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Enhancing Unsupervised Visible-Infrared Person
Re-Identification with Bidirectional-Consistency Gradual

Matching
Anonymous Authors

ABSTRACT
Unsupervised visible-infrared person re-identification (USL-VI-ReID)
is of great research and practical significance yet remains challeng-
ing due to significant modality discrepancy and lack of annotations.
Many existing approaches utilize variants of bipartite graph global
matching algorithms to address this issue, aiming to establish cross-
modality correspondences. However, these methods may encounter
mismatches due to significant modality gaps and limited model rep-
resentation. To mitigate this, we propose a simple yet effective
framework for USL-VI-ReID, which gradually establishes associ-
ations between different modalities. To measure the confidence
whether samples from different modalities belong to the same iden-
tity, we introduce a bidirectional-consistency criterion, which not
only considers direct relationships between samples from different
modalities but also incorporates potential hard negative samples
from the same modality. Additionally, we propose a cross-modality
correlation preserving module to enhance the semantic represen-
tation of the model by maintaining consistency in correlations
across modalities. Extensive experiments conducted on the public
SYSU-MM01 and RegDB datasets demonstrate the superiority of
our method over existing USL-VI-ReID approaches across various
settings, despite its simplicity. Our code will be released.

CCS CONCEPTS
• Computing methodologies → Image representations; Vi-
sual content-based indexing and retrieval; Object identification;
Matching.

KEYWORDS
Unsupervised Visible Infrared Person Re-Identification, Curriculum
Learning, Cross-Modality Correlation

1 INTRODUCTION
Visible-infrared person re-identification (VI-ReID) aims to retrieve
the same person captured by the visible camera when the query
image from infrared camera is provided, and vice versa [16, 34, 44].
It has garnered attention for its potential in night vision applica-
tions, where traditional visible camera-based methods cannot work
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well due to poor lighting. Recently, many methods have been pro-
posed for VI-ReID and made impressive progress [1, 17, 25, 32, 48].
However, the requirement for extensive annotations poses a signif-
icant challenge and impedes the scalability of these approaches. In
response to this limitation, unsupervised visible-infrared person
re-identification (USL-VI-ReID) has been raised and become a hot
research topic [36, 38].

Due to the absence of precise manual annotations, establish-
ing a robust association between different modalities is crucial in
USL-VI-ReID. Recently, many approaches [5, 6, 30, 36] have endeav-
ored to address this challenge by employing variants of bipartite
graph matching algorithms. Specifically, these methods usually
treat cross-modality label assignment as a graph matching task,
aiming to identify correspondences between modalities by mini-
mizing global matching costs [36]. Then, the modality-shareable
feature representations can be derived from the generated cross-
modality correspondences. However, the global matching approach
may lead to mismatches of unreliable samples due to significant
modality disparities and the limited representational capacity of
the model. This mismatching phenomenon can adversely impact
the overall performance of the model. Thus, how to build the re-
liable association between different modalities remains an open
challenging problem nowadays.

In this paper, we rethink the problem of cross-modality label
assignments from the perspective of curriculum learning. Regard-
ing the initial limitations of the model in addressing significant
modal discrepancies, we advocate for the gradual establishment
of associations between different modalities. Initially, we focus on
generating cross-modality correspondences for easier samples. As
training progresses and the model is more powerful to handle modal
discrepancies, we incrementally incorporate more correspondences
for harder samples. To measure the confidence whether samples
from different modalities belong to the same identity, we propose
a simple bidirectional-consistency criteria. This criterion not only
leverages the direct relationship between samples from different
modalities, but also considers potential hard negative samples from
the same modality. However, merely aligning positive pairs from
different modalities may weaken the structure information, i.e., the
correlations of samples with unmatched clusters from the other
modality. To address the concern, we propose the cross-modality
correlation preserving module to further enrich the semantic repre-
sentation of the model by maintaining consistency in correlations
across different modalities.

The main contributions of our work can be summarized as fol-
lows:

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• Revisiting the challenge of cross-label assignments through
the lens of curriculum learning, we propose a simple yet ef-
fective framework for USL-VI-ReID employing a progressive
matching paradigm.

• We introduce a straightforward bidirectional-consistency
criterion to evaluate whether samples from different modali-
ties share the same identity. This criterion accounts for both
positive instances across different modalities and potential
negative instances within the same modality.

• To enhance the structure information and the semantic rep-
resentations of the model, we propose the cross-modality
correlation preserving module. This module ensures con-
sistency in correlations across different modalities, thereby
enhancing the overall model performance.

• Extensive experiments are conducted on the public SYSU-
MM01 and RegDB datasets. The results demonstrate that
our proposed method can outperform existing USL-VI-ReID
methods under various settings in spite of its simplicity.

2 RELATEDWORK
2.1 Supervised Visible-Infrared Person ReID
Supervised visible-infrared person ReID (SVI-ReID) aims to re-
trieve the same person across visible and infrared camera views
[16, 34, 44]. The key of SVI-ReID is to learn modality-shareable fea-
ture representations with accurate manual annotations. Recently,
many works have been proposed for SVI-ReID by relieving the
discrepancy between different modalities [1, 17, 25, 32, 48]. Among
them, [25] proposes to suppress the modality-related features by
aligning persons in the pixel-level based on cross-modality dense
correspondences. CoAL [32] proposes two novel attention modules
to learn discriminative features for each modality and collaborative
features across the modality. LUPI [1] generates the intermediate
domain between visible and infrared modalities, subsequently miti-
gatingmodality shift by incorporating the synthesized intermediary
domain as supplementary information. FMCNet [48] aims to gener-
ate the missing modality-specific discriminative features for each
modality from the information obtained from the other modality,
thereby combining these generated features to achieve more precise
cross-modality retrieval. [17] proposes a novel data augmentation
technique, named PartMix, which can generate positive and nega-
tive samples by combing local patches from the images of the same
identity and different identities. In addition, some methods aim
to reduce the modality gap by employing GANs [10, 26, 33, 40] to
transfer the style of the image from one modality to another.

