-GK,
Z(l) = σ(U · · ·σ(U

loooooomoooooon

l times

ZW (1)) · · ·W (l))
loooooooomoooooooon

l times
(26)

Similar to proof of Theorem D.1, a perturbation ∆A in A, will ultimately takes effect on Z̃(l) as

Z̃(l) = σ(U ′ · · ·σ(U ′
loooooomoooooon

l times

(Z +∆Z)W
(1)) · · ·W (l))

loooooooomoooooooon

l times
(27)

Denote Z̃(l) = Z(l) + ∆Z(l) where the deviation can be expressed as ∆Z(l) = Z̃(l) − Z(l). Let α be the
minimum node degree of G, we have ∥D̃− 1

2 ∥2≤ (1+α)−1/2. Assume that the norm and ∥Ã∥2≤ (βA +1),
so that ∥U∥2≤ (1 + α)−1βA, ∥U ′∥2≤ p1 + α+ κq

−1
pβA + ∥∆A∥2q where κ = min(1⊤∆A), and ∥U ′ −

U∥22≤ p1 + α+ κq
−2

´

pβA + ∥∆A∥2q
2 − β2

A

¯

. Suppose ∥Z∥F≤ η, ∥W (l)∥2≤ βW (l) , and the activation

20

Published as a conference paper at ICLR 2024

function σ is ρ-Lipschitz continuous. Based on Eq. 26, ∥Z(l−1)∥F≤ ρl−1(βA

1+α)
l−1
∏l−1

i=1 βW (i)∥Z∥F , then
we derive that

∥∆Z(l)∥F≤ρ
∥∥∥U ′Z̃(l−1) − UZ(l−1)

∥∥∥
F
∥W (l)∥2

≤ρ
´

∥U ′∥2∥∆Z(l−1)∥F+∥U ′ − U∥2∥Z(l−1)∥F
¯

∥W (l)∥2

≤ρβW (l) p1 + α+ κq
−1

ˆ

pβA + ∥∆A∥2q ∥∆Z(l−1)∥F+
b

(βA + ||∆A||2)2 − β2
A∥Z

(l−1)∥F
˙

≤ρl
l−1∏
i=1

βW (i) p1 + α+ κq
−l

pβA + ∥∆A∥2q
l
p∥∆Z∥F q

+

l∑
j=0

ρl−j
l∏

i=1+j

βW (i)

˜

a

(βA + ||∆A||2)2 − β2
A

1 + α+ κ

¸l−j

ρj
ˆ

βA

1 + α+ κ

˙j j∏
i=1

βW (i)∥Z∥F

=

ˆ

ρ

1 + α+ κ

˙l l∏
i=1

βW (i)

¨

˝pβA + ∥∆A∥2q
l ∥∆Z∥F+η

l−1∑
j=0

βj
A

ˆ

b

(βA + ||∆A||2)2 − β2
A

˙l−j
˛

‚

(28)

Other things being equal to that of Theorem 1, the deviation in Deep MMD-GK satisfies the following
inequality if n1 = n2 = n,

d̂2K(G̃
(l)
1 , G̃

(l)
2)− d̂2K(G

(l)
1 , G

(l)
2)≤

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+2∆4

G2
+n(∆G1

+∆G2
)2+

ϵ
?
n
(∆G1

+∆G2
)

)
(29)

where ∆G· =
´

ρ
1+α+κ

¯l∏l
i=1 βW (i)

ˆ

pβA + ∥∆A·∥F q
l ∥∆Z∥F+η

∑l−1
j=0 β

j
A

´

a

(βA + ||∆A· ||2)2 − β2
A

¯l−j
˙

.

The implications are similar to Theorem 1 that

1) the deviation in Deep MMD-GK grows bi-quadratically with ∥∆Z∥F ;
2) the deviation would be affected by ∥∆A∥2 growing exponentially with power of l;
3) when ∆A occurs, it also amplifies the perturbation ∥∆Z∥F
4) ∆G1

and ∆G2
take an interaction effect in contaminating Deep MMD-GK.

5) the deviation in Deep MMD-GK is the most significant when n = ϵ3

8(∆G1
+∆G2

)3 .

6) a larger h implies a smoother kernel that may be more robust to perturbations.

E PROOF FOR LEMMAS

E.1 PROOF FOR LEMMA 1

Let α be the minimum node degree of G, we have ∥D̃− 1
2 ∥2≤ (1 + α)−1/2. Suppose ∥A∥2≤ βA, then

∥Ã∥2≤ (1 + βA). We can obtain

∥U∥2≤ ∥D̃− 1
2 ∥2∥Ã∥2∥D̃− 1

2 ∥2≤ (1 + α)−1(1 + βA). (30)

21

Published as a conference paper at ICLR 2024

Similarly, we have

∥U ′∥2 ≤ ∥(D̃′)−
1
2 ∥22

´

∥Ã∥2+∥∆A∥2
¯

≤ p1 + α+ κq
−1

p1 + βA + ∥∆A∥2q (31)

