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B Frequently Asked Questions (FAQ)491

1. How did you select those specific baselines and ablations in Sec. 6?492

Our experiments showcase the capabilities of HITL-TAMP as (1) a scalable demonstration493

collection system and (2) an efficient learning and control framework. To show its value in494

collecting human demonstrations over an alternative, we compared it extensively against a495

widely-adopted conventional teleoperation paradigm used in prior works that collect and496

learn from human demonstrations [1, 6, 2, 8, 42, 21, 10, 37, 38, 43, 11, 16, 17, 12] (see497

Table 1 and Fig. 6).498

To show its value in learning policies for manipulation tasks, we investigated the value of499

the core component - the TAMP-gated control mechanism (described in Appendix I). We500

showed that even policies trained on conventional teleoperation data benefit substantially501

from incorporating the TAMP-gated control mechanism (Fig. 6). Our TAMP-gated control502

is a novel control algorithm made possible by key technical components of HITL-TAMP503

(as described in Sec. 3).504

There are other systems that are designed for specific contact-rich manipulation (such as505

peg insertion [44, 45]), but HITL-TAMP was not designed to be specialized for any specific506

task. Rather, it was meant to be a general-purpose system that can be applied to any contact-507

rich, long-horizon manipulation task, as long as the task can be demonstrated by a human508

operator, and described in PDDLStream.509

2. How does this work compare with other works that combine imitation learning and510

TAMP?511

Prior works, such as [46], trained agents in simulation to imitate demonstration data pro-512

vided by a TAMP supervisor in simulation. In this way, during deployment, an agent can513

operate without privileged information (such as object poses) required by TAMP. How-514

ever, this setting makes a strong assumption that the TAMP system can already solve the515

target tasks. By contrast, our work extends a TAMP system’s capabilities using an agent516

trained on human demonstration segments collected by HITL-TAMP (training details in517

Appendix J) in order to solve complex contact-rich tasks in the real world. Training an518

agent on the TAMP segments collected by HITL-TAMP in order to enable TAMP-free pol-519

icy deployments is an exciting application for future work. However, it is orthogonal to the520

main contributions in this paper.521

3. What are the trade-offs between effort to provide demos and effort to design models/-522

controllers?523

Collecting a large number of human demos can be labor and time intensive [12, 8, 38],524

but extensive modeling of a task for TAMP can similarly be time-consuming. Our system525

achieves a good tradeoff, by lessening the modeling burden for TAMP by deferring difficult526

task segments to the human, and lessening the human operator burden by only asking them527

to operate small segments of a task. When deploying HITL-TAMP (especially in real-528

world settings), there is significant flexibility in deciding what information is available to529

the TAMP system in order to automate portions of a task, and which portions of a task530

should instead be deferred to a human operator (or trained agent).531

4. How does the TAMP system determine which parts of a task plan require a human532

operator?533

We formalize human-teleoperated TAMP skills in Sec. 3.1. While their discrete structure534

is provided by a human (e.g. which objects are involved), our novel action constraint learn-535

ing technique (Sec. 3.2) characterizes their continuous action parameters. Human model-536

ers have flexibility in deciding which skills should be teleoperated based on the contact-537

richness and required precision of the interaction. Fig. E.1 (in Appendix E) showcases the538

parts of each task that are handled by the TAMP system and the parts that are handled by539

the human (or trained agent).540
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5. What assumptions are needed to apply HITL-TAMP to real-world settings, as op-541

posed to simulation?542

Typically, TAMP systems place a high burden on real-world perception, as accurate percep-543

tion and dynamics models are often needed by TAMP for planning. Part of the motivation544

of our work was to reduce this requirement. While we do assume knowledge of crude object545

models and the ability to associate objects (see Sec. 6.3), we use a very simple perception546

pipeline in this work. We show that this simple pipeline suffices, even for the challenging547

Tool Hang task in the real-world since a human or an end-to-end trained policy handles548

the most challenging, contact-rich interactions.549
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C Limitations550

In this section, we discuss some limitations of HITL-TAMP, which future work can address.551

