
Published in Transactions on Machine Learning Research (08/2024)

A Proofs for Section 3

In this section, we provide the proofs for Section 3 in the following order. We first prove the derivative of
the empirical Gibbs loss in Proposition 2. Then, we show in Proposition 7 that for meaningful posteriors
(depends on training data), the derivative won’t be zero. Before proving Proposition 3 and Theorem 4, we
first provide Proposition 8, stating an alternative expression of the derivative of the Bayes loss. The proofs of
Proposition 3 and Theorem 4 then follow from that.

A.1 Proof of Proposition 2

We first show a slightly more general result of d

d⁄
Ep⁄

[f(◊)] for any function f(◊) that is independent of ⁄. Recall
that the posterior p⁄(◊|D) Ã p(D|◊)⁄

p(◊). With the fact that d

d⁄

!
p(D|◊)⁄

p(◊)
"

= ln(p(D|◊))p(D|◊)⁄
p(◊),

the derivative

d

d⁄
Ep⁄

[f(◊)] = Ep⁄
[ln p(D|◊)f(◊)] ≠ Ep⁄

[ln p(D|◊)]Ep⁄
[f(◊)] = COVp⁄

(ln p(D|◊), f(◊)) , (19)

where we denote COV(X, Y) as the covariance of X and Y . Hence, the derivative of the empirical Gibbs loss

d

d⁄
Ĝ(p⁄, D) = d

d⁄
Ep⁄

[≠ ln p(D|◊)] = COVp⁄
(ln p(D|◊), ≠ ln p(D|◊)) = ≠Vp⁄

(ln p(D|◊)) .

A.2 Proposition 7

Proposition 7. For any ⁄ > 0 and D ”= ÿ, if the tempered posterior p⁄(◊|D) Ã p(D|◊)⁄
p(◊) satisfies

Vp⁄
(ln P (D|◊)) = 0, then, p⁄(◊|D) = p(◊).

Proof. First of all, note that the tempered posterior is defined as

p⁄(◊|D) = p(D|◊)⁄
p(◊)s

◊ p(D|◊)⁄p(◊)
.

Then,

Vp⁄
(ln p(D|◊)) = 0 =∆

⁄

◊
p⁄(◊|D) (ln p(D|◊) ≠ Ep⁄

[ln p(D|◊)])2 = 0

Thus, for any ◊ œ supp(p⁄), it verifies that

ln p(D|◊) = Ep⁄
[ln p(D|◊)] .

That is, ln p(D|◊) is constant in the support of p⁄. Let c denote such constant, then

p⁄(◊|D) = e
c⁄

p(◊)s
◊ ec⁄p(◊)

= e
c⁄

p(◊)
ec⁄

s
◊ p(◊)

= p(◊) .

⇤

A.3 Proof of Proposition 3 and Theorem 4

In order to prove Proposition 3 and Theorem 4, we first show in Proposition 8 that the derivative of the
Bayes loss of the tempered posterior p⁄ can be expressed by the di�erence between the empirical Gibbs loss
of p̄⁄ and the empirical Gibbs loss of p⁄.
Proposition 8. The derivative of the Bayes loss of the tempered posterior p⁄ can be expressed by

d

d⁄
B(p⁄) = Ĝ(p̄⁄, D) ≠ Ĝ(p⁄, D) . (20)

20

Published in Transactions on Machine Learning Research (08/2024)

Proof. By definition,

d

d⁄
B(p⁄) = d

d⁄
E‹ [≠ lnEp⁄

[p(y|x, ◊)]] = ≠E‹

5
d

d⁄
lnEp⁄

[p(y|x, ◊)]
6

,

where
d

d⁄
lnEp⁄

[p(y|x, ◊)] =
d

d⁄
Ep⁄

[p(y|x, ◊)]
Ep⁄

[p(y|x, ◊)] = COVp⁄
(ln p(D|◊), p(y|x, ◊))
Ep⁄

[p(y|x, ◊)]

due to Equation 19. By expanding the covariance, the above formula further equals to

Ep⁄
[ln p(D|◊)p(y|x, ◊)] ≠ Ep⁄

[ln p(D|◊)]Ep⁄
[p(y|x, ◊)]