where κ = min(1⊤∆A). It follows that

∥U ′ − U∥2=∥D̃′−
1
2 (Ã+∆A)D̃′−

1
2 − D̃− 1

2 ÃD̃− 1
2 ∥2

=∥D̃′−
1
2 ÃD̃′−

1
2 − D̃′−

1
2 ÃD̃− 1

2 + D̃′−
1
2 ÃD̃− 1

2 − D̃− 1
2 ÃD̃− 1

2 + D̃′−
1
2∆AD̃′−

1
2 ∥2

≤∥D̃′−
1
2 Ã(D̃′−

1
2 − D̃− 1

2)∥2+∥(D̃′−
1
2 − D̃− 1

2)ÃD̃− 1
2 ∥2+∥D̃′−

1
2∆AD̃′−

1
2 ∥2

≤(1 + βA)((1 + α+ κ)−1/2 + (1 + α)−1/2)∥D̃′−
1
2 − D̃− 1

2 ∥2+ p1 + α+ κq
−1 ∥∆A∥2

≤2(1 + βA)(1 + α)−1/2∥D̃′−
1
2 − D̃− 1

2 ∥2+ p1 + α+ κq
−1 ∥∆A∥2

≤2(1 + βA)(1 + α)−1/2(1 + α+ κ)−1/2∥I − D̃′
1
2 D̃− 1

2 ∥2+ p1 + α+ κq
−1 ∥∆A∥2

=∆2(1 + βA)(1 + α)−1/2(1 + α+ κ)−1/2∥∆D∥2+ p1 + α+ κq
−1 ∥∆A∥2

≤2(1 + βA)(1 + α)−1∥∆D∥2+(1 + α+ κ)−1∥∆A∥2

(32)

where ∥∆D∥2= ∥I − D̃′
1
2 D̃− 1

2 ∥2.

∥(U ′)l − U l∥2≤∥U ′∥2∥(U ′)l−1 − U l−1∥2+∥U ′ − U∥2∥U l−1∥2

≤
`

2(1 + βA)(1 + α)−1∥∆D∥2+(1 + α+ κ)−1∥∆A∥2
˘

ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙l−1

+
`

2(1 + βA)(1 + α)−1∥∆D∥2+(1 + α+ κ)−1∥∆A∥2
˘

l−1∑
i=1

ˆ

1 + βA

1 + α

˙l−i ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙i

≤
ˆ

2(1 + βA)∥∆D∥2
1 + α

+
∥∆A∥2

1 + α+ κ

˙

˜

ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙l−1

+

l−1∑
i=1

ˆ

1 + βA

1 + α

˙l−i ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙i
¸

≤2
ˆ

2(1 + βA)∥∆D∥2
1 + α

+
∥∆A∥2

1 + α+ κ

˙ ˆ

1 + βA

1 + α
+

1 + βA + ∥∆A∥2
1 + α+ κ

˙l−1

(33)
The Frobenius norm of the deviation in ∆Z(l) is bounded as

∥∆Z(l)∥F≤∥
`

(U ′)l − U l
˘

Z∥F+∥(U ′)l∆Z∥F
≤∥(U ′)l − U l∥2∥Z∥F+∥U ′∥l2∥∆Z∥F

(34)

22

Published as a conference paper at ICLR 2024

Given Eq. 31, 33, and assume ∥Z∥F≤ η, the bound could be expressed as

∥∆Z(l)∥F≤2η
ˆ

2(1 + βA)∥∆D∥2
1 + α

+
∥∆A∥2

1 + α+ κ

˙ ˆ

1 + βA

1 + α
+

1 + βA + ∥∆A∥2
1 + α+ κ

˙l−1

+

ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙l

∥∆Z∥F

≤2η
ˆ

2(1 + βA)∥∆D∥2+∥∆A∥2
1 + α

˙ ˆ

2(1 + βA) + ∥∆A∥2
1 + α

˙l−1

+

ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙l

∥∆Z∥F

≤2η
ˆ

2(1 + βA)∥∆D∥2+∥∆A∥2
1 + α

˙l

+

ˆ

1 + βA + ∥∆A∥2
1 + α+ κ

˙l

∥∆Z∥F

i
≤2η

ˆ

4βA∥∆D∥2+∥∆A∥2
1 + α

˙l

+

ˆ

2βA + ∥∆A∥2
1 + α+ κ

˙l

∥∆Z∥F ,

(35)
where inequality i used the fact that βA ≥ 1.

E.2 PROOF FOR LEMMA 3

Lemma 4. ex ≤ 1 + x+ x2

2! when x ≤ 0.

First, based on Lemma 4, we can bound ∆k
Z

(l)

(1)

(i, i′) as follows:

∆k
Z

(l)

(1)

(i, i′) = exp

¨

˚

˝

−
∥z(l)i,1 +∆

z
(l)
i,1
− (z

(l)
i′,1 +∆

z
(l)

i′,1
)∥2

hk

˛

‹

‚

− exp

˜

−
∥z(l)i,1 − z

(l)
i′,1∥2

hk

¸

≤ exp

¨

˚

˝

−
∥z(l)i,1 − z

(l)
i′,1∥2+∥∆z

(l)
i,1
−∆

z
(l)

i′,1
∥2−2∥z(l)i,1 − z

(l)
i′,1∥∥∆z

(l)
i,1
−∆

z
(l)

i′,1
∥

hk

˛

‹

‚

− exp

˜

−
∥z(l)i,1 − z

(l)
i′,1∥2

hk

¸

=

»

—

–

exp

¨

˚

˝

−
∥∆

z
(l)
i,1
−∆

z
(l)

i′,1
∥2−2∥z(l)i,1 − z

(l)
i′,1∥∥∆z

(l)
i,1
−∆

z
(l)

i′,1
∥

hk

˛

‹

‚

− 1

fi

ffi

fl

exp

˜

−
∥z(l)i,1 − z

(l)
i′,1∥2

hk

¸

≤

˜

−Σ1,i,i′,l

hk
+

Σ2
1,i,i′,l

4h2
k

¸

exp

˜

−
∥z(l)i,1 − z

(l)
i′,1∥2

hk

¸

(36)
where Σ1,i,i′,l = ∥∆z

(l)
i,1
−∆

z
(l)

i′,1
∥2−2∥zli,1−zli′,1∥∥∆z

(l)
i,1
−∆

z
(l)

i′,1
∥. The related deduction for ∆k

Z
(l)

(2)

(j, j′)

is almost the same as (36) and hence is omitted.