1. Applicable tasks. Our general-purpose system can be deployed on any tasks that (1) can be552

described in PDDLStream and (2) human operators can demonstrate. We did not engineer553

the system for any specific task — our system greatly extends the set of tasks that can be554

solved when compared to TAMP alone.555

2. Task variety. The tasks in this work are focused on tabletop domains, and there is limited556

object variety in each task. Scaling HITL-TAMP to work for more scenes and objects557

requires a richer set of assets and scenes (in simulation) and a more robust perception558

pipeline in the real world.559

3. Prior information on what is difficult for TAMP. HITL-TAMP requires prior infor-560

mation (at a high-level) on which task portions will be difficult for TAMP. Being able to561

automatically identify when human demonstrations are needed (e.g. based on uncertainty562

estimates from perception) is left for future work.563

4. Perception for TAMP. We assume access to coarse object models and approximate pose564

estimation in order to conduct the TAMP segments. Future work could relax this assump-565

tion by integrating TAMP methods that do not require object models [36].566
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D Related Work567

D.1 Demonstration Collection Systems for Robot Manipulation568

Recent studies have shown the effectiveness of teaching robots manipulation skills through human569

demonstration [6, 1, 7, 8, 9, 10]. High-quality, large-scale demonstrations are crucial to this suc-570

cess [7]. Although recent advancements have made demonstration collection systems more scalable571

and user-friendly [6, 37], collecting a substantial amount of high-quality, long-horizon demonstra-572

tions remains time-consuming and labor-intensive [7]. On the other hand, intervention-based sys-573

tems [47, 43] allow the demonstrator to proactively correct for near-failure cases. However, such574

systems require users to constantly monitor robot task executions, which is equally time-consuming575

and sometimes more cognitively-demanding than demonstrating a task [48]. Our system uses a576

TAMP-gated mechanism that automatically switches control between the robot and the demon-577

strator. The mechanism also enables a user to demonstrate for multiple sessions asynchronously,578

dramatically increasing the throughput of task demonstration.579

A number of recent works have also investigated automatic control hand-offs in the context of online580

imitation learning [13, 14, 15, 16, 17]. These works have largely focused on iteratively improving581

a single learned policy, and the gating mechanisms rely on predicting task performances and action582

uncertainties, which are often policy and data-specific. Our work instead proposes to augment a583

TAMP system with imitation-learned policies. The symbolic abstractions of the TAMP system584

readily delineate TAMP’s capabilities and can be used to determine the conditions for control hand-585

offs.586

Our HITL-TAMP also acts as a TAMP-assisted teleoperation system. However, unlike most prior587

works in assisted robot teleoperation, for which the aims are for humans to provide high-level guid-588

ance for low-level autonomous control [49, 50, 51], HITL-TAMP focuses on allowing human teleop-589

erators to ”fill the gap” for a TAMP system to complete goal-directed tasks and enabling the system590

to become more autonomous by learning skills from the human demonstrations.591

D.2 Learning for Task and Motion Planning592

Task and Motion Planning (TAMP) is a powerful approach for solving challenging manipu-593

lation tasks by breaking them into smaller, easier to solve symbolic-continuous search prob-594

lems [5, 23, 4, 24]. However, TAMP requires prior knowledge of skills and environment models,595

making it unsuitable for contact-rich tasks where hand-defining models is difficult. Recent works596

have proposed to learn environment dynamic models [25, 26, 27], skill operator models [28, 29], and597

skill samplers [30, 31]. However, these methods still require a complete set of hand-crafted skills.598

Closest to our work are LEAGUE [32] and Silver et al. [33] that learn TAMP-compatible skills.599

However, both works are limited in their real-world applicability. LEAGUE relies on hand-defined600

TAMP plan sampler and expensive RL procedures to learn skills in simulation, while Silver et al.601

requires hard-coded demonstration policies that can already solve the target tasks. Our work instead602

leverage human demonstrations to both train visuomotor skills and informing TAMP plan sampling.603

We empirically show that HITL-TAMP can efficiently solve challenging tasks such as making coffee604

in the real world.605

D.3 Imitation Learning from Human Demonstrations606

Imitation learning techniques based on deep neural networks have shown remarkable performances607

in solving real-world manipulation tasks [6, 1, 11, 7, 8, 12]. We take a data-centric view [9, 7, 12] to608

scaling up imitation learning — HITL-TAMP speeds up demonstration collection for a wide range of609

contact-rich manipulation tasks. A trained HITL-TAMP also acts as a hierarchical policy [52]. The610

key difference to pure data-driven approaches [11, 52, 40, 9, 53] is that in HITL-TAMP, the TAMP611

framework directly drives the hierarchy to ensure that the learned skills are modular and compatible.612

Similarly, our work builds on research in combining learned and predefined skills [18, 19, 20, 21, 22]613

and formalizes human demonstrations and learned skills within a TAMP framework.614
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E Tasks615
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Tool Hang (reall)

Figure E.1: Task Segments. We show the human and TAMP segments for each task.