Ep⁄
[p(y|x, ◊)] = Ep̃⁄

[ln p(D|◊)] ≠ Ep⁄
[ln p(D|◊)] ,

where the probability distribution p̃⁄(◊|D, (y, x)) Ã p⁄(◊|D)p(y|x, ◊). Put everything together, we have

d

d⁄
B(p⁄) = Ep⁄

[ln p(D|◊)] ≠ E‹ [Ep̃⁄
[ln p(D|◊)]] = Ep⁄

[ln p(D|◊)] ≠ Ep̄⁄
[ln p(D|◊)] , (21)

where

p̄⁄(◊|D) = E‹ [p̃⁄(◊|D, (y, x))] = E‹

5
p⁄(◊|D)p(y|x, ◊)
Ep⁄

[p(y|x, ◊)]

6
.

The last equality is because

E‹ [Ep̃⁄
[ln p(D|◊)]] =

⁄

(y,x)

‹(y, x)
⁄

◊
p̃⁄(◊|D, (y, x)) ln p(D|◊) d◊ d(y, x)

=
⁄

◊

⁄

(y,x)

‹(y, x)p̃⁄(◊|D, (y, x)) d(y, x) ln p(D|◊) d◊

=
⁄

◊
E‹ [p̃⁄(◊|D, (y, x))] ln p(D|◊) d◊

= Ep̄⁄
[ln p(D|◊)] .

The last expression in Equation 21 further equals to Ĝ(p̄⁄, D) ≠ Ĝ(p⁄, D) by definition. ⇤

A.3.1 Proof of Proposition 3

Note that for any distribution fl, we have Ĝ(fl, D) := Efl≠ ln p(D|◊) Ø min◊ ≠ ln p(D|◊). On the other hand,
Proposition 8 together with Definition 1 give that the CPE takes place if and only if

d

d⁄
B(p⁄)|⁄=1 = Ĝ(p̄⁄=1, D) ≠ Ĝ(p⁄=1, D) < 0 .

Therefore, it is not possible to have Ĝ(p⁄=1, D) ”> min◊ ≠ ln p(D|◊) and, at the same time, Ĝ(p̄⁄=1
, D) <

Ĝ(p⁄=1, D) because Ĝ(p̄⁄=1
, D) Ø min◊ ≠ ln p(D|◊).

A.3.2 Proof of Theorem 4

It’s easy to see from Proposition 8 that

d

d⁄
B(p⁄)|⁄=1 = Ĝ(p̄⁄=1, D) ≠ Ĝ(p⁄=1, D) = 0

if and only if Ĝ(p̄⁄=1, D) = Ĝ(p⁄=1, D).

21

Published in Transactions on Machine Learning Research (08/2024)

B Proofs for Section 4

B.1 Proof of Proposition 5

First of all, by the definition in Equation 2, and assuming a data-independent prior p(◊|X) = p(◊), the
tempered posterior is given by

p⁄(◊|X, Y) Ã p(Y |X, ◊)⁄
p(◊) ,

where the tempered likelihood fully factorizes as p(Y |X, ◊)⁄ =
r

(y,x)œ(Y ,X)
p(y|x, ◊)⁄. Let a similar but

y-independent function k(◊, X, ⁄) =
r

xœX

s
p(y|x, ◊)⁄

dy.

Therefore, p(Y |X, ◊)⁄
p(◊) = p(Y |X,◊)

⁄

k(◊,X,⁄)
(k(◊, X, ⁄)p(◊)) , where we can let the new prior

q(◊|X, ⁄) Ã p(◊)k(◊, X, ⁄) = p(◊)
Ÿ

xœX

⁄
p(y|x, ◊)⁄

dy ,

and the new posterior

q(Y |X, ◊, ⁄) = p(Y |X, ◊)⁄

k(◊, X, ⁄) =
r

(y,x)œ(Y ,X)
p(y|x, ◊)⁄

r
xœX

s
p(y|x, ◊)⁄ dy

=
Ÿ

(y,x)œ(Y ,X)

q(y|x, ◊) .

B.2 Proof of Proposition 6

The proof is made using di�erential entropy, i.e. assuming continuous target values y. The only assumption
is that Leibniz integral rule holds for q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)), verifying that

d

d⁄

⁄
(q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)) dy =

⁄
d

d⁄
(q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)) dy .