Although these methods have achieved great performance in
retrieving the same person across different modalities, they all
require expensive manual annotations within the modality and
across modalities, which heavily hinders their applications in the
real world.

2.2 Unsupervised Visible-Infrared Person ReID
Unsupervised visible-infrared person ReID (USL-VI-ReID) aims to
match images of the same person across visible and infrared modal-
ities without annotations [22, 38]. Compared with unsupervised
single-modality person ReID [3, 20, 28, 46, 50], USL-VI-ReID is more
challenging as the modality discrepancy is usually more serious

than the inter-class variance within each modality. To build reliable
association between different modalities, many works [5, 6, 30, 36]
have been proposed to learn modality-shareable feature representa-
tions by generating cross-modality correspondences. Among them,
PGM [36] proposes a novel paradigm, which formulates the cross-
modality correspondences mining as the graph matching problem.
By adopting this approach, the model can effectively incorporate
global information through minimizing the global matching cost.
OTLA [30] proposes the optimal-transport method to reduce the
modality gap by assigning pseudo labels for images from visible
modality to infrared modality. To guarantee that all clusters from
infrared modality can be matched in the training process, [5] pro-
poses a many-to-many bilateral cross-modality cluster matching
method to generate cross-modality correspondences. In addition,
[6] proposes a dual optimal transport label assignment method to
solve the cross-modality correspondences assignment problem in a
reinforcement manner.

Although these methods have achieved great progress on the
USL-VI-ReID task with their carefully generated cross-modality
correspondences, they usually solve the problem with the global
matching algorithms. In this way, some unreliable samples can be
mismatched due to serious discrepancy between different modali-
ties and limited feature representations in the early period. To tackle
this and avoid label noise accumulation, we propose a novel para-
digm to generate correspondences in a gradual manner. To weight
the confidence whether samples from different modalities belong
to the same identity, we devise a simple yet effective bidirectional-
consistency criteria.

2.3 Curriculum Learning
Inspired by the human learning process, curriculum learning is pro-
posed by [2] as a training strategy by learning from easy samples to
hard samples. Curriculum learning can enhance the performance
of the machine learning models, and it has been widely used in
many areas, including object detection, segmentation and retrieval
[19, 31, 47, 49, 51]. Specifically, [47] proposes a self-paced curricu-
lum learning framework for weakly supervised object detection
by utilizing instance-level and image-level prior-knowledge. [49]
proposes an adaptive alignment module for remote sensing cross-
modal text–image retrieval by utilizing image-text pairs from easy
to hard for better feature representations. [31] proposes a selective
training framework for the task of node classification by relieving
the influence of low-quality training nodes. To prevent the addi-
tional bias introduced by human interventions, [51] introduces the
curriculum learning strategy in the task of pre-training GNN task
by supervising the training process with different structures and
feature spaces. To refine the pseudo labels for semi-supervised se-
mantic segmentation, [19] proposes a strategy for confidence score
by adopting curriculum learning. To the best of our knowledge,
this is the first work to explore cross-modality correspondences
generation with curriculum learning.

3 METHOD
The framework of our method is illustrated in Fig. 1. In Sec. 3.1,
we first introduce the augmented dual-contrastive learning (DCL
[38]), which is also regarded as the baseline in our work by learning
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Figure 1: Framework of the proposed method. Based on Augmented Dual-Contrastive Learning (DCL), we propose the
Bidirectional-Consistency Gradual Matching module to generate cross-modality correspondences in a gradual manner. Then
Cross-Modality Learning (CML) and Cross-Modality Correlation Preserving (CMCP) modules are applied on the selected
samples and their correspondences.

within each modality. Based on DCL, we further introduce our
devised simple bidirectional-criteria and gradual matching strategy,
which are described in Sec. 3.2 in detail. Finally, we describe our
proposed cross-modality correlation preserving module in Sec. 3.3.

3.1 Augmented Dual-Contrastive learning
Given a unlabeled visible and infrared training set 𝑋 = {𝑋𝑣, 𝑋𝑖 },
where 𝑋𝑣 =

{
𝑥𝑣1 , 𝑥

𝑣
2 , . . . , 𝑥

𝑣
𝑁

}
denotes the visible training set con-

taining 𝑁 images, while 𝑋𝑖 =
{
𝑥𝑖1, 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑀

}
denotes the infrared

training set with𝑀 images. It is noted that to relieve the discrep-
ancy between different modalities, random Channel Augmentation
(CA) [41] is also applied in the visible stream for assistance.

To extract features from images, the two-stream encoders 𝑓 𝑣
𝜃
and

𝑓 𝑖
𝜃
are adopted, which share the same convolution backbone but

modality-specific classifiers. In this way, visible feature vectors𝑈𝑣 ={
𝑢𝑣1 , 𝑢

𝑣
2 , . . . , 𝑢

𝑣
𝑁

}
and infrared feature vectors𝑈𝑖 =

{
𝑢𝑖1, 𝑢

𝑖
2, . . . , 𝑢

𝑖
𝑀

}
can be extracted from them with encoders 𝑓 𝑣

𝜃
and 𝑓 𝑖

𝜃
, respectively.