In this section, we present extended task descriptions for each task, including a breakdown of which616

segments the human controls and which TAMP handles (see Fig. E.1).617

Stack Three (real). The robot must stack 3 randomly placed cubes. The task consists of 4 total618

segments — TAMP handles grasping each cube and approaching the stack, and the human handles619

the placement of the 2 cubes on top of the stack.620

Square [54, 1] (sim). The robot must pick a nut and place it onto a peg. The nut is initialized in a621

small region and the peg never moves. This task consists of two segments — TAMP grasps the nut622

and approaches the peg, and the human inserts the nut onto the peg.623

Square Broad (sim).: The nut and peg are initialized anywhere on the table.624

Coffee [43] (sim + real). The robot must pick a coffee pod, insert it into a coffee machine, and close625

the lid. The pod starts at a random location in a small, box-shaped region, and the machine is fixed.626

The task has two segments — TAMP grasps the pod and approaches the machine, and the human627

inserts the pod and closes the lid.628
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Coffee Broad (sim + real). The pod and the coffee machine have significantly larger initialization629

regions. With 50% probability, the pod is placed on the left of the table, and the machine on the630

right side, or vice-versa. Once a side is chosen for each, the machine location and pod location are631

further randomized in a significant region.632

Three Piece Assembly (sim). The robot must assemble a structure by inserting one piece into a633

base and then placing a second piece on top of the first. The two pieces are placed around the base,634

but the base never moves. The tasks consists of four segments — TAMP grasps each piece and635

approaches the insertion point while the human handles each insertion.636

Three Piece Assembly Broad (sim). The pieces are placed anywhere in the workspace.637

Tool Hang [1] (sim + real). The robot must insert an L-shaped hook into a base piece to assemble638

a frame, and then hang a wrench off of the frame. The L-shaped hook and wrench vary slightly639

in pose, and the base piece never moves. The task has four segments — TAMP handles grasping640

the L-shaped hook and the wrench, and approaching the insertion / hang points, while the human641

handles the insertions.642

Tool Hang Broad (sim). All three pieces move in larger regions of the workspace.643

Coffee Full Preparation (sim). The robot must place a mug onto a coffee machine, retrieve a coffee644

pod from a drawer, insert the pod into the machine, and close the lid. The task has 8 segments —645

first TAMP grasps the mug and approaches the placement location, then the human places the mug646

on the coffee machine (the placement requires precision due to the arm size and space constraints).647

Next, TAMP approaches the machine lid, and the human opens the lid (requires extended contact648

with an articulated mechanism). Then, TAMP approaches the drawer handle, and the human opens649

the drawer. Finally, TAMP grasps the pod from inside the drawer and approaches the machine, and650

the human inserts the pod and closes the machine lid.651
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F Additional Data Throughput Comparisons652

Task HITL-TAMP Time (min) Conventional Time (min)
Square 13.5 35.0
Square Broad 14.0 48.0

Coffee 22.6 46.4
Coffee Broad 28.8 57.8

Tool Hang 48.0 97.1
Tool Hang Broad 51.5 109.8

Three Piece Assembly 30.0 60.0
Three Piece Assembly Broad 34.9 68.3

Coffee Preparation 78.4 132.7

Total 321.7 655.1

Table F.1: Collection time comparison to conventional teleoperation datasets. An extended comparison of
data collection time for 200 demos across several tasks for both HITL-TAMP and the conventional teleoperation
system. Some items were estimated using the time spent collecting 10 human demonstrations.