In the case of supervised classification problems, we adopt the Shanon entropy, where equality holds naturally

d

d⁄

ÿ

yœY
(q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)) =

ÿ

yœY

d

d⁄
(q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)) .

From the definition of di�erential entropy, we got that

H(q(y|x, ◊, ⁄)) = ≠
⁄

q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄) dy .

Thus, taking derivative w.r.t. ⁄ and exchanging derivative and integral leads to the following expression

d

d⁄
H(q(y|x, ◊, ⁄)) = ≠

⁄
d

d⁄
(q(y|x, ◊, ⁄) ln q(y|x, ◊, ⁄)) dy = ≠

⁄
(ln q(y|x, ◊, ⁄) + 1) d

d⁄
q(y|x, ◊, ⁄) dy .

Using that
s

d

d⁄
q(y|x, ◊, ⁄)dy = d

d⁄

s
q(y|x, ◊, ⁄)dy = 0, simplifies the expression as

d

d⁄
H(q(y|x, ◊, ⁄)) = ≠

⁄
ln q(y|x, ◊, ⁄) d

d⁄
q(y|x, ◊, ⁄) dy .

Let us consider now the second term inside the integral. Using the derivative of the quotient rule leads to the
following:

d

d⁄
q(y|x, ◊, ⁄) = d

d⁄

p(y|x, ◊)⁄

s
p(y|x, ◊)⁄ dy

= p(y|x, ◊)⁄ ln p(y|x, ◊)s
p(y|x, ◊)⁄ dy

≠
p(y|x, ◊)⁄

s
p(y|x, ◊)⁄ ln p(y|x, ◊) dy

(
s

p(y|x, ◊)⁄ dy)2
.

Where, using the definition of q(y|x, ◊, ⁄), we got that

p(y|x, ◊)⁄ ln p(y|x, ◊)s
p(y|x, ◊)⁄ dy

= q(y|x, ◊, ⁄) ln p(y|x, ◊) ,

22

Published in Transactions on Machine Learning Research (08/2024)

and
p(y|x, ◊)⁄

s
p(y|x, ◊)⁄ ln p(y|x, ◊) dy

(
s

p(y|x, ◊)⁄ dy)2
= q(y|x, ◊, ⁄)

⁄
q(y|x, ◊, ⁄) ln p(y|x, ◊) dy

= q(y|x, ◊, ⁄)Eq[ln p(y|x, ◊)] .

As a result, we got that
⁄

ln q(y|x, ◊, ⁄) d

d⁄
q(y|x, ◊, ⁄) dy = Eq[ln p(y|x, ◊) ln q(y|x, ◊, ⁄)] ≠ Eq[ln q(y|x, ◊, ⁄)]Eq[ln p(y|x, ◊)]

Using q(y|x, ◊, ⁄) definition again:
⁄

ln q(y|x, ◊, ⁄) d

d⁄
q(y|x, ◊, ⁄) dy = Eq[ln p(y|x, ◊) ln p(y|x, ◊)⁄

s
p(y|x, ◊)⁄

] ≠ Eq[ln p(y|x, ◊)⁄

s
p(y|x, ◊)⁄

]Eq[ln p(y|x, ◊)]

Where, expanding the logarithms the denominators cancel each other, leading to
⁄

ln q(y|x, ◊, ⁄) d

d⁄
q(y|x, ◊, ⁄) dy = Eq[ln p(y|x, ◊) ln p(y|x, ◊)⁄] ≠ Eq[ln p(y|x, ◊)⁄]Eq[ln p(y|x, ◊)]

= ⁄V(ln p(y|x, ◊)) Ø 0

As a result, the entropy is negative.

C Proofs for Section 6

C.1 Proof of Equation 14

Note that
d

d⁄
G(p⁄) = d

d⁄
Ep⁄

[L(◊)] = COVp⁄
(ln p(D|◊), L(◊)) = COVp⁄

(≠L̂(D, ◊), L(◊)),

where the second equality is by applying Equation 19. By taking ⁄ = 1, we obtain the desired derivative.