To generate modality-specific pseudo labels for these training sets,
DBSCAN [9] clustering algorithm is applied on 𝑈𝑣 and 𝑈𝑖 to ob-
tain the corresponding cluster sets H𝑣 =

{
𝐶𝑣1 ,𝐶

𝑣
2 , . . . ,𝐶

𝑣
𝐿

}
and

H𝑖 =
{
𝐶𝑖1,𝐶

𝑖
2, . . . ,𝐶

𝑖
𝐾

}
, where 𝐿 and 𝐾 represent the number of

clusters for visible and infrared modalities. Then modality-specific
prototypes Φ𝑣 ∈ R𝐿×𝑑 and Φ𝑖 ∈ R𝐾×𝑑 can be obtained by aver-
aging the feature vectors within the same cluster, where 𝑑 is the
dimension of the feature vector.

During training, the PK sampling strategy [15] is adopted to
construct the mini-batch. For the infrared modality, we randomly
sample 𝑃 identities and each identity contains 𝐾 images. As the

random channel augmentation is also applied in the visiblemodality,
to balance the number of images from different modalities, we
random sample 𝑃 identities from the visible modality and each
identity contains 𝐾/2 images and 𝐾/2 corresponding augmented
images. Then for the infrared modality, the ClusterNCE [8] loss can
be applied as follows,

𝐿𝑞𝑖 = − log
exp

(
𝑞𝑖 · 𝜙𝑖+/𝜏

)∑𝐾
𝑘=1 exp

(
𝑞𝑖 · 𝜙𝑖𝑘/𝜏

) , (1)

where 𝑞𝑖 represents the query sample from infrared modality, 𝜙𝑖
𝑘

denotes the prototype of the 𝑘-th cluster from infrared modality
and 𝜙𝑖+ denotes the prototype of the cluster which 𝑞𝑖 belongs to,
𝜏 is the temperature hyper-parameter. Similarly, the ClusterNCE
loss can also be applied on the visible and random channel aug-
mented images in the same way by comparing their images with
the corresponding prototypes from visible modality, which can be
denoted as 𝐿𝑞𝑣 . In this way, the final objective function of DCL can
be obtained by combining them together as follows,

𝐿𝐷𝐶𝐿 =
1
|𝐵𝐼 |

∑︁
𝑞𝑖 ∈𝐵𝐼

𝐿𝑞𝑖 +
1

|𝐵𝑉 |
∑︁

𝑞𝑣 ∈𝐵𝑉
𝐿𝑞𝑣 . (2)

where 𝐵𝐼 and 𝐵𝑉 are input batch from infrared modality and visible
modality, respectively. It is noted that 𝐵𝑉 also contains samples
augmented by random channel augmentation. For simplicity we
omit the notation of augmented samples as visible and augmented
samples are all included in the same stream and are treated equally.
During training, the modality-specific prototypes from visible and
infrared modalities can be updated in the momentum manner as
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follows,
𝜙𝑒+ =𝑚𝜙𝑒+ + (1 −𝑚)𝑞𝑒 , (3)

where 𝑞𝑒 is the query sample from modality 𝑒 (𝑒 = {𝑖, 𝑣}, represent-
ing the infrared modality and visible modality, respectively), 𝜙𝑒+ is
the prototype of the cluster which 𝑞𝑒 belongs from modality 𝑒 .𝑚
is the momentum factor, which decides the updating speed of the
corresponding prototypes.

Although DCL can relieve the modality discrepancy between vis-
ible and infraredmodalities to some extent with augmented samples
serving as the intermediate connection, it is still insufficient for the
model to learn modality-invariant feature representations as it only
performs ClusterNCE loss within each modality independently.

3.2 Bidirectional-Consistency Gradual
Matching

Due to the absence of annotations, the key of USL-VI-ReID lies
in establishing the reliable association across different modalities.
Different from existing works that establish correspondences by
minimizing the overall graph matching cost, our approach advo-
cates for a gradual association construction. Thus, how to design a
criteria which can reflect the confidence whether image pairs from
different modalities belong to the same identity is the key in our
work.

Compared with the unsupervised single-modality ReID, USL-VI-
ReID is more challenging as the modality gap is more serious than
the inter-class variance within each modality. Directly modeling
the similarity score is inadequate for reflecting reliability, as nearby
clusters within the same modality may also serve as potential can-
didates for matching corresponding clusters in other modalities.
To capture the structural essence of these clusters, we introduce a
simple yet effective bidirectional-consistency criteria. To streamline
computational efficiency, we formulate this criterion directly on
modality-specific prototypes Φ𝑣 ∈ R𝐿×𝑑 and Φ𝑖 ∈ R𝐾×𝑑 . Specif-
ically, given the 𝜙𝑣

𝑙
, which represents the prototype of the 𝑙-th

cluster in the visible modality, we can find its nearest prototype
𝑁𝑉→𝐼 (𝜙𝑣

𝑙
) from infrared modality as follows,

𝑁𝑉→𝐼 (𝜙𝑣
𝑙
) = argmax

𝜙𝑖
𝑘
∈𝑆 (𝐼 )

(𝜙𝑣
𝑙
· 𝜙𝑖
𝑘
), (4)

where 𝑆 (𝐼 ) denotes the set of prototypes in the infrared modality.
Then the bidirectional-consistency criteria can be formed as follows,