In this section, we compare how long it would have taken to collect our 2.1K+ HITL-TAMP demon-653

strations with a conventional teleoperation system. The results are shown in Table F.1. Several of654

the numbers were estimated by collecting 10 human demonstrations and multiplying by 20 (due to655

the time burden of collecting 200 human demonstrations across all tasks with a conventional teleop-656

eration system). In most cases, HITL-TAMP takes more than 2x fewer minutes to collect 200 demos657

than the conventional system.658
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G Demonstration Statistics659

Task Human Trajectory (HT) Trajectory (C)
Square 19.8 582.2 150.8
Square Broad 24.2 647.8 167.9

Coffee 71.6 472.0 199.3
Coffee Broad 90.6 663.7 273.8

Tool Hang 70.4 1297.9 479.8
Tool Hang Broad 71.3 1485.8 522.6

Three Piece Assembly 35.3 897.9 260.1
Three Piece Assembly Broad 39.6 1174.1 342.0

Coffee Preparation 43.8 1328.6 593.2

Stack Three (real) 60.9 499.2 -
Coffee (real) 295.3 494.9 -
Coffee Broad (real) 326.5 548.3 -
Tool Hang (real) 124.3 1144.5 -

Table G.1: Demonstration Lengths. For each task, we report the average length (time steps) of the human
segment, the average trajectory length of our HITL-TAMP datasets (HT), and as a point of comparison, the
average trajectory length of the conventional system data (C). Note that if a trajectory contains multiple human
segments, we average them.

In Table G.1, we present the average length (time steps) of the human-provided segment, the average660

trajectory length of our HITL-TAMP datasets (HT), and as a point of comparison, the average tra-661

jectory length of the conventional system data (C). Note that if a trajectory contains multiple human662

segments, we average across them, and that some of the conventional system lengths are estimates663

based on collecting 10 trajectories (the same ones used for the analysis in Appendix F). We see that664

the average human segment is small compared to the entire trajectory length — this might help ex-665

plain the efficacy of our TAMP-gated policy, since the policy is only responsible for short-horizon,666

contact-rich behaviors.667
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H Queueing System Analysis668

In Sec. 4 and Fig. 3, we discussed our queueing system, which enables scalable data collection669

with HITL-TAMP by allowing a single human operator to manage a fleet of Nrobot robot arms and670

ensuring that the human operator is always kept busy. In this section, we provide some additional671

derivations and analysis on how the choice of the number of robot arms influences data throughput.672

Assuming that the human has an average queue consumption rate (number of task demonstrations
completed per unit time) of RH and the TAMP system has an average queue production rate (number
of task segments executed successfully per unit time) of RT , we would like the effective rate of
production to match or exceed the rate of consumption,

RT (Nrobot � 1) � RH .

Here, the minus 1 is because 1 robot is controlled by the human. Rearranging, we obtain Nrobot �673

1+ RH

RT

. Thus, the size of the fleet should be at least one more than the ratio between the human rate674

of producing demonstration segments and the TAMP rate of solving and executing segments.675

This number is often limited by either the amount of system resources (in simulation) or the avail-
ability of hardware (in real world). In practice, human operators also need to take breaks and have
an effective ”duty cycle” where they are kept busy X% of the time. HITL-TAMP can support this
extension as well. Assume that the human is operating the system for Ton and resting for Toff. The
human consumes items in the queue during Ton at an effective rate of

RH �RT (Nrobot � 1),

and has the queue filled up during Toff at a rate of RT (Nrobot � 1). Ensuring that the human con-
sumption rate is less than or equal to the production rate, we have

Ton(RH �RT (Nrobot � 1))  ToffRT (Nrobot � 1).

After rearranging we arrive at

Nrobot � 1 +
RH

RT

X

100
,

where
X

100
=

Ton

(Ton + Toff)

is the human duty cycle ratio.676
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I Additional Details on TAMP-Gated Teleoperation677

We provide additional details on how TAMP-gated teleoperation works. The TAMP system de-678

cides when to execute portions of a task, and when a human operator should complete a portion.679

Each teleoperation episode consists of one or more handoffs where the TAMP system prompts a680

human operator to control a portion of a task, or where the TAMP system takes control back after it681

determines that the human has completed their segment.682

Algorithm 1 displays the pseudocode of the HITL-TAMP system: TAMP-GATED-CONTROL. It683

takes as input goal formula G. On each TAMP iteration, it observes the current state s. If it684

satisfies the goal, the episode terminates successfully. Otherwise, the TAMP system solves for685

a plan ~a using PLAN-TAMP from current state s to the goal G. We implement PLAN-TAMP us-686

ing the adaptive PDDLStream algorithm [24]. The TAMP system then deploys its controller687