C.2 Proof of Equation 16

Recall from the proof of Theorem 8 that
d

d⁄
B(p⁄) = Ep⁄

[ln p(D|◊)] ≠ Ep̄⁄
[ln p(D|◊)] = Ep̄⁄

[L̂(D, ◊)] ≠ Ep⁄
[L̂(D, ◊)],

where p̄⁄(◊|D) = E‹ [p̃⁄(◊|D, (y, x))] (Equation 6), and p̃⁄(◊|D, (y, x)) Ã p⁄(◊|D)p(y|x, ◊) is the distribution
obtained by updating the posterior p⁄ with one new sample (y, x).

Therefore,

Ep̄⁄
[L̂(D, ◊)] = E‹Ep̃⁄

[L̂(D, ◊)] = E‹

5
Ep⁄

5
p(y|x, ◊)

Ep⁄
[p(y|x, ◊)] L̂(D, ◊)

66
.

By Fubini’s theorem, the above formula further equals to

Ep⁄

5
E‹

5
p(y|x, ◊)

Ep⁄
[p(y|x, ◊)] L̂(D, ◊)

66
= Ep⁄

5
E‹

5
p(y|x, ◊)

Ep⁄
[p(y|x, ◊)]

6
L̂(D, ◊)

6
= Ep⁄

Ë
≠Sp⁄

(◊) · L̂(D, ◊)
È

.

On the other hand, since

Ep⁄
[≠Sp⁄

(◊)] = Ep⁄

5
E‹

5
p(y|x, ◊)

Ep⁄
[p(y|x, ◊)]

66
= E‹

5
Ep⁄

5
p(y|x, ◊)

Ep⁄
[p(y|x, ◊)]

66
= 1 ,

we have
Ep⁄

[L̂(D, ◊)] = Ep⁄
[L̂(D, ◊)]Ep⁄

[≠Sp⁄
(◊)] .

By putting them altogether,
d

d⁄
B(p⁄) = Ep⁄

Ë
≠Sp⁄

(◊) · L̂(D, ◊)
È

≠ Ep⁄
[L̂(D, ◊)]Ep⁄

[≠Sp⁄
(◊)] = ≠COV

1
L̂(D, ◊), Sp⁄

(◊)
2

.

23

Published in Transactions on Machine Learning Research (08/2024)

D Experiment details for Bayesian linear regression on synthetic data with exact
inference

In this section we detail the settings of the toy experiment using synthetic data and exact Bayesian linear
regression in Figure 2. We also show extra results of the derivative of Gibbs loss and Bayes loss w.r.t to ⁄

approximated by samples.

To begin, we will outline the data-generating process for the synthetic data used in the experiment shown
in Figure 2 and Figure 7. We sample x uniformly from the [≠1, 1] interval and pass it through a Fourier
transformation to construct the input of the data. That is, for a sampled x, the input x is constructed by
a 10-dimensional Fourier basis function „(x) = [g1(x), ..., gK(x)]T for K = 10, where the basis functions
are defined as follows: g1(x) = 1Ô

2fi
, and for other odd values of k, gk(x) = 1Ô

fi
sin (kx), whereas for even

values of k, gk(x) = 1Ô
fi

cos (kx). The distribution of the output y œ R given an input x, denoted as ‹(y|x),

follows a Normal distribution with mean 1
T x and variance 1.0, where 1 is an all-ones vector. That is,

‹(y|x) = N (1T x, 1.0).

In our experiment, the likelihood model and the prior model are defined di�erently for the four settings in
Figure 2. To enable exact inference, both the likelihood and the prior are Gaussian, which gives a closed-form
solution for the posterior predictive. This choice also provides convenience when studying the CPE: di�erent
values of ⁄ on the likelihood term can be naturally absorbed into the Gaussian densities by adjusting the
variance (dividing by ⁄) without hindering the exact inference step. We describe them in detail in the
following.

1. No misspecification: likelihood p(y|x, ◊) = N (◊T x, 1.0), prior p(◊) = N (0, 2). This is the baseline
for comparison.

2. Misspecified likelihood I: likelihood p(y|x, ◊) = N (◊T x, 0.15) (the order of Fourier transformation is
K = 20, however note that it still contains the K = 5 data-generating process in its solution space),
prior p(◊) = N (0, 2). In this case, the model is misspecified in a way that it has a smaller variance
than the data-generating process.