𝑅𝑉→𝐼 (𝜙𝑣
𝑙
) = 𝜙𝑣

𝑙
· 𝑁𝑉→𝐼 (𝜙𝑣

𝑙
)︸             ︷︷             ︸

direct positive
similarity

− max
𝜙𝑣
𝑗
∈
{
𝑆 (𝑉 )/𝜙𝑣

𝑙

} (𝑁𝑉→𝐼 (𝜙𝑣
𝑙
) · 𝜙𝑣𝑗

)
︸                                   ︷︷                                   ︸

potential negative
similarity

,

(5)
where 𝑅𝑉→𝐼 (𝜙𝑣

𝑙
) denotes the similarity between 𝜙𝑣

𝑙
and its near-

est cluster from the other modality, which can reflect the reliabil-
ity whether they belong to the same identity. 𝑆 (𝑉 )/𝜙𝑣

𝑙
denotes

the set of prototypes in the visible modality except for 𝜙𝑣
𝑙
. In

this way, we can take both the positive samples from different
modalities and those potential negative samples from the same
modality into fully consideration. By applying Eq. (4), we can
obtain the reliability of all 𝐿 samples in the visible modality as
R𝑉→𝐼 =

{
𝑅𝑉→𝐼 (𝜙𝑣1 ), 𝑅

𝑉→𝐼 (𝜙𝑣2 ), . . . , 𝑅
𝑉→𝐼 (𝜙𝑣

𝐿
)
}
. Regarding that

the model is limited in dealing with the serious modality discrep-
ancy in the early period, simply apply global alignment like existing
works [5, 6, 30, 36] to generate correspondences for all samples may
cause the label noise accumulation during training. To build reliable
association between different modalities, we aim to generate cor-
respondences in a gradual scheme, i.e., we initially generate corre-
spondences for those most reliable image pairs, then involve harder
samples in the matching process when the model is more powerful
in the cross-modality representation. Specifically, we firstly sort the
reliability set R𝑉→𝐼 in the descending order, then select the first
𝑇 -percent samples from it as R̂𝑉→𝐼 , where the value of𝑇 increases
linearly with current epoch as follows,

𝑇 = 𝑇0 +
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑝𝑜𝑐ℎ
𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ

(1 −𝑇0), (6)

where𝑇0 is the hyper-parameter that controls the initial proportion
of samples to be matched in the beginning, and it is simply set to
0.1 in our experiments. Then, we can obtain the cross-modality
correspondences for a subset of samples from the visible modality,
which can be represented as follows,

M𝑉→𝐼 =

{(
𝜙𝑣𝑗 , 𝑁

𝑉→𝐼 (𝜙𝑣𝑗 )
) ��𝜙𝑣𝑗 ∈ R̂𝑉→𝐼

}
, (7)

whereM𝑉→𝐼 is the obtained correspondence set for visible modal-
ity. Then we can learn cross-modality feature representations with
it. Specifically, given the feature vector 𝑞𝑣 from the 𝑗-th cluster
in visible modality, if its corresponding prototype 𝜙𝑣

𝑗
is in the set

M𝑉→𝐼 , the unidirectional learning from visible to infrared can be
represented as follows,

𝐿𝑉→𝐼
𝑞𝑣

= − log
exp

(
𝑞𝑣 · 𝑁𝑉→𝐼 (𝜙𝑣

𝑗
)/𝜏

)
∑𝐾
𝑘=1 exp

(
𝑞𝑣 · 𝜙𝑖𝑘/𝜏

) , (8)

where 𝑁𝑉→𝐼 (𝜙𝑣
𝑗
) is the matched prototype in the infrared modality

of 𝜙𝑣
𝑗
. By comparing visible images with prototypes in the infrared

modality, the modality discrepancy can be efficiently reduced. Sim-
ilarly, for 𝑞𝑖 which is extracted from infrared modality, its unidirec-
tional learning from infrared to visible modality can be obtained in
the same way, which is denoted as 𝐿𝐼→𝑉𝑞𝑖

. Then the cross learning
can be obtained by combining these two streams as follows,

𝐿𝐶𝑟𝑜𝑠𝑠 =
1
|𝐵𝐼 |

∑︁
𝑞𝑖 ∈𝐵𝐼

𝐿𝐼→𝑉𝑞𝑖
+ 1
|𝐵𝑉 |

∑︁
𝑞𝑣 ∈𝐵𝑉

𝐿𝑉→𝐼
𝑞𝑣

. (9)

In this way, the model can learn cross-modality feature represen-
tations in a gradual manner to avoid the label noise accumulation
in the early period.

3.3 Cross-Modality Correlation Preserving
As shown in Fig. 1, for those selected image pairs from different
modalities, cross-modality learning can reduce the modality gap by
pulling them together. However, this process may compromising
the underlying structure information, particularly the correlation
between the sample and other unmatched clusters in the alternate
modality by pushing them away. To address this issue, we introduce
the cross-modality correlation preserving module, which aim to
preserve the underlying structure information for those selected
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samples when aligning them with their correspondences. Specif-
ically, considering the feature vector 𝑞𝑣 from visible modality, if
it is matched with the 𝑙-th cluster in the infrared modality, then
the cross-modality correlation between 𝑞𝑣 and all clusters in the
infrared modality except for the 𝑙-th cluster can be represented as
the probabilistic vector 𝑃𝑉→𝐼