EXECUTE-JOINT-COMMANDS and issues joint position commands to the robot to carry out planned688

motions until reaching an action a that requires the human. At this time, control switches into tele-689

operation mode, where the human has full 6-DoF control of the end effector. We use a smartphone690

interface and map phone pose displacements to end effector displacements, similar to prior tele-691

operation systems [37, 38, 11]. The robot end effector is controlled using an Operational Space692

Controller [39]. As in [43], we apply phone pose differences as relative pose commands to the cur-693

rent end effector pose. This allows control to be decoupled from the current configuration of the694

robot arm, which is important as the TAMP system can prompt the human to takeover in diverse695

configurations. While the human is controlling the robot, the TAMP system monitors whether the696

state satisfies the planned action postconditions a.e↵ects . Once satisfied, control switches back to697

the TAMP system, which replans.698

Algorithm 1 TAMP-Gated Teleoperation
1: procedure TAMP-GATED-CONTROL(G)
2: while True do
3: s OBSERVE() . Estimate or observe state
4: if s 2 G then . State satisfies goal
5: return True . Success!
6: ~a PLAN-TAMP(s,G) . Solve for a plan ~a
7: for a 2 ~a do . Iterate over actions
8: if not IS-HUMAN-ACTION(a) then
9: EXECUTE-JOINT-COMMANDS(a)

10: else
11: while OBSERVE() /2 a.eff do
12: EXECUTE-TELEOP() . Teleoperation
13: break . Re-observe and re-plan

I.1 Example Plan699

Consider a plan found by the TAMP system for the Tool Hang task on the first planning invocation:700

~a1 = [move(q0, ⌧1, q1),pick(frame, gf ,pf
0, q1),move(q1, ⌧2, q2),attach(frame, gf , p2, q2, bpf2 , bq2, stand),

move(bq2, b⌧3, q3),pick(tool , gt,pt
0, q3),move(q3, ⌧4, q4),attach(tool , g

t, p4, q4, bpt4, bq4, frame)].

The values in bold represent constants present in the initial state; the non-bold values are parameter701

values selected by the planner. The learned preimages enable the TAMP system to plan not only702

a trajectory ⌧1 to the first manipulation but also to the second manipulation ⌧2. However, because703

the third trajectory b⌧3 depends on the resultant configuration bq2, planning for it is deferred. Upon704

successfully achieving Attached(frame, stand), replanning produces a new plan.705
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J Policy Training Details706

In this section, we detail how we train policies via imitation learning from the human segments of707

HITL-TAMP datasets. Many choices are mirrored from Mandlekar et al. [1].708

J.1 Observation Spaces709

In our experiments, policies are either trained on low-dim state observations or image observations710

— this kind of flexibility is advantageous as it eases the burden of perception for deploying TAMP711

systems in the real world. Low-dim observations include ground-truth object poses, while image712

observations consist of RGB images from a front-view camera and a wrist-mounted camera. Both713

observations include proprioception (end-effector pose and gripper finger width). In simulation, the714

image resolution is 84x84, while in real world tasks, we use a resolution of 120x160 for Stack Three,715

Coffee, and Coffee Broad, and a resolution of 240x240 for Tool Hang. Our real-world agents are all716

image-based, since we do not assume that objects can be tracked. The real-world Tool Hang agent717

did not use the wrist-view in observations, since we found that it was completely occluded during718

the human portions of the task. The TAMP system only estimates poses at the start of each episode.719

We use a simple perception pipeline consisting of RANSAC plane estimation to segment the table720

from the point cloud, DBSCAN [55] to cluster objects, color-based statistics to associate objects,721

and Iterative Closest Point (ICP) to estimate object poses. For image-based agents, we apply pixel722

shift randomization (up to 10% of each image dimension) as a data augmentation technique (as in723

Mandlekar et al. [1]).724

J.2 Training and Evaluation725

We use BC-RNN with default hyperparameters from Mandlekar et al. [1] with the exception of an726

increased learning rate of 10�3 for policies trained on low-dim observations, to train policies from727

the human segments in each dataset. We follow the policy evaluation convention from Mandlekar728

et al. [1], and report the maximum Success Rate (SR) across all checkpoint evaluations over 3729

seeds, which is evaluated over 50 rollouts. However, the TAMP system can fail during a rollout.730

To decouple TAMP failures from policy failures, we keep conducting rollouts for each checkpoint731

until 50 rollouts with no TAMP failures have been collected, and compute policy success rate over732

those rollouts (discussion in Appendix L). In the real world, we take the final policy checkpoint from733

training, and use it for evaluation.734
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K Low-Dim Policy Training Results735