3. Misspecified likelihood II: likelihood p(y|x, ◊) = N (◊T x, 3.0), prior p(◊) = N (0, 2). In this case,
the model is misspecified in a way that it has a larger variance than the data-generating process.
This is similar to one of the scenarios where CPE was found: the curated data has a lower aleatoric
uncertainty than the model (Aitchison, 2021).

4. Misspecified prior: likelihood p(y|x, ◊) = N (◊T x, 1.0), prior p(◊) = N (0, 0.5). The prior is poorly
specified in a way that it is tightly centered at 0 while the best ◊ should be 1.

In all the experiments, every training set consists of only 5 samples. Since there are more parameters than
the number of training data points, our setting falls within the “overparameterized” regime where CPE has
been observed in Bayesian deep learning (Wenzel et al., 2020).

Continuing from Figure 2, where we show the Gibbs loss Ĝ(p⁄, D) (training) and the Bayes loss B(p⁄)
(testing) with respect to ⁄, we now show their derivatives d

d⁄
Ĝ(p⁄, D) (Equation 5) and d

d⁄
B(p⁄) (Equation

20) respectively in Figure 7. Here the losses are included for a clearer depiction of the derivatives. To
approximate the Bayes loss for generating the plot, we use 10000 data points sampled from the data-generating
distribution. Also, the derivatives are approximated using 10000 samples from the exact posteriors. From
Figure 7, we could clearly see that the derivatives perfectly characterize the losses in all four settings.

E Experiment details for Bayesian neural networks on image data with approximate
inference

In this section, we first present in Appendix E.1 the architectures of the small and large CNNs used in this
paper. As promised in the main text, we then provide results on additional image datasets trained with

24

Published in Transactions on Machine Learning Research (08/2024)

(a) No likelihood or prior

misspecification

(b) Misspecified likelihood

I

(c) Misspecified

likelihood II

(d) Only misspecified

prior

(e) Same as (c) but with

50 data points

Figure 7: The derivatives
d

d⁄ Ĝ(p⁄, D) (Equation 5) and
d

d⁄ B(p⁄) (Equation 20) characterize the Gibbs

loss Ĝ(p⁄, D) and the Bayes loss B(p⁄) perfectly.

Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) in Appendix E.2. Lastly, we provide
additional results using mean-field variational inference (MFVI) (Blei et al., 2017) on MNIST, where we
observe that the results of MFVI align with the ones with SGLD.

E.1 Architectures of small/large CNN

Small CNN The small CNN is similar to LeNet-5, but with 107786 parameters in total:

1. Convolutional layer 1. Input channels: 1 (assuming grayscale images), output channels: 6, kernel
size: 5x5, padding: 2, activation: ReLU.

2. Average pooling layer 1. Kernel size: 2x2, stride: 2.

3. Convolutional layer 2. Input channels: 6, output channels: 16, kernel size: 5x5, padding: 2, activation:
ReLU.

4. Average pooling layer 2. Kernel size: 2x2, stride: 2.

5. Flattening layer. Flattens the output from the previous layers.

6. Fully connected layer 1. Input features: 784 (16 channels * 7 * 7), output features: 120, activation:
ReLU.

7. Fully connected layer 2. Input features: 120, output features: 84, activation: ReLU.

8. Fully connected layer 3 (output layer). Input features: 84, output features: num_classes (specified
during instantiation).

Large CNN The large CNN is similar to the small CNN, but with 545546 parameters in total:

1. Convolutional layer 1. Input channels: 1 (assuming grayscale images), output channels: 6, kernel
size: 5x5, padding: 2, activation: ReLU.

2. Average pooling layer 1. Kernel size: 2x2, stride: 2.

3. Convolutional layer 2. Input channels: 6, output channels: 16, kernel size: 5x5, padding: 2, activation:
ReLU.

25

Published in Transactions on Machine Learning Research (08/2024)

4. Average pooling layer 2. Kernel size: 2x2, stride: 2.

5. Convolutional layer 3. Input channels: 16, output channels: 120, kernel size: 5x5, padding: 2,
activation: ReLU.

6. Flattening layer. Flattens the output from the previous layers.

7. Fully connected layer 1. Input features: 5880 (120 channels ◊ 7 ◊ 7), output features: 84, activation:
ReLU.

8. Fully connected layer 2 (output layer). Input features: 84, output features: num_classes (specified
during instantiation).