𝑞𝑣
. Then, the 𝑙-th element of 𝑃𝑉→𝐼

𝑞𝑣
is

assigned a value of 0, while the remaining elements are defined as:[
𝑃𝑉→𝐼
𝑞𝑣

]
𝑗
=

exp
(
𝑞𝑣 · 𝜙𝑖𝑗/𝜏

)
∑𝐾
𝑘=1 exp

(
𝑞𝑣 · 𝜙𝑖𝑘/𝜏

)
− exp

(
𝑞𝑣 · 𝜙𝑖𝑙 /𝜏

) , (10)

where
[
𝑃𝑉→𝐼
𝑞𝑣

]
𝑗
denotes the 𝑗-th entry of 𝑃𝑉→𝐼

𝑞𝑣
, 𝜙𝑖
𝑙
is the corre-

spondence of 𝑞𝑣 , i.e., the prototype in the infrared modality which
is matched with 𝑞𝑣 . In this way, we can represent the correlation be-
tween𝑞𝑣 and all clusters in infraredmodality except for thematched
𝑙-th cluster. Analogously, the intrinsic correlation between the 𝑙-th
cluster with other clusters in the same infrared modality can be
represented as 𝑃 𝐼→𝐼

𝜙𝑖
𝑙

. Similarly, we set the 𝑙-th entry of 𝑃 𝐼→𝐼

𝜙𝑖
𝑙

to 0,

with the remaining elements defined as follows,[
𝑃 𝐼→𝐼

𝜙𝑖
𝑙

]
𝑗

=

exp
(
𝜙𝑖
𝑙
· 𝜙𝑖
𝑗
/𝜏
)

∑𝐾
𝑘=1 exp

(
𝜙𝑖
𝑙
· 𝜙𝑖
𝑘
/𝜏
)
− exp

(
𝜙𝑖
𝑙
· 𝜙𝑖
𝑙
/𝜏
) . (11)

Given that 𝑞𝑣 and 𝜙𝑖𝑙 are linked in the matching procedure, they
are likely to represent the same identity across different modalities.
Therefore, to preserve the cross-modality correlations, we align
these probabilistic vectors as follows,

𝐿𝑉→𝐼
𝑐𝑜𝑟𝑟𝑒 (𝑞𝑣) = ∥𝑃𝑉→𝐼

𝑞𝑣
− 𝑃 𝐼→𝐼

𝜙𝑖
𝑙

∥22 . (12)

Similarly, for 𝑞𝑖 which is extracted from infrared modality, the
cross-modality correlation preserving loss can be obtained in the
same way by comparing it with visible prototypes, which can be
denoted as 𝐿𝐼→𝑉𝑐𝑜𝑟𝑟𝑒 (𝑞𝑖 ). Then the final cross-modality correlation
preserving module can be formed by combing these two terms as
follows,

𝐿𝐶𝑜𝑟𝑟𝑒 =
1
|𝐵𝐼 |

∑︁
𝑞𝑖 ∈𝐵𝐼

𝐿𝐼→𝑉𝑐𝑜𝑟𝑟𝑒 (𝑞𝑖 ) +
1

|𝐵𝑉 |
∑︁

𝑞𝑣 ∈𝐵𝑉
𝐿𝑉→𝐼
𝑐𝑜𝑟𝑟𝑒 (𝑞𝑣) . (13)

Discussion. For those matched clusters from different modali-
ties by our bidirectional-consistency gradual matching module, Eq.
(9) can align them together by pulling the sample from one modality
and the matched cluster from the other modality closer. However,
this alignment strategy risks compromising the underlying struc-
ture information since Eq. (9) also pushes the sample further away
from other unmatched clusters. To address this challenge, we pro-
pose the cross-modality correlation preserving module, which aims
to preserve the correlation between the sample and clusters from
the other modality except for the matched cluster. As the probability
vector used in Eq. (13) contains no information about the matched
cluster in the other modality, it doesn’t violate the goal of Eq. (9) in
the training process.

3.4 Optimization
Following existing works [5, 6, 36, 38], our model is also trained
with two stages. In the first stage, the model is optimized with the

DCL module as follows,

L𝑠𝑡𝑎𝑔𝑒1 = 𝐿𝐷𝐶𝐿 . (14)

After the first training stage, the model can relieve the modality
discrepancy to some extent by leveraging the augmented visible im-
ages as intermediate associations. Then the model can be trained by
combining our proposed bidirectional-consistency gradual match-
ing module and cross-modality correlation preserving module to
further boost the discrimination of its cross-modality feature repre-
sentations as follows,

L𝑠𝑡𝑎𝑔𝑒2 = 𝐿𝐷𝐶𝐿 + 𝜆1𝐿𝐶𝑟𝑜𝑠𝑠 + 𝜆2𝐿𝐶𝑜𝑟𝑟𝑒 , (15)

where 𝜆1 and 𝜆2 are hyper-parameters which balance basic DCL
module and our proposed modules.

4 EXPERIMENT
4.1 Datasets and Evaluation Protocols
Our experiments are conducted on two publicly available VI-ReID
datasets: RegDB [24] and SYSU-MM01 [34]. Following existing
works [6, 36, 38], we adopt mean average precision (mAP) and Cu-
mulative Matching Characteristics (CMC) as the evaluation metrics.
Among the CMC evaluation metric, Rank-1, Rank-10 and Rank-20
are also reported for more exhaustive evaluations. In addition, the
mean Inverse Negative Penalty (mINP) metric proposed in [43] is
also presented.