23

Published as a conference paper at ICLR 2024

For ∆k
Z

(l)

(1,2)

(i, j), we have

∆k
Z

(l)

(1,2)

(i, j) = exp

¨

˝−
∥z(l)i,1 +∆

z
(l)
i,1
− z

(l)
j,2 −∆

z
(l)
j,2
∥2

hk

˛

‚− exp

˜

−
∥z(l)i,1 − z

(l)
j,2∥2

hk

¸

≥ exp

¨

˝−
∥z(l)i,1 − z

(l)
j,2∥2+∥∆z

(l)
i,1

+∆
z
(l)
j,2
∥2+2∥z(l)i,1 − z

(l)
j,2∥∥∆z

(l)
i,1

+∆
z
(l)
j,2
∥

hk

˛

‚− exp

˜

−
∥z(l)i,1 − z

(l)
j,2∥2

hk

¸

i
≥

ˆ

1− 1

hk
∥∆

z
(l)
i,1

+∆
z
(l)
j,2
∥2

˙ ˆ

1− 2

hk
∥z(l)i,1 − z

(l)
j,2∥∥∆z

(l)
i,1

+∆
z
(l)
j,2
∥

˙

e
−

∥z(l)
i,1

−z
(l)
j,2

∥2

hk − e
−

∥z(l)
i,1

−z
(l)
j,2

∥2

hk

(37)
where inequality i used the fact ex > 1 + x.

E.3 PROOF FOR LEMMA 4

Proof. We want to show f(x) > 0 for all x, where f : (−∞, 0] → R is the function defined by f(x) =

1+x+ x2

2! + · · ·+
xn

n − ex. Since f(x)→∞ as x→ −∞, f must attain an absolute minimum somewhere
on the interval (−∞, 0].

1. If f has an absolute minimum at 0, then for all x, f(x) ≥ f(0) = 1− e0 = 0, so it is proved.

2. If f has an absolute minimum at y for some y < 0, then f ′(y) = 0. But differentiating f ,

f ′(y) = 1 + y +
y2

2!
+ · · ·+ yn−1

(n− 1)!
− ey = f(y)− yn

n!
.

Set n = 2. For all x ≤ 0, f(x) ≥ f(y) = y2

4 + f ′(y) = y2

4 > 0. Then f(x) = 1 + x+ x2

4 − ex > 0, which
means that

ex ≤ 1 + x+
x2

4

E.4 PROOF FOR LEMMA 2

Proof. Given that ∥X∥2≤ βX , ∥Y ∥2≤ βY , ∥D̃−1/2
i,: ∥2≤ (1 + α)−1/2, ∥D̃− 1

2 ∥2≤ (1 + α)−1/2, ∥Ã∥2≤
(1+βA), and ∥U∥2≤ (1+α)−1(1+βA) in Eq. 30, we then obtain the following upper bound step by step:

∥z(l)i,· − z
(l)
i′,·∥

=∥Ui,:U
l−1Z − Ui′,:U

l−1Z∥
≤∥Ui,: − Ui′,:∥∥U l−1∥2∥Z∥2
≤∥D̃−1/2

i,: ÃD̃−1/2 − D̃
−1/2
i′,: ÃD̃−1/2∥∥U∥l−1

2 ∥Z∥2

≤∥D̃−1/2
i,: − D̃

−1/2
i′,: ∥∥Ã∥2∥D̃

−1/2∥2∥U∥l−1
2 ∥Z∥2

≤(∥D̃−1/2
i,: ∥+∥D̃−1/2

i′,: ∥)(1 + βA)(1 + α)−1/2(1 + α)−l+1(1 + βA)
l−1∥Z∥2

≤2(1 + α)−1/2(1 + βA)
l(1 + α)−l+1/2(∥X∥2+∥Y ∥2)

≤2(1 + α)−l(1 + βA)
l(βX + βY)

(38)

24

Published as a conference paper at ICLR 2024

Suppose ∥Xi∥2≤ βX , ∥Yi∥2≤ βY , ∥Ai∥≤ βA and ∥D̃− 1
2

i ∥2≤ (1 + α)−1/2 ∀i = 1, 2, we have ∥Ui∥≤
(1 + α)−1(1 + βA). Consequently, we then find the same upper bound for ∥z(l)i,1 − z

(l)
j,2∥:

∥z(l)i,1 − z
(l)
j,2∥

=∥U1,i,:U
l−1
1 Z1 − U2,j,:U

l−1
2 Z2∥

≤∥U1,i,:U
l−1
1 Z1∥+∥U2,j,:U

l−1
2 Z2∥

≤∥U1,i,:∥∥U l−1
1 ∥2∥Z1∥2+∥U2,j,:∥∥U l−1

2 ∥2∥Z2∥2
≤∥D̃1,i,:∥∥Ã1∥∥D̃−1/2

1 ∥∥U1∥l−1
2 ∥Z1∥2+∥D̃2,j,:∥∥Ã2∥∥D̃−1/2

2 ∥∥U2∥l−1
2 ∥Z2∥2

≤2(1 + α)−1/2(1 + βA)(1 + α)−1/2(1 + α)−l+1(1 + βA)
l−1(βX + βY)