In all the convolutional layers, no stride = 1 and padding is set to same.

E.2 Stochastic Gradient Langevin Dynamics (SGLD)

Our experiments using SGLD are categorized into 4 groups:

1. Bayesian CNNs (small and large) on MNIST (Figures 3 - 6 in the main text)

2. Bayesian CNNs (small and large) on Fashion-MNIST (Appendix E.2.1)

3. Bayesian ResNets (18 and 50) on CIFAR-10 (Appendix E.2.2)

4. Bayesian ResNets (18 and 50) on CIFAR-100 (Appendix E.2.3)

where each group evaluates the e�ect of underfitting on a small model and a large model. Note that as we
follow the standard ResNet-18 and ResNet-50, the details of the architectures are omitted. They have around
11 million and 23 million parameters, respectively. We implement with PyTorch (Paszke et al., 2019) and
train the model using cyclical learning rate SGLD (cSGLD) (Zhang et al., 2019) for 1000 epochs. We set the
learning rate to 1e-6 with a momentum term of 0.99. We run cSGLD for 10 trials and collect 10 samples for
each trial. Experiments were conducted on NVIDIA A100 GPU, with each trial taking around 30 hours.

26

Published in Transactions on Machine Learning Research (08/2024)

E.2.1 Small and Large CNNs via SGLD on Fashion-MNIST

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 8: Extended results of Figure 3 using small CNN via SGLD on Fashion-MNIST.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 9: Extended results of Figure 4 using large CNN via SGLD on Fashion-MNIST.

27

Published in Transactions on Machine Learning Research (08/2024)

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 10: Extended results of Figure 5 using small CNN via SGLD on Fashion-MNIST.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 11: Extended results of Figure 6 using large CNN via SGLD on Fashion-MNIST.

28

Published in Transactions on Machine Learning Research (08/2024)

E.2.2 ResNet-18 and ResNet-50 via SGLD on CIFAR-10

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 12: Extended results of Figure 3 using ResNet-18 via SGLD on CIFAR-10.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 13: Extended results of Figure 4 using ResNet-50 via SGLD on CIFAR-10.

29

Published in Transactions on Machine Learning Research (08/2024)

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 14: Extended results of Figure 5 using ResNet-18 via SGLD on CIFAR-10.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 15: Extended results of Figure 6 using ResNet-50 via SGLD on CIFAR-10.

30

Published in Transactions on Machine Learning Research (08/2024)

E.2.3 ResNet-18 and ResNet-50 via SGLD on CIFAR-100

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 16: Extended results of Figure 3 using ResNet-18 via SGLD on CIFAR-100.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 17: Extended results of Figure 4 using ResNet-50 via SGLD on CIFAR-100.

31

Published in Transactions on Machine Learning Research (08/2024)

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 18: Extended results of Figure 5 using ResNet-18 via SGLD on CIFAR-100.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 19: Extended results of Figure 6 using ResNet-50 via SGLD on CIFAR-100.

32

Published in Transactions on Machine Learning Research (08/2024)

E.3 Mean-Field Variational Inference (MFVI)

Experimental Settings: These experiments were run using Tensorflow (Abadi et al., 2015), Tensorflow
Probability (Dillon et al., 2017) and Keras (Chollet et al., 2015). By default, we use zero-center Normal
distributions, N (0, ‡), as priors with di�erent standard deviations, i.e., ‡ values. For the variational
approximation, we use fully factorized Normal distributions, where both the mean and the standard deviation
of each of them were the parameters to be learned by the variational algorithm. Although using an over-
simplified family to approximate the true posterior, MFVI also achieves competitive results (Zhang &
Nalisnick, 2021) compared to SGLD.

The convolutional neural network used for this experiment is a variational implementation of the network
described above. This variational model uses a total of 1091092 parameters, double the number of parameters
of the original model.

