
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

ADAPTIVE HETEROGENEOUS GRAPH REPRESENTA-
TION LEARNING USING KNN-AUGMENTED GRAPH
MAMBA NETWORKS (KA-GMN)

Eishkaran Singh
Thapar Institute of Engineering and Technology
esingh3 be21@thapar.edu

ABSTRACT

Graph representation learning for heterogeneous networks presents challenges
in structural preservation and computational tractability. We present KA-GMN
(KNN-Augmented Graph Mamba Networks), integrating k-nearest neighbor se-
lection with state space models for graph representation learning. The architec-
ture implements: (1) KNN-based state transitions for type-specific node represen-
tation, (2) compatibility functions for structural graph adaptation, and (3) type-
aware feature transformations to prevent representation degradation. KA-GMN
processes multi-typed relationships through selective message passing and state
space modeling, maintaining graph structure through learned neighborhood func-
tions. The theoretical framework establishes a foundation for heterogeneous graph
representation through the synthesis of KNN-based topology and state space dy-
namics.

1 INTRODUCTION
Graph representation learning is crucial for processing relational data in artificial intelligence Hamil-
ton et al. (2018). However, contemporary neural architectures face limitations when handling com-
plex real-world graphs, primarily due to over-smoothing Li et al. (2019), over-squashing Alon &
Yahav (2021), and computational complexity in attention-based transformers Dwivedi & Bresson
(2021). While Graph Mamba Networks (GMNs) partially address these issues through State Space
Models (SSMs) Gu & Dao (2024), they struggle with heterogeneous graph elements and structural
variations. This work introduces KNN-Augmented Graph Mamba Networks (KA-GMN), advancing
graph representation learning through three key contributions:

1. Enhanced heterogeneous representation: KA-GMN integrates K-nearest neighbor met-
rics within the state space model, enabling type-aware representation of heterogeneous
nodes and edges. This approach preserves node discriminability and mitigates over-
smoothing Li et al. (2019) in complex graph structures.

2. Dynamic neighborhood adjustment: Learned compatibility functions adapt to structural
graph variations, addressing over-squashing by facilitating efficient long-range dependency
propagation. This mechanism flexibly adjusts to evolving graph structures, ensuring effec-
tive information capture regardless of complexity.

3. Type-specific feature transformation: Novel operators maintain semantic relationships
while preventing representation collapse, preserving the heterogeneous nature of complex
graphs throughout the learning process.

This architecture enables efficient processing of multi-typed relationships, scalable global depen-
dency capture, and balanced local structure preservation, advancing the field of graph representation
learning for complex, heterogeneous graph structures.

2 BACKGROUND

The field of graph representation learning has evolved through sequential methodological advance-
ments. Kipf & Welling (2017b) established Graph Convolutional Networks (GCNs) using spectral
graph convolutions for node classification, demonstrating superior performance over manual feature
engineering through neighbor aggregation.

Veličković et al. (2018) extended this paradigm with Graph Attention Networks (GATs), introduc-
ing dynamic attention weights for heterogeneous node relations. Subsequent analysis by Li et al.

1

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

(2018) revealed the over-smoothing phenomenon in deep GNN architectures, where repeated mes-
sage passing layers cause node representation collapse.

The introduction of Graph Transformers by Yun et al. (2020) addressed locality constraints through
self-attention mechanisms, though computational complexity limited scalability. Dwivedi & Bres-
son (2021) proposed sparse attention variants to mitigate these costs. Shirzad et al. (2023) advanced
this through exponential sparsification patterns in EXPHORMER, though attention-based computa-
tion persisted as a constraint. The KNN-Augmented Graph Mamba Network (KA-GMN) synthe-
sizes SSM efficiency with KNN-based neighborhood adaptation. This architecture diverges from
EXPHORMER’s fixed sparsification by implementing selective state transitions and type-aware
neighbor selection, addressing heterogeneity while maintaining O(n) complexity.

Recent innovations in State Space Models (SSMs) by Gu & Dao (2024) provided linear-time al-
ternatives for sequence modeling, prompting adaptations to graph structures. For heterogeneous
graphs, Wang et al. (2021) developed hierarchical attention mechanisms in HAN, though scalability
remained challenge due to attention dependencies. Geometric deep learning frameworks (Fey &
Lenssen (2019)) and simplified GCN variants (Chen et al. (2020)) expanded methodological diver-
sity.
3 METHODOLOGY
Drawing from the foundational work in graph neural networks Kipf & Welling (2017a) and state
space modeling Gu & Dao (2024), we present a theoretical framework for heterogeneous graph
processing that combines selective k-nearest neighbors with state space models.