≤2(1 + α)−l(1 + βA)
l(βX + βY)

(39)

F GENERALIZATION ERROR FOR SUPERVISED LOSS

For the convenience, we write LSCL = l(W, r) to highlight its dependence on W and r = (Zu, Cu, Zv, Cv),
a pair of graph u and v in the training data. Let WD := {W (i)}Li=1 be the parameters learned from the
training data D through Algorithm 1. By removing the i-th element in D with N total pairs of graphs, we
define D\i = {r1, · · · , ri−1, ri+1, · · · , rN}. To get bounds on the generalization error, we consider that a
stronger notion of stability will allow us to get tighter bounds, one of which is the uniform stability (Bousquet
& Elisseeff, 2002; Feldman & Vondrak, 2019). The uniform stability of an algorithm determines its stability
when one of the training data is removed. The goal is to find ω such that for any training set D and any pair
ri, the following inequality holds:

sup
{u,v}
|l(WD, Zu, Zv)− l(WD\i , Zu, Zv)|≤ ω ∀i ∈ {1, · · · , N} (40)

Theorem 5. Given the parameters are known, and d2u,v(WD) ≤ τ for any pairs of graphs u, v, Algorithm 1
with the supervised contrastive loss (Eq. 8) is guaranteed with a uniform stability parameters ω as below

ω = 4Ψ+ 2γτ + 2 log p1 + Ψq , (41)

where Ψ = γ
´

2
h2 + ϵ4

h4

¯ ´

2∆4
G + 2n∆2

G + ϵ?
n
∆G

¯

, and the deviation in graph via learned parameters is

denoted as ∆G = η
´

ρβA

1+α

¯l∑l
j=0

ˆ∏l
t=1+j βW

(t)

D\i

∏j
t=1∥W

(j)

D\i −W
(j)
D ∥F

˙

.

Proof. Given that suv = exp(−γd2uv), we denote squared MMD d2uv := d2uv(WD) as a function of the
parameters learned from the training dataset D.

(42)
|l(WD, Zu, Zv)− l(WD\i , Zu, Zv)|=

∣∣∣∣γ · (d2uv(WD\i)− d2uv(WD)
)
+

log

∑
k I[Cu=Ck,u̸=k] exp(−γd2uk(WD\i))) + α

∑
k I[Cu ̸=Ck] exp(−γd2uk(WD\i)))∑

k I[Cu=Ck,i̸=k] exp(−γd2ik(WD)) + α
∑

k I[Cu ̸=Ck] exp(−γd2uk(WD))

∣∣∣∣
25

Published as a conference paper at ICLR 2024

Similar to the Eq. 28, we derive that

∥∆Z(l)∥F≤ρ∥U∥2
∥∥∥Z̃(l−1)W

(l)

D\i − Z(l−1)W
(l)
D

∥∥∥
F

≤ρ(1 + α)−1βA

´

∥∆Z(l−1)∥F ∥W (l)

D\i∥F+∥Z(l−1)∥F ∥W (l)

D\i −W
(l)
D ∥F

¯

≤ρ(1 + α)−1βA

´

β
W

(l)
D
∥∆Z(l−1)∥F+∥W (l)

D\i −W
(l)
D ∥F ∥Z

(l−1)∥F
¯

≤ρl
ˆ

βA

1 + α

˙l l∏
t=1

β
W

(t)

D\i
∥∆Z∥F+

l∑
j=0

¨

˝ρl
ˆ

βA

1 + α

˙l l∏
t=1+j

β
W

(t)

D\i

j∏
t=1

∥W (j)

D\i −W
(j)
D ∥F ∥Z∥F

˛

‚

≤η
ˆ

ρβA

1 + α

˙l l∑
j=0

¨

˝

l∏
t=1+j

β
W

(t)

D\i

j∏
t=1

∥W (j)

D\i −W
(j)
D ∥F

˛

‚.

(43)
And eventually, we obtain the worst-case difference as

E1 =∆ sup
{u,v}

ˇ

ˇd2uv(WD\i)− d2uv(WD)
ˇ

ˇ

≤ sup
{u,v}

ˇ

ˇ

ˇ

ˇ

ˆ

4

h2
+

2ϵ4

h4

˙ ˆ

2∆4
G1

+ 2∆4
G2

+ n(∆G1
+∆G2

)2 +
ϵ

?
n

p∆G1
+∆G2

q

˙
ˇ

ˇ

ˇ

ˇ

≤
ˆ

4

h2
+

2ϵ4

h4

˙ ˆ

2∆4
G1

+ 2∆4
G2

+ n(∆G1 +∆G2)
2 +

ϵ
?
n

p∆G1 +∆G2
q

˙

(44)

where ∆Gi = η
´

ρβA

1+α

¯l∑l
j=0

ˆ∏l
t=1+j βW

(t)

D\i

∏j
t=1∥W

(j)

D\i −W
(j)
D ∥F

˙

for all i = 1, 2. The worst-

case scenario for the logarithmic term would be when the numerator is maximized, and the denominator is
minimized, or vice versa. Let’s denote this worst-case ratio as E2:

E2 =∆ sup
u

ˇ

ˇ

ˇ

ˇ

log

∑
k I[Cu=Ck,u ̸=k] exp(−γd2uk(WD\i)) + α

∑
k I[Cu ̸=Ck] exp(−γd2uk(WD\i))∑

k I[Cu=Ck,i̸=k] exp(−γd2ik(WD)) + α
∑

k I[Cu ̸=Ck] exp(−γd2uk(WD))

ˇ

ˇ

ˇ

ˇ

(45)