We use an Adam optimizer with a default learning rate 0.001, batch size = 100, and run during 100 epochs,
which in our case, is enough to achieve convergence. The Keras global seed was set to 15. Other seeds were
set, but similar results were obtained. Experiments were performed on Google Colab on a NVIDIA T4 GPU.
The computation time was in the order of a few hours.

Prior Misspecification, Likelihood Misspecification and the CPE:

We run a similar experiment to the one reported in Figure 4 but using MFVI (Blei et al., 2017) as an
approximate inference technique. The results of this experiment are reported in Figure 20. The conclusions
are completely similar to the ones already discussed in Section 5.

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
����	���	�
����	���

���	�

(a) Baseline: "narrow" prior + standard

softmax likelihood

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
����	���	��
����	���

���	�

(b) "Narrow" prior + tempered softmax like-

lihood

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
�	�����	�
����	���

���	�

(c) Standard prior + standard softmax like-

lihood

Figure 20: CPE can be mitigated by a less misspecified model (Figure 20b) or imposing a less regularizing

prior (Figure 20c). We plot the training loss Ĝ(p⁄, D) and the testing loss B(p⁄) with di�erent priors and likelihood
models. The parameter ‡ is the standard deviation of the isotropic Gaussian prior centered at zero, while the
parameter “ serves as a smoothing parameter on the logits. All metrics are approximated using 10 samples drawn
from the MFVI posterior.

Data Augmentation (DA) and the CPE:

As in the previous case, we ran a similar experiment to the one reported in Figure 4 but using MFVI (Blei
et al., 2017) as an approximate inference technique. The results of this experiment are reported in Figure 21.
The conclusions are very similar to the ones already discussed in Section 6.

33

Published in Transactions on Machine Learning Research (08/2024)

��� 	�� 	��
��
�� ��� ���
�

����

����

��	�

��	�

��
�
�

��������
�����
�����

(a) No augmentation

��� 	�� 	��
��
�� ��� ���
�

����

����

��	�

��	�

��
�

�

��������
�����
�����

(b) Rand. crop and horiz. flip

��
 	�� 	�

��
�
 ��� ��

�

�

�

��
�

��������
�����
�����

(c) Pixels randomly shu�ed

Figure 21: CPE only occurs with “meaningful” augmentation (Figure 21b). We plot the training loss
Ĝ(p⁄, D) and the testing losses B(p⁄) and G(p⁄) with di�erent augmentation methods. While Figure 20 shows no
augmentation, Figure 21b and 21c show standard augmentation and an artificially designed “harmful” augmentation,
where the pixels are shu�ed randomly. All metrics are approximated using 10 samples drawn from the MFVI posterior.

34

	Introduction
	Background
	Notation and assumptions
	(Generalized) Bayesian learning

	The presence of the CPE implies underfitting
	Tempered posteriors are Bayesian posteriors
	How influences the new likelihoods
	How influences the new priors
	Generalized ELBOs are also proper ELBOs
	Insights and implications from the section

	Likelihood misspecification, prior misspecification and the CPE
	CPE, approximate inference, and NNs
	Model misspecification, CPE, and underfitting
	The likelihood misspecification argument
	The prior misspecification argument
	Model size, sample size in relation to CPE and underfitting

	Data augmentation (DA) and the CPE
	Data augmentation and CPE on the Gibbs loss
	Data augmentation and CPE on the Bayes loss

	Conclusions and limitations
	Proofs for Section 3
	Proof of Proposition 2
	Proposition 7
	Proof of Proposition 3 and Theorem 4
	Proof of Proposition 3
	Proof of Theorem 4

	Proofs for Section 4
	Proof of Proposition 5
	Proof of Proposition 6

	Proofs for Section 6
	Proof of Equation 14
	Proof of Equation 16

	Experiment details for Bayesian linear regression on synthetic data with exact inference
	Experiment details for Bayesian neural networks on image data with approximate inference
	Architectures of small/large CNN
	Stochastic Gradient Langevin Dynamics (SGLD)
	Small and Large CNNs via SGLD on Fashion-MNIST
	ResNet-18 and ResNet-50 via SGLD on CIFAR-10
	ResNet-18 and ResNet-50 via SGLD on CIFAR-100

	Mean-Field Variational Inference (MFVI)