Task Time (min) SR (im) TAMP-gated SR (im)
Square (C) 25.0 84.0± 0.0 91.3± 5.2
Square (HT) 13.5 100.0± 0.0 100.0± 0.0

Square Broad (C) 48.0 29.3± 0.0 88.0± 1.6
Square Broad (HT) 14.0 100.0± 0.0 100.0± 0.0

Three Piece Assembly (C) 60.0 55.3± 0.0 96.0± 2.8
Three Piece Assembly (HT) 30.0 100.0± 0.0 100.0± 0.0

Tool Hang (C) 80.0 29.3± 0.0 60.0± 19.6
Tool Hang (HT) 48.0 80.7± 1.9 80.7± 1.9

Table K.1: Comparison to conventional teleoperation datasets (low-dim). We trained normal and TAMP-
gated policies using conventional teleoperation (C) and compared them to HITL-TAMP (HT). TAMP-gating
makes policies trained on the data comparable to HITL-TAMP data, but data collection still involves signifi-
cantly higher operator time.

In Table 6 and Sec. 6.2, we only presented results with image policies. In this section, we show that736

HITL-TAMP still compares favorably to conventional teleoperation data when trained on low-dim737

observations. The results are presented in Table K.1.738
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L TAMP Success Analysis739

Task Time (min) SR (low-dim) SR (image) TAMP SR (low-dim) Raw SR (low-dim) TAMP SR (image) Raw SR (image)
Square 13.5 100.0± 0.0 100.0± 0.0 77.7± 1.5 77.7± 1.5 82.0± 1.9 82.0± 1.9
Square Broad 14.0 100.0± 0.0 100.0± 0.0 81.2± 2.7 81.2± 2.7 76.1± 5.1 76.1± 5.1

Coffee 22.6 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Coffee Broad 28.8 99.3± 0.9 96.7± 0.9 98.1± 1.6 97.4± 0.9 97.4± 0.9 94.2± 0.1

Tool Hang 48.0 80.7± 1.9 78.7± 0.9 97.4± 1.8 78.6± 2.9 97.4± 1.8 76.6± 1.2
Tool Hang Broad 51.5 49.3± 1.9 40.7± 0.9 88.8± 1.9 43.8± 0.8 93.8± 0.8 38.1± 1.1

Three Piece Assembly 30.0 100.0± 0.0 100.0± 0.0 96.2± 1.5 96.2± 1.5 95.0± 2.3 95.0± 2.3
Three Piece Assembly Broad 34.9 84.7± 4.1 82.0± 1.6 71.4± 0.0 60.5± 2.9 76.0± 4.0 62.3± 4.3

Coffee Preparation 78.4 96.0± 3.3 100.0± 0.0 80.9± 4.8 77.6± 4.4 83.8± 1.8 83.8± 1.8

Table L.1: Analyzing TAMP Success Rates during Policy Evaluations. A more complete set of results from
Table 6 on HITL-TAMP datasets to demonstrate that policy evaluations do not have significant bias by only
evaluating in regions where TAMP is successful. All TAMP success rates are high (above 70%) and most are
above 88%.

Recall that when evaluating a trained policy, to decouple TAMP failures from policy failures, we740

keep conducting rollouts for each checkpoint until 50 rollouts with no TAMP failures have been741

collected, and compute policy success rate over those rollouts. In certain cases, this procedure could742

lead to biased evaluations — for example, if TAMP is only successful for an object in a limited743

region of the robot workspace. In this section, we present the TAMP success rates and raw success744

rates (including TAMP failures) for the policies in Table 6 (left), and demonstrate that it is unlikely745

that such bias exists in our evaluations. We present the results in Table L.1 — note that the Time746

and SR columns are reproduced from Table 6 (right) for ease of comparison. We see that all TAMP747

success rates are high (above 70%) and most are above 88%.748

26



M Supplemental Video Overview749

The supplemental video contains:750

1. Real-World HITL-TAMP policies on Tool Hang, Coffee Broad, Stack Three, and Coffee.751

2. HITL-TAMP dataset trajectories visualized across the 9 simulated tasks. The red border752

indicates human control (and the lack of one indicates TAMP control).753

3. HITL-TAMP initial state distribution visualizations across the 9 simulated tasks.754
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