Based on Lemma 4, the exponential term in Eq. 45 has the following inequality:

exp(−γd2uk(WD\i)) ≤ exp
`

−γ(d2uk(WD\i)− d2uk(WD))
˘

/exp(−γd2uk(WD))

≤
ˆ

1− γ
`

d2uk(WD\i)− d2uk(WD\i)
˘

+
γ2

4

`

d2uk(WD\i)− d2uk(WD)
˘2

˙

· eγd
2
uk(WD)

≤
ˆ

1 + γ
ˇ

ˇd2uk(WD\i)− d2uk(WD\i)
ˇ

ˇ +
γ2

4

ˇ

ˇd2uk(WD\i)− d2uk(WD)
ˇ

ˇ

2
˙

· eγd
2
uk(WD)

=
´

1 +
γ

2

ˇ

ˇd2uk(WD\i)− d2uk(WD)
ˇ

ˇ

¯2

· eγd
2
uk(WD)

≤
ˆ

1 +
γ

2

ˆ

4

h2
+

2ϵ4

h4

˙ ˆ

2∆4
G1

+ 2∆4
G2

+ n(∆G1
+∆G2

)2 +
ϵ

?
n

p∆G1
+∆G2

q

˙˙2

· eγd
2
uk(WD)

(46)

For arbitrary two graphs u, v, assume their pairwise squared distance d2u,v(WD) ≤ τ . Denote θ+u as the
number of other graphs with the same label as graph u, and θ−u as the number of other graphs with a
different label from graph u, we then rewrite the expression for E2:

26

Published as a conference paper at ICLR 2024

E2 ≤ sup
u

∣∣∣∣[γτ + log(θ+u + αθ−u)

+ 2 log

(
1 +

γ

2

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+ 2∆4

G2
+ n(∆G1 +∆G2)

2 +
ϵ

?
n
(∆G1 +∆G2)

))]
+ γτ − log(θ+u + αθ−u)

∣∣∣∣
= 2γτ + 2 log

(
1 +

γ

2

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+ 2∆4

G2
+ n(∆G1

+∆G2
)2 +

ϵ
?
n
(∆G1

+∆G2
)

))
(47)

By combining Eq. 44, the supremum of the entire expression would be

(48)sup
{u,v}
|l(WD, Zu, Zv)− l(WD\i , Zu, Zv)|≤ γE1 + E2

≤ γ

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+ 2∆4

G2
+ n(∆G1 +∆G2)

2 +
ϵ

?
n
(∆G1 +∆G2)

)
+

+2γτ + 2 log

(
1 +

γ

2

(
4

h2
+

2ϵ4

h4

)(
2∆4

G1
+ 2∆4

G2
+ n(∆G1

+∆G2
)2 +

ϵ
?
n
(∆G1

+∆G2
)

))
=4γ

(
2

h2
+

ϵ4

h4

)(
2∆4

G+2n∆2
G+

ϵ
?
n
∆G

)
+2γτ+2 log

(
1+γ

(
2

h2
+

ϵ4

h4

)(
2∆4

G+2n∆2
G+

ϵ
?
n
∆G

))
=∆ ω

where ∆G = η
´

ρβA

1+α

¯l∑l
j=0

ˆ∏l
t=1+j βW

(t)

D\i

∏j
t=1∥W

(j)

D\i −W
(j)
D ∥F

˙

.

G THEORETICAL AND EMPIRICAL COMPLEXITY

G.1 COMPLEXITY ANALYSIS

Proof for Theorem 3

Proof. For the embedding propagation step, it requires O(Lmd) runtimes. In the kernel mapping step, we
get a pairwise kernel value by calculating the generalized MMD. With a single kernel, it needs O(n2d)
runtimes. Consider a kernel family K with a size of κ, the complexity of this part is O(κn2d). Overall, the
one pairwise MMD-GK is computed in O(Lmd + κn2d) and for N graphs, the complexity of all pairs is
O(NLmd+N2κn2d).

Proof for Theorem 4

Proof. For the embedding propagation step, it requiresO(Lnd2+Lmd) runtimes. Other things being equal
to MMD-GK, one pairwise Deep MMD-GK is therefore computed in O(Lnd2 + Lmd + κn2d). For N
graphs, the complexity of all pairs is O(NLnd2 +NLmd+N2κn2d).

27

Published as a conference paper at ICLR 2024

0 200 400 600 800 1000
Avg. Num of Nodes

0

250

500

750

1000

1250

1500

1750

2000
Se

co
nd

 (s
)

L-level
5
4
3
2
1

50 100
0

20

40
zoom

101 102 103

Avg. Num of Nodes

100

101

102

103

Se
co

nd
 (s

)

L-level
5
4
3
2
1

Figure 3: Runtimes Performance of MMD-GK computation with 1000 synthetic graphs and one RBF kernel
|K|= 1. We report both normal and log-scale runtime with different levels (L) of node features, where
L ∈ {1, 2, 3, 4, 5}.

G.2 RUNTIME ANALYSIS

Following the setting of Togninalli et al. (2019), we conducted a simulation using a consistent number
of graphs while varying the average node number per graph, to assess the performance of our MMD-GK
approach with respect to the average number of nodes. Specifically, we generated 1000 synthetic graphs
with the same node feature’s dimension d = 20. For each graph, we generate the number of nodes (n) based
on a normal distribution centered on an average node number, and the number of edges m is controlled
between n and 5n. For each level of node features L ∈ {1, 2, 3, 4, 5}, we applied the MMD-GK with a
single Radial Basis Function (RBF) kernel (i.e. |K|= 1) to measure and compare runtimes over the different
average number of nodes n. From Figure 3, the runtimes increase the runtimes increase with the square of
the number of nodes n2, which is modulated by the number of levels L. In practical terms, the graph on
normal scales suggests a linear trend, especially for graphs with a smaller number of nodes. As the number
of nodes increases, the complexity term involving n2 might become more dominant, which could explain
the superlinear growth observed, particularly at higher levels of L. This is consistent with the theoretical
complexity, which posits that as L and n increase, the runtimes should increase correspondingly. The log
scale also helps to visualize the dramatic impact of the n2 term as the number of nodes grows.

