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In this supplementary material, we provide more more details of
our experiments. We also provide the details about the training
process of our method for convenience.

Algorithm 1: Training process of the first stage
Require :Unlabeled training data 𝑋𝑣 and 𝑋𝑖 collected from

visible and infrared modalities;
Require : Initialize the visible encoder 𝑓 𝑣

𝜃
and infrared

encoder 𝑓 𝑖
𝜃
with ImageNet-pretrained parameters;

for 𝑛 in [1,num_epochs] do
Use encoders 𝑓 𝑣

𝜃
and 𝑓 𝑖

𝜃
to extract feature vector sets𝑈𝑣

and𝑈𝑖 from 𝑋𝑣 and 𝑋𝑖 , respectively;
Cluster𝑈𝑣 and𝑈𝑖 into cluster setsH𝑣 andH𝑖 based on
DBSCAN;
Initialize modality-specific prototypes Φ𝑣 and Φ𝑖 by
averaging the corresponding feature vectors in each
cluster ;
for 𝑖 in [1,num_iterations] do

Sample 𝑃 × 𝐾/2 visible images and 𝑃 × 𝐾/2
augmented visible images from 𝑋𝑣 ;
Sample 𝑃 × 𝐾 infrared images from 𝑋𝑖 ;
Minimize the objective function according to Eq. (2)
in the main manuscript ;

Update prototypes Φ𝑣 and Φ𝑖 according to Eq. (3) in
the main manuscript;

end
end

A MORE DETAILS ABOUT EXPERIMENTS
In Sec. 4.2 in the main manuscript, we conduct experiments on
SYSU-MM01 and RegDB datasets to evaluate the effectiveness of
different components in our method. In this section, we describe
the implementation details of different combinations in Tab. 2 of
the main manuscript. Index 1 (DCL + BGM): we use the bipartite
graph matching algorithm to generate cross-modality correspon-
dences. Index 2 (DCl + BCR): we use our designed bidirectional-
consistency criteria to generate cross-modality correspondences.
For a pair of clusters from different modalities, if the score cal-
culated by this criteria is positive, then they will be regarded as
correspondences. Index 3 (DCL + BGM + GM): the bipartite graph
matching algorithm and gradual matching strategy are combined to
select cross-modality correspondences. Specifically, for those cross-
modality correspondences selected by bipartite graph matching
algorithm, we further sort them according to the direct similar-
ity scores and apply our gradual matching strategy to filter some

of them. Index 4 (DCL + BCR + GM): our designed bidirectional-
consistency criteria and gradual matching strategy are combined
to generate cross-modality correspondences. We first adopt the
bidirectional-consistency criteria to calculate the reliability scores
among them, then the gradual matching strategy is used to select
the correspondences. Index 5 (DCL + BCR + GM + CMCP): based
on the combination of Index 4, we further introduce the Cross-
modality correlation preserving module to maintain the coherence
of correlations across modalities.

Algorithm 2: Training process of the second stage
Require :Unlabeled training data 𝑋𝑣 and 𝑋𝑖 collected from

visible and infrared modalities;
Require :Visible encoder 𝑓 𝑣

𝜃
and infrared encoder 𝑓 𝑖

𝜃
trained

after the first stage;
Require :Hyper-parameter 𝜆1 and 𝜆2 for Eq. (15) in the main

manuscript;

for 𝑛 in [1,num_epochs] do
Use encoders 𝑓 𝑣

𝜃
and 𝑓 𝑖

𝜃
to extract feature vector sets𝑈𝑣

and𝑈𝑖 from 𝑋𝑣 and 𝑋𝑖 , respectively;
Cluster𝑈𝑣 and𝑈𝑖 into cluster sets H𝑣 andH𝑖 based on
DBSCAN;
Initialize modality-specific prototypes Φ𝑣 and Φ𝑖 by
averaging the corresponding feature vectors in each
cluster ;
for 𝑖 in [1,num_iterations] do

Sample 𝑃 ×𝐾/2 visible images and 𝑃 ×𝐾/2 augmented
visible images from 𝑋𝑣 ;
Sample 𝑃 × 𝐾 infrared images from 𝑋𝑖 ;
Minimize the objective function according to Eq. (15)
in the main manuscript ;
Update prototypes Φ𝑣 and Φ𝑖 according to Eq. (3) in
the main manuscript;

end
end

B DETAILS OF THE TRAINING PROCESS
As shown in the main manuscript, we proposed includes two stages
during training. For convenience, we also provide the details of the
training process of our method, which is shown in Alg. 1 and Alg.
2 in this supplementary material.

In the first stage, as the initialized model is limited in dealing
with the discrepancy between different modalities, we employ Eq.
(2) to facilitate learning within each modality, supplemented by
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random channel augmentation to alleviate modality gaps. Subse-
quently, in the second stage, with the alleviation of modality dis-
crepancies from the preceding phase, we integrate our proposed

bidirectional-consistency gradual matching and cross-modality cor-
relation preserving modules to further guide the model towards
acquiring modality-shareable feature representations, as outlined
in Eq. (15) in the main manuscript.
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