SYSU-MM01 is a large-scale public VI-ReID dataset collected
from 4 visible cameras and 2 near-infrared cameras. The training
set contains 395 identities, including 22,258 visible images and
11,909 infrared images, while the test set contains 96 identities.
Following [36], we evaluate our method on this dataset with two
settings, including All-search mode and Indoor-search mode. For
all-search mode, the gallery set contains images collected from all
visible cameras. For indoor-search mode, only images captured by
indoor visible cameras are used to constitute the gallery set.

RegDB is collected from one visible camera and one infrared
camera. The dataset contains 4,120 visible images and 4,120 infrared
images of 412 identities. Our method is evaluated on this dataset
with two settings, including visible-to-infrared search and infrared-
to-visible search. For fair comparison, following existing works
[6, 36, 38], we conduct experiments on this dataset for 10 times and
report the average result as the final performance.

4.2 Implementation Details
Our method is implemented in the PyTorch platform. Following
[36] we adopt the ImageNet-pretrained ResNet50 [14] network as
the backbone in the experiment. In the mini-batch, the number of
identities for each modality is set to 16 and each identity contains
16 instances. Following [36], we resize the input image as 288 × 144.
For data augmentation, random horizontal flipping, padding, ran-
dom cropping, and random erasing, random grayscale and channel
argumentation [41] are applied on the input image.

In the training process, DBSCAN [9] clustering algorithm is ap-
plied to generate pseudo labels within each modality. For DBSCAN,
the minimal number for neighbours is set to 4 for different datasets,
the maximum distance is set to 0.6 for SYSU-MM01 dataset while
0.3 for RegDB dataset, which are the same as existing works [36, 38].
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Table 1: Experimental results (%) of the proposed method and SOTA methods on the SYSU-MM01 and RegDB datasets under
different settings. ∗means the model is pre-trained on an extra labeled visible dataset, †means the model is pre-trained on
AGW [43] while ‡ means the model is pre-trained on CLIP [27].

SYSU-MM01 dataset RegDB dataset
All Search Indoor search Infrared to Visible Visible to Infrared

Method Reference r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

SV
I-R

eI
D

DDAG ECCV-20 54.8 53.0 39.6 61.0 68.0 62.2 68.1 61.8 48.6 69.3 63.5 49.2
AGW TPAMI-21 47.5 47.7 35.3 54.2 63.0 59.2 70.5 65.9 51.2 70.1 66.4 50.2
CA ICCV-21 69.9 66.9 53.6 76.3 80.4 76.8 84.8 77.8 61.6 85.0 79.1 65.3

MCLNet ICCV-21 65.4 62.0 47.4 72.6 76.6 72.1 75.9 69.5 52.6 80.3 73.1 57.4
MPANet CVPR-21 70.6 68.2 - 76.7 81.0 - 82.8 80.7 - 83.7 80.9 -
MAUM CVPR-22 71.7 68.8 - 77.0 81.9 - 87.0 84.3 - 87.9 85.1 -
DART CVPR-22 68.7 66.3 53.3 72.5 78.2 74.9 82.0 73.8 56.7 83.6 75.7 60.6
CTFT ECCV-22 74.1 74.8 - 81.8 85.6 - 90.3 90.8 - 92.0 92.0 -
MUN ICCV-23 76.2 73.8 - 79.4 82.1 - 91.9 85.0 - 95.2 87.2 -

PartMix CVPR-23 77.8 74.6 - 81.5 84.4 - 84.9 82.5 - 85.7 82.3 -

U
SL

-R
eI
D

SPCL NIPS-20 18.4 19.4 11.0 26.8 36.4 33.1 11.7 13.6 10.1 13.6 14.9 10.4
MMT ICLR-20 21.5 21.5 11.5 22.8 31.5 27.7 24.4 25.6 18.7 25.7 26.5 19.6
ICE ICCV-21 20.5 20.4 10.2 29.8 38.4 34.3 12.2 14.8 10.6 13.0 15.6 11.9
IICS CVPR-21 14.4 15.7 8.4 15.9 24.9 22.2 9.1 9.9 - 9.2 9.9 -
CCL ACCV-22 20.2 22.0 13.0 23.3 34.0 30.9 11.1 13.0 9.0 11.8 13.9 9.9
ISE CVPR-22 20.0 18.9 8.5 14.2 24.6 21.7 10.8 13.7 10.7 16.1 17.0 13.2
PPLR CVPR-22 12.0 12.3 5.0 12.7 20.8 17.6 8.1 9.1 5.7 8.9 11.1 7.9

U
SL

-V
I-R

eI
D

H2H†∗ TIP-21 30.2 29.4 - - - - - - - 23.8 18.9 -
OTLA ECCV-22 29.9 27.1 - 29.8 38.8 - 32.1 28.6 - 32.9 29.7 -
OTLA∗ ECCV-22 48.2 43.9 - 47.4 56.8 - 49.6 42.8 - 49.9 41.8 -
ADCA MM-22 45.5 42.7 28.3 50.6 59.1 55.2 68.5 63.8 49.6 67.2 64.1 52.7
PGM† CVPR-23 57.3 51.8 35.0 56.2 62.7 58.1 69.9 65.2 - 69.5 65.4 -

CCLNet‡ MM-23 54.0 50.2 - 56.7 65.1 - 70.2 66.7 - 69.9 65.5 -
DOTLA†∗ MM-23 50.4 47.4 32.4 53.5 61.7 57.4 82.9 75.0 58.6 85.6 76.7 61.6
MBCCM MM-23 53.1 48.2 32.4 55.2 62.0 57.1 82.8 76.7 61.7 83.8 77.9 65.0
Ours - 58.9 53.6 36.5 60.3 67.0 62.8 86.1 81.0 67.7 86.5 81.8 70.1
Ours† - 61.7 56.1 38.7 60.9 66.5 62.3 86.8 81.7 68.6 86.7 82.3 71.1

Table 2: Ablation study on the SYSU-MM01 and RegDB datasets (%).