We also compare our approaches to four graph kernels on the synthetic graphs. For the Graphlet kernel,
k = 5; for the Weisfeiler-Lehman Subtree kernel, h = 5; for our MMD-GK and Deep MMD-GK, L = h,
κ = 1 and d = 1. m is held constant across the kernels. All methods are performed ten times. Table 4
indicates that our approaches are competitive with the existing graph kernel methods.

H EXPERIMENT SETTINGS

Configuration DHFR, BZR, and PROTEINS have node attributes whereas MUTAG and PTC FM only
contain node labels. For GNN-related methods, we transform the categorical node label to one-hot embed-
ding. We evaluate our approaches exhaustively on all possible graph distributions for each dataset in Table
5, i.e. for datasets without node labels, Z = Y ; and for datasets with node labels, Z = X or Z = Y or
Z = (X,Y). To avoid over-smoothing, we set the number of level L ∈ {1, 2, 3, · · · , 10} for MMD-GKs
and L ∈ {1, 2, 3, 4} for Deep MMD-GKs and adopt a Gaussian kernel family with bandwidth h ∈ {1e-2,
1e-1, 1e0, 1e1, 1e2}. For distance-to-similarity, we explore scenarios when γ ∈ {1e-1, 1e0, 1e1}. For

28

Published as a conference paper at ICLR 2024

Table 4: Total computation time for 10 runs on 1000 synthetic graphs with an average of 20 nodes and 50
edges.

Graph Kernel Total Runtime

Graphlet 120.4s
Shortest Path 30.3.s
Weisfeiler-Lehman Subtree 26.4 s
Wasserstein Weisfeiler-Lehman 211.0s

MMD-GK 29.2s
Deep MMD-GK 31.2s

Table 5: Description of the benchmark datasets DHFR, BZR, MUTAG, PTC FM and PROTEINS

Dataset DHFR BZR MUTAG PTC FM PROTEINS

Num. of graphs 467 405 188 349 1113
Num. of graph labels 2 2 2 2 2

Dim. of node attributes 3 3 / / 29
Num. of node labels 9 10 7 18 3

Avg. number of nodes 42.43 35.75 17.93 14.11 39.06
Avg. number of edges 44.54 38.36 19.79 14.48 72.82

Label Proportion 461/295 319/86 125/63 206/143 663/450

Deep MMD-GK, we implement the algorithm in Pytorch with σ set as LeakyRelu activation and λ fixed
to be 0.33 which means there are around one-third of pairs selected as negative samples in unsupervised
contrastive loss. All Deep MMD-GKs are trained for 300 epochs with a batch size of 128, using Adam
optimizer (Kingma & Ba, 2015) at 1e-2 initial learning rate. For graph clustering, we adopt MMD-GK
and unsupervised Deep MMD-GK as the precomputed affinity matrix to run Spectral Clustering (Pedregosa
et al., 2011). For graph classification, we use a binary C-SVM (Chang & Lin, 2011) and report the average
of test accuracy across the 10 folds within the cross-validation. The parameter C for each fold is tuned from
{1e0, 1e1, 1e2}. For the graph kernel baselines, we report the best performances across all parameters:
depth of the subtree h ∈ {1, 2, 3, 4, 5} for WL Kernel; graphlet size k ∈ {3, 4, 5, 6} for Graphlet Kernel.
For other baselines, we set their parameters according to their original papers.

Evaluation Metrics For the graph classification task, we use the accuracy which is defined as a ratio of
the correct predictions. For the graph clustering task, we use the following scores to evaluate the result:
1) ACC (Accuracy): Represents the proportion of the total number of predictions that are correct; 2) NMI
(Normalized Mutual Information): Measures the mutual information of the true and predicted clusterings,
normalized to have values between 0 (no mutual information, or independent labelings) and 1 (perfect cor-
relation); ARI (Adjusted Rand Index): Evaluates the similarity of two clusterings, adjusted for chance. ARI
ranges between -1 and 1, with 1 indicating a perfect match, 0 indicating random labeling, and negative values
indicating a bad match.

29

Published as a conference paper at ICLR 2024

I PARAMETER SENSITIVITY

(a) Clustering Accuracy (b) Clustering NMI (c) Clustering ARI

Figure 4: Parameter Sensitivity of MMD-GK on the dataset BZR; comparison of scores with change in level
l (x-axis) and graph distribution PZ (Z = X in blue, Z = Y in green and Z = (X,Y) in red).

(a) Clustering Accuracy (b) Clustering NMI (c) Clustering ARI

Figure 5: Parameter Sensitivity of MMD-GK on the dataset DHFR; Comparison of scores with change in
level l (x-axis) and graph distribution PZ (Z = X in blue, Z = Y in green and Z = (X,Y) in red).

(a) Clustering Accuracy (b) Clustering NMI (c) Clustering ARI

Figure 6: Parameter Sensitivity of MMD-GK on the dataset PTC FM; Comparison of scores with change in
level l (in x-axis).