3.1 GRAPH REPRESENTATION AND STATE SPACE MAPPING

We define a heterogeneous graph G = (V,E), where V represents the node set and E the edge set.
Each node v ∈ V is characterized by a feature vector xv ∈ Rd and a node type tv ∈ Tt. Edges
e ∈ E connect nodes vi and vj with an edge type rij ∈ R. The graph structure is encoded in two
primary matrices. 1)Node Feature Matrix: X ∈ R|V |×d, where each row xv corresponds to the
features of node v. 2) Edge Feature Matrix: E ∈ R|E|×ed , capturing edge features.

3.2 K-NEAREST NEIGHBORS (KNN) INTEGRATION AND ADJUSTMENT

Building on the theoretical framework of Dong et al. (2011), we compute the K-nearest neighbors
for each node v ∈ V based on its feature vector xv . The selective mechanism extends this base
KNN approach:

N selective
K (v) = u ∈ NK(v) | γ(u, v) > τ(v)

where γ(u, v) is a learned compatibility function:

γ(u, v) = MLP([hu;hv; |hu − hv|;hu ⊙ hv; rtype(u, v)])

Following spectral graph theory, we construct the dynamic adjacency matrix:

AK(i, j) =

{
1 if j ∈ N selective

K (i) or i ∈ N selective
K (j),

0 otherwise.

The degree matrix DK and normalized adjacency matrix ÃK are defined as:

DK = diag

∑
j

AK(i, j)

ÃK = D

−1/2
K AKD

−1/2
K

The adaptive choice of K follows:
Kv = min (max (⌈log(deg(v))⌉,Kmin) ,Kmax)

3.3 ENHANCED NEIGHBORHOOD WEIGHTS

We introduce two theoretically grounded formulations for neighborhood weights:

MLP-based weights:
WK(i, j) = softmaxj(MLPθ([xi;xj ; |xi − xj |;xi ⊙ xj]))

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Similarity-based weights:
WK(i, j) = exp(−α · dij + β · TypeSim(ti, tj) + γ · EdgeSim(rij))

These weights incorporate dij is the Euclidean distance between xi and xj , TypeSim(ti, tj) mea-
sures similarity between node types, EdgeSim(rij) evaluates similarity of edge types, α, β, γ are
learned parameters.

3.4 KNN-ENHANCED MESSAGE PASSING MECHANISM

Building upon standard message passing Gilmer et al. (2017), our Graph Mamba Network (GMN)
introduces a KNN-based adaptive aggregation:

m(l)
v =

∑
u∈NK(v)

WK(v, u) · (ÃK(v, u) · h(l−1)
u)

where WK(v, u) and ÃK(v, u) refine local message computation by dynamically adjusting neigh-
borhood importance. The hidden state update follows a selective state-space approach inspired by
Gu et al. (2022):

h(l)
v = S4(h(l−1)

v ,m(l)
v)

but differs by integrating KNN-enhanced message passing, allowing for more adaptive and struc-
tured information flow.

3.5 ENHANCED STATE SPACE MODEL INTEGRATION

The selective message passing mechanism is defined as:

m(l)
v =

∑
u∈N selective

K (v)

WK(v, u) · (ÃK(v, u) · h(l−1)
u · wtype(tv, tu))

Building on Gu & Dao (2024), the state evolution follows modified Mamba SSM equations:

s′(t) = (Ā⊙D(xt))s(t) + (B̄ ⊙ E(xt))xt

y(t) = (C̄ ⊙ F (xt))s(t)

with selective masks as: D(xt) = σ(MLPD([xt;AggN(xt)]))

E(xt) = σ(MLPE([xt;AggE(xt)]))

F (xt) = σ(MLPF ([xt;AggV(xt)]))

3.6 LONG-RANGE DEPENDENCIES HANDLING

Inspired by attention mechanisms Vaswani et al. (2023), we capture long-range dependencies:

hlong,v =
∑
u∈Dv

βu · hu · ϕ(dvu)

where βu represents the attention coefficient and is computed using a softmax function applied to
the output of an MLP, which takes as input the concatenation of node features hv and hu Similarly,
ϕ(dvu) is defined using a softmax operation applied to a combination of a distance-based term and
an MLP transformation of node features. The local and long-range features combine as:

The local and long-range features combine as:

hfinal,v = z · hlocal + (1− z) · hlong

where: z represents σ(Wz · [hlocal ∥ hlong] + bz)

3.7 GRAPH-TO-SEQUENCE CONVERSION WITH KNN-AWARE ORDERING

The conversion process follows a structured approach to encode node representations and establish
an order based on local neighborhood information. The encoding of node features follows prior
methodologies, while the ordering mechanism extends existing work by incorporating a KNN-aware
priority function:

Order(v) = Priority(hfinal,v, N
selective
K (v))

ensuring that nodes are prioritized based on both their final representations and their selectively
chosen KNN neighbors, which enhances context preservation in the sequence.