Index Components SYSU-MM01 Settings RegDB Settings
All search Indoor Search Infrared-to-Visible Visible-to-Infrared

DCL BGM BCR GM CMCP r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP
1 ! ! 50.1 46.2 30.1 56.4 63.1 58.6 73.6 67.4 51.9 73.6 68.5 55.3
2 ! ! 53.6 48.9 32.5 57.3 63.9 59.3 79.5 73.9 59.3 78.7 73.9 61.1
3 ! ! ! 55.0 49.2 31.6 57.2 64.2 59.9 86.1 80.7 67.0 85.7 81.0 69.3
4 ! ! ! 57.5 51.5 33.9 58.8 65.9 61.5 85.9 80.8 67.5 86.0 81.3 69.8
5 ! ! ! ! 58.9 53.6 36.5 60.3 67.0 62.8 86.1 81.0 67.7 86.5 81.8 70.1

As described in Sec. 3.4, our model is trained with two stages. To
train the model, Adam optimizer with weight decay 5e-4 is adopted.
For each stage, we set the initial learning rate as 3.5e-4, and reduce
it every 20 epochs for a total 50 epochs. In Eq. (15), 𝜆1 and 𝜆2 are set
to 0.3 and 0.5, respectively. Following [36], the alternate learning
strategy is applied on the cross-modality learning with different
directions.

4.3 Comparison with State-of-the-art Methods
To demonstrate the effectiveness of our method, we compare our
method with state-of-the-art supervised visible-infrared person
ReID (VI-ReID), unsupervised single-modality person ReID (USL-
ReID) and unsupervised visible-infrared person ReID (USL-VI-ReID)
methods on two public datasets under different settings. The results
are shown in Tab. 1.
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4.3.1 Comparison with SVI-ReIDmethods. We compare ourmethod
with existing SVI-ReID methods, including DDAG [42], AGW [43],
CA [41], MCLNet [13], MPANet [35], DART [39], MAUM [23],
CTFT [21], MUN [45] and PartMix [18]. Although these methods
train their models with ground truth, our proposed method can
still outperform some of them on these datasets. Specifically, on
the SYSU-MM01 dataset, we can achieve competitive performance
compared with some methods, such as DDAG and AGW. While
on the RegDB dataset, our method can outperform most of them,
including DDAG, AGW, CA, MCLNet, MPANet and DART. The
reason could be that compared with RegDB dataset, SYSU-MM01 is
more challenging and it is limited to train the model with generated
pseudo labels.

4.3.2 Comparison with USL-ReID methods. We also compare our
method with existing USL-ReID methods, including SPCL [12],
MMT [11], ICE [3], IICS [37], CCL [8], ISE [50] and PPLR [7]. Al-
though these methods can achieve great performance on the task
of unsupervised single-modality person ReID, they are very limited
on the USL-VI-ReID task compared with our method. The reason
could be that compared with the USL-ReID, in USL-VI-ReID the
modality discrepancy is usually more serious than the inter-class
variance within each modality. Thus, it is hard to directly apply
the clustering algorithms to generate cross-modality correspon-
dences for the task of USL-Vi-ReID, which verifies the necessity in
generating correspondences between different modalities.

4.3.3 Comparison with USL-VI-ReID methods. We compare our
method with existing USL-VI-ReID methods, including H2H [22],
OTLA [30], ADCA [38], PGM [36], CCLNet [4], DOTLA [6] and
MBCCM [5]. Among them, H2H, OLTA and DOTLA utilize the
extra labeled visible dataset while CCLNet utilize the pretrained
CLIP as the encoder. Compared with these methods, our method
can achieve better performance on both SYSU-MM01 and RegDB
datasets under different settings. The reason could be that these
methods build the association between different modality with
global matching algorithms. In this way, some unreliable samples
can be mismatched due to the serious modality discrepancy and
limited feature representations of the model in the early period.
Different from them, we generate cross-modality correspondences
in a gradual manner, which can relieve the label noise accumulation
when associating different modalities.

4.4 Ablation Study
In this section, we conduct experiments on SYSU-MM01 and RegDB
datasets to evaluate the effectiveness of different components in
our method, and the results are shown in Tab. 2. The definitions
of different components are explained as follows: DCL is the base-
line in our work, which is described in Sec. 3.1. BGM (bipartite
graph matching) is a common matching algorithm used by existing
works [5, 6, 36], it aims to associate different sample by minimizing
the global matching cost. BCR (Bidirectional-Consistency Criteria)
and GM (Gradual Matching Strategy) are our proposed key com-
ponents described in Sec. 3.2 for generating correspondences in a
gradual manner. CMCP (Cross-Modality Correlation Preserving) is
our proposed component described in Sec. 3.3.
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Figure 2: Impact of hyper-parameter 𝜆1 on SYSU-MM01
dataset under all search setting.
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Figure 3: Impact of hyper-parameter 𝜆2 on SYSU-MM01
dataset under all search setting.