30

Published as a conference paper at ICLR 2024

J DEEP MMD-GK CONVERGENCE

4.8

5

5.2

5.4

0 50 100 150 200 250 300

(a) Training Loss (loss-iteration)

0.81

0.83

0.85

0.87

0.89

0.91

0 50 100 150 200 250 300

(b) Test SVM Accuracy(score-iteration)

Figure 7: Convergence in training supervised Deep MMD-GK on the benchmark dataset MUTAG.

K ADDITIONAL RESULTS

In this section, we present detailed tables showcasing the performance evaluation of both supervised and
unsupervised models on two datasets: MUTAG and PTC FM. These tables provide a comprehensive break-
down of the results, factoring in various parameters such as loss type (SCL, KL, UCL), levels (l-level), and
tuning parameters (α and γ). Each table is accompanied by a caption that highlights the best performance
metrics in bold, aiding in the quick identification of the most effective parameter configurations.

Performance Trends Increasing γ values generally lead to better performance in supervised models on the
MUTAG dataset, suggesting that this parameter positively influences the model’s ability to learn from this
particular dataset. The l-level seems to have a less consistent impact, but higher levels do not always equate
to better performance, indicating a complex interaction with the dataset’s characteristics. Supervised models
outperform unsupervised models in most configurations, which could be due to the additional guidance
provided by labeled data.

Model Behavior For graph classification, simpler models (lower l-levels) may perform better, whereas, for
graph clustering, more complex ones with KL loss (higher l-levels) may perform better. The varying per-
formance across different l-levels and hyperparameter settings for the two datasets (MUTAG and PTC FM)
implies that these models respond differently to distinct data characteristics, such as graph distribution and
class imbalances.

31

Published as a conference paper at ICLR 2024

Table 6: Supervised Model Evaluation on MUTAG. The best performance is highlighted in bold.

Loss l-level α γ SVC

SCL 1 0.1 0.1 0.665± 0.009
SCL 1 0.1 1 0.808± 0.060
SCL 1 0.1 10 0.883± 0.054
SCL 1 1 0.1 0.665± 0.009
SCL 1 1 1 0.830± 0.041
SCL 1 1 10 0.904± 0.032
SCL 1 10 0.1 0.670± 0.011
SCL 1 10 1 0.835± 0.049
SCL 1 10 10 0.915 ± 0.065
SCL 2 0.1 0.1 0.681± 0.028
SCL 2 0.1 10 0.909± 0.054
SCL 2 0.1 1 0.819± 0.025
SCL 2 1 0.1 0.665± 0.009
SCL 2 1 1 0.814± 0.040
SCL 2 1 10 0.893± 0.029
SCL 2 10 0.1 0.670± 0.009
SCL 2 10 1 0.819± 0.025
SCL 2 10 10 0.888± 0.040

SCL 3 0.1 0.1 0.676± 0.009
SCL 3 0.1 1 0.825± 0.038
SCL 3 0.1 10 0.857± 0.035
SCL 3 1 0.1 0.686± 0.0169
SCL 3 1 1 0.819± 0.054
SCL 3 1 10 0.840± 0.031
SCL 3 10 0.1 0.713± 0.039
SCL 3 10 1 0.851± 0.043
SCL 3 10 10 0.888± 0.085

SCL 4 0.1 0.1 0.734± 0.043
SCL 4 0.1 1 0.841± 0.075
SCL 4 0.1 10 0.745± 0.044
SCL 4 1 0.1 0.719± 0.027
SCL 4 1 1 0.792± 0.030
SCL 4 1 10 0.745± 0.024
SCL 4 10 0.1 0.857± 0.063
SCL 4 10 1 0.872± 0.061
SCL 4 10 10 0.761± 0.022

32

Published as a conference paper at ICLR 2024

Table 7: Unsupervised Model Evaluation on MUTAG. The best performance across each loss is highlighted
in bold.

Loss l-level α γ ACC NMI ARI SVC

KL 1 – 0.1 0.713 0.147 0.177 0.665± 0.009
KL 1 – 1 0.718 0.152 0.186 0.873± 0.026
KL 1 – 10 0.750 0.172 0.244 0.899± 0.019

KL 2 – 0.1 0.702 0.148 0.159 0.873± 0.026
KL 2 – 1 0.723 0.157 0.195 0.893± 0.029
KL 2 – 10 0.723 0.152 0.186 0.873± 0.026

KL 3 – 0.1 0.745 0.249 0.236 0.665± 0.009
KL 3 – 1 0.840 0.459 0.461 0.893± 0.009
KL 3 – 10 0.840 0.432 0.454 0.894± 0.021

KL 4 – 0.1 0.846 0.468 0.476 0.713± 0.009
KL 4 – 1 0.819 0.440 0.405 0.883± 0.009
KL 4 – 10 0.840 0.459 0.461 0.910 ± 0.047