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

3.8 MAMBA PROCESSING OF ENHANCED GRAPH SEQUENCE

Following established sequence processing methods, the Mamba model processes the transformed
sequence by embedding it and applying state-space modeling. We retain the fundamental Mamba ar-
chitecture but modify the timestep operations to introduce a selective multi-layer perceptron (MLP)-
based split mechanism with timestep operations as

∆, B,C = Split(MLP(xt))

yt = ∆⊙ (Axt) +B ⊙ xt

zt = C ⊙ σ(yt)

This adjustment ensures that feature interactions at each timestep are adaptively partitioned, allowing
for more expressive transformations within the Mamba model.

3.9 HETEROGENEITY ALIGNMENT

To align heterogeneous node representations effectively, we introduce type-specific transformations
and multi-scale type integration.

htype(v) =

L∑
i=1

wi · TypeConvi(v,N selective
K (v))

This formulation ensures that different type transformations contribute variably based on learned
importance weights. Furthermore, type-aware attention aggregation is introduced to refine neigh-
borhood message passing:

haligned,v =
∑
u

αu · hu

where αu represents softmaxu(aT · LeakyReLU(W · [hv ∥ hu ∥ evu]))

3.10 KNN-AWARE READOUT AND TASK-SPECIFIC LAYERS

For graph-level readout, we introduce a selective softmax-based aggregation mechanism:

hG =
∑
v

softmaxv(MLPreadout(hfinal,v)) · hfinal,v

This ensures that node contributions are adaptively weighted based on task-specific importance. For
node-level tasks, the output is computed as: yv = MLPtask(hfinal, v) ensuring effective downstream
adaptation, maintaining consistency with prior architectures while allowing for enhanced feature
interaction.

3.11 TRAINING OBJECTIVE AND REGULARIZATION

The overall learning process is governed by a composite loss function that balances multiple objec-
tives to enhance model performance and generalization:

L = Ltask + λ1LKNN + λ2Lstruct + λ3Ltype + λ4Lreg

where: LKNN =
∑
i,j

|hfinal,i − hfinal,j |2 ·AK(i, j)

Lstruct = |ÃK − softmax(HfinalH
T
final)|2F

Ltype =
∑
t∈Tt

|Ht − Center(Ht)|2F

Lreg = λdecay

∑
i

|θi|2

4 CONCLUSION
This work introduces KNN-Augmented Graph Mamba Networks (KA-GMN), establishing a frame-
work for heterogeneous graph representation learning through the integration of selective state space
models with KNN-based topology. By integrating type-specific node representations, structural
graph adaptation, and selective message passing mechanisms, KA-GMN addresses critical chal-
lenges in graph neural networks. The framework advances the theoretical foundations for process-
ing heterogeneous graphs by bridging local structural preservation with global dependency capture,
enabling efficient representation learning on complex networked systems. Through its structured
approach to heterogeneous graph modeling, KA-GMN establishes a foundation for developing scal-
able graph learning systems and opening new directions for investigating the convergence of state
space models and graph neural architectures.

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications,
2021. URL https://arxiv.org/abs/2006.05205.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks, 2020. URL https://arxiv.org/abs/2007.02133.

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, pp. 577–586. Association for Computing Machinery, 2011. doi: 10.1145/1963405.
1963487. URL https://doi.org/10.1145/1963405.1963487.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
2021. URL https://arxiv.org/abs/2012.09699.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019. URL https://arxiv.org/abs/1903.02428.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017. URL https://arxiv.org/abs/1704.
01212.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications, 2018. URL https://arxiv.org/abs/1709.05584.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017a. URL https://arxiv.org/abs/1609.02907.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017b. URL https://arxiv.org/abs/1609.02907.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns?, 2019. URL https://arxiv.org/abs/1904.03751.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32, 01
2018. doi: 10.1609/aaai.v32i1.11604.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs, 2023. URL https://arxiv.org/abs/
2303.06147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, and Yanfang Ye. Heterogeneous
graph attention network, 2021. URL https://arxiv.org/abs/1903.07293.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph trans-
former networks, 2020. URL https://arxiv.org/abs/1911.06455.

5

https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2007.02133
https://doi.org/10.1145/1963405.1963487
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1904.03751
https://arxiv.org/abs/2303.06147
https://arxiv.org/abs/2303.06147
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1903.07293
https://arxiv.org/abs/1911.06455

	Introduction
	Background
	Methodology
	Graph Representation and State Space Mapping
	K-Nearest Neighbors (KNN) Integration and Adjustment
	Enhanced Neighborhood Weights
	KNN-Enhanced Message Passing Mechanism
	Enhanced State Space Model Integration
	Long-Range Dependencies Handling
	Graph-to-Sequence Conversion with KNN-aware Ordering
	Mamba Processing of Enhanced Graph Sequence
	Heterogeneity Alignment
	KNN-Aware Readout and Task-Specific Layers
	Training Objective and Regularization

	Conclusion