4.4.1 Effectiveness of BCR. The comparison between Index 1 and
Index 2 shows the effectiveness of our proposed BCRmodule, which
surpasses the performance of BGM by 2.7% and 6.5% in terms of
mAP on different datasets. Different from BGM which utilizes the
bipartite graph matching algorithm to align modalities based on the
direct similarity between different samples, our proposed BCR can
weight the reliability of the sample and their matched correspon-
dence by taking the potential negative samples into consideration.

4.4.2 Effectiveness of GM. The results of Index 2 and Index 4 show
that GM module can further boost the performance of our BCR
module by generating the correspondences in a gradual manner.
Specifically, the GM improves the performance of BCR by 2.6%
and 6.9% in terms of mAP on SYSU-MM01 and RegDB datasets.
Furthermore, by comparing Index 1 and Index 3 it can be found
that GM can also improve the performance of BGM by 3.0% and
3.3% in terms of mAP on SYSU-MM01 and RegDB datasets.

4.4.3 Effectiveness of CMCP. The comparison between Index 4 and
Index 5 verify the effectiveness of our CMCP module. Specifically,
CMCP can further improve the performance of our method by 2.1%
and 0.2% in terms of mAP on SYSU-MM01 and RegDB datasets.
Compared with SYSU-MM01 dataset, the improvement on RegDB
dataset is a bit limited and the reason could be that the combination
of BCR and GM has achieved satisfactory performance, it is hard
for CMCP to further boost them due to limited scope for further
improvement.
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4.5 Hyper-parameter Analysis
𝜆1 and 𝜆2 in Eq. (13) are two important hyper-parameters intro-
duced in our work. In this section, we conduct experiments to
evaluate the influence of these hyper-parameters in our work.

4.5.1 Influence of 𝜆1. In the objective function, 𝐿𝐷𝐶𝐿 can learn
within the modality to promote more accurate clusters for associa-
tion, while 𝐿𝐶𝑟𝑜𝑠𝑠 explores the cross-modality relationships based
on the learned homogeneous feature representations. Thus, how to
balance them in the learning process is crucial in our work. In Fig. 2,
we conduct experiments on SYSU-MM01 dataset to determine the
value of 𝜆1. The results show that our method is relatively robust
against 𝜆1. When 𝜆1 is set to 0, our method can still achieve good
performance, the reason could be that our method can benefit from
preserving correlations with CMCP module. When 𝜆1 is set to 0.3,
our method can achieve the best performance.

4.5.2 Influence of 𝜆2. 𝜆2 determines the weight of our CMCP mod-
ule in the final objective function. Fig. 3 shows the results under
different values of 𝜆2 on SYSU-MM01 dataset. As illustrated in the
figure, setting 𝜆2 to 0.5 and 1.0 yields superior performance com-
pared to the performance when 𝜆2 is set to 0, which verifies the
effective of our CMCP module. However, when 𝜆2 is assigned with
a larger value, such as 1.5, the performance of the model shows
a notable decline, the reason can be that the overemphasis on 𝜆2
weaken the influence of DCL and cross-modality learning modules.
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Figure 4: Cross-modality matching accuracy and matching
radio of PGM and our method.

4.6 Visualization
4.6.1 Evaluating the quality of generated correspondences. In the
task of USL-VI-ReID, cross-modality correspondences are necessary
for associating different modalities due to the absence of annota-
tions. Different from existing works [5, 6, 36] that typically employ
variants of bipartite graph matching algorithms to establish cross-
modality correspondences (i.e., determining whether samples from
different modalities have the same identity), our approach advo-
cates for a gradual correspondence discovery process to mitigate

mismatches stemming from global alignment issues. In Fig. 4, we
evaluate the cross-modality matching accuracy and matching radio
in PGM [36] and our method. As depicted in the figure, the match-
ing accuracy of our method significantly surpasses the accuracy of
PGM. The reason could be that the model learned simple patterns
at first, enabling it to handle more complex matching rules.

(a) PGM on RegDB (b) Ours on RegDB

(c) PGM on SYSU-MM01 (d) Ours on SYSU-MM01

Figure 5: T-SNE visualization of features learned by PGM and
our method on a subset of RegDB and SYSU-MM01 datasets.
Different colors represent different identities.

4.6.2 T-SNE visualization. To further investigate the effectiveness
of our method in learning discriminative feature representations,
we employ t-SNE [29] to visualize features learned by PGM and our
method, and results are shown in Fig. 5. For RegDB, we randomly
select 10 identities, while for another challenging SYSU-MM01
dataset, 7 identities are randomly selected. From Fig. 5 (a) and Fig.
5 (b), we can find that PGM tends to separate features of the same
identity across modalities, while our method produces compact
clustering of features from different modalities belonging to the
same identity. On another challenging SYSU-MM01 dataset (Fig. 5
(c) and Fig. 5 (d)), both PGM and our method show a larger variance
among the same identity. However, for some hard samples, e.g.,
samples with green and orange colors, PGM may confuse them due
to incorrect association caused by global alignment during training.

5 CONCLUSION
In the paper, we propose a simple yet effective framework for USL-
VI-ReID by establishing the association between differentmodalities
through a gradual matching approach. To measure the reliability
that samples from distinct modalities belong to the same identity,
we introduce a straightforward bidirectional-consistency criteria,
which accounts for both intra-modal and inter-modal relationships.
Furthermore, we introduce the cross-modality correlation preserv-
ing module to maintain the coherence of correlations across modal-
ities. Extensive experiments on the public SYSU-MM01 and RegDB
datasets demonstrate the effectiveness of our approach under vari-
ous settings.
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