UCL 1 0.1 0.1 0.713 0.141 0.177 0.665± 0.009
UCL 1 0.1 1 0.713 0.141 0.177 0.819± 0.054
UCL 1 0.1 10 0.750 0.172 0.244 0.893± 0.058
UCL 1 1 0.1 0.713 0.141 0.177 0.665± 0.009
UCL 1 1 1 0.713 0.141 0.177 0.83± 0.069
UCL 1 1 10 0.745 0.166 0.233 0.910 ± 0.026
UCL 1 10 0.1 0.713 0.147 0.177 0.665± 0.009
UCL 1 10 1 0.713 0.141 0.177 0.824± 0.049
UCL 1 10 10 0.745 0.166 0.233 0.910 ± 0.045
UCL 2 0.1 0.1 0.713 0.167 0.177 0.665± 0.009
UCL 2 0.1 1 0.729 0.172 0.205 0.814± 0.079
UCL 2 0.1 10 0.750 0.181 0.240 0.878± 0.068
UCL 2 1 0.1 0.734 0.167 0.214 0.665± 0.009
UCL 2 1 1 0.745 0.175 0.234 0.819± 0.072
UCL 2 1 10 0.750 0.164 0.241 0.888± 0.048
UCL 2 10 0.1 0.729 0.152 0.204 0.665± 0.009
UCL 2 10 1 0.713 0.167 0.176 0.815± 0.117
UCL 2 10 10 0.750 0.170 0.243 0.910 ± 0.052
UCL 3 0.1 0.1 0.766 0.207 0.276 0.665± 0.009
UCL 3 0.1 1 0.750 0.207 0.246 0.830± 0.046
UCL 3 0.1 10 0.771 0.174 0.274 0.856± 0.039
UCL 3 1 0.1 0.761 0.221 0.268 0.665± 0.009
UCL 3 1 1 0.750 0.233 0.246 0.846± 0.046
UCL 3 1 10 0.739 0.211 0.217 0.861± 0.054
UCL 3 10 0.1 0.739 0.175 0.225 0.665± 0.009
UCL 3 10 1 0.761 0.234 0.268 0.798± 0.098
UCL 3 10 10 0.761 0.237 0.255 0.836± 0.049

UCL 4 0.1 0.1 0.787 0.320 0.324 0.676± 0.018
UCL 4 0.1 1 0.798 0.252 0.345 0.824± 0.027
UCL 4 0.1 10 0.787 0.252 0.314 0.761± 0.035
UCL 4 1 0.1 0.793 0.249 0.328 0.670± 0.009
UCL 4 1 1 0.787 0.248 0.312 0.803± 0.029
UCL 4 1 10 0.787 0.247 0.323 0.740± 0.019
UCL 4 10 0.1 0.771 0.266 0.291 0.692± 0.009
UCL 4 10 1 0.787 0.338 0.327 0.819± 0.059
UCL 4 10 10 0.798 0.244 0.345 0.868± 0.034

33

Published as a conference paper at ICLR 2024

Table 8: Supervised Model Evaluation on PTC FM. The best performance is highlighted in bold.

Loss l-level α γ SVC

SCL 1 1 0.1 0.639± 0.014
SCL 1 1 1 0.659± 0.029
SCL 1 1 10 0.613± 0.027
SCL 1 10 10 0.633± 0.031
SCL 1 10 1 0.667 ± 0.032
SCL 2 1 0.1 0.648± 0.025
SCL 2 1 1 0.662± 0.043
SCL 2 1 10 0.633± 0.030
SCL 2 10 1 0.665± 0.045
SCL 2 10 10 0.605± 0.019

SCL 3 1 1 0.659± 0.040
SCL 3 1 10 0.613± 0.027
SCL 3 10 1 0.665± 0.026
SCL 3 10 10 0.619± 0.047

SCL 4 1 1 0.662± 0.047
SCL 4 1 10 0.625± 0.032
SCL 4 10 1 0.656± 0.026
SCL 4 10 10 0.610± 0.029

Table 9: Unsupervised Model Evaluation on PTC FM. The best performance across each loss is highlighted
in bold.

Loss l-level α γ ACC NMI ARI SVC

KL 1 1 1 0.567 0.009 0.014 0.659 ± 0.032
KL 1 1 10 0.625 0.076 0.035 0.610± 0.023

KL 2 1 1 0.619 0.022 0.042 0.653± 0.028
KL 2 1 10 0.616 0.044 0.025 0.636± 0.032

KL 3 1 1 0.599 0.014 0.030 0.650± 0.006
KL 3 1 10 0.648 0.073 0.065 0.653± 0.048

KL 4 1 1 0.642 0.042 0.066 0.633± 0.019
KL 4 1 10 0.599 0.021 0.007 0.619± 0.027

UCL 1 1 1 0.630 0.031 0.057 0.668 ± 0.028
UCL 1 1 10 0.625 0.052 0.035 0.616± 0.043

UCL 2 1 1 0.625 0.029 0.054 0.665± 0.053
UCL 2 1 10 0.607 0.040 0.016 0.636± 0.014

UCL 3 1 1 0.616 0.024 0.046 0.650± 0.028
UCL 3 1 10 0.599 0.021 0.007 0.607± 0.021

UCL 4 1 1 0.625 0.028 0.053 0.651± 0.017
UCL 4 1 10 0.599 0.021 0.007 0.630± 0.013

34

	Introduction
	Preliminary
	Vanilla MMD Graph Kernel
	MMD between Graphs
	Vanilla MMD-GK
	Robustness Analysis

	Deep MMD-Graph Kernel
	Robustness Analysis
	Generalization Error Bound of Supervised Learning
	Computational Complexity Analysis

	Related Work
	Experiments
	Conclusion
	Related Work
	Graph Similarity
	Maximum Mean Discrepancy

	Example Illustration
	Algorithm of MMD-GK
	Robustness Analysis

	Proof for Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Proof for Lemmas
	Proof for Lemma 1
	Proof for Lemma 3
	Proof for Lemma 4
	Proof for Lemma 2

	Generalization Error for Supervised Loss
	Theoretical and Empirical Complexity
	Complexity Analysis
	Runtime Analysis

	Experiment Settings
	Parameter Sensitivity
	Deep MMD-GK Convergence
	Additional Results

