
Appendix for "Unifying Behavioral and Response Diversity for
Open-ended Learning in Zero-sum Games"

Table of Contents
A Full Proof of Theorems 1

A.1 Proof of Theorem 1 . 1
A.2 Proof of Theorem 2 . 2
A.3 Proof of Theorem 3 . 2

B PE Approximation via PSRO 4

C Additional Experimental Results on Google Research Football 4

D Environment Details 5
D.1 Environment Details of Non-Transitive Mixture Model 5
D.2 Environment Details of Google Research Football 5

E Hyperparameter Settings 6
E.1 Hyperparameter Settings for Real-World Games 6
E.2 Hyperparameter Settings for Non-Transitive Mixture Model 6
E.3 Hyperparameter Settings for Google Research Football 6

F Ablation Studies 7
F.1 Real-World Games . 7
F.2 Non-Transitive Mixture Model . 7
F.3 Google Research Football . 9

G Simplified Optimization Method for Unified Diverse Response 9

A Full Proof of Theorems

A.1 Proof of Theorem 1

To prove Theorem 1, we need the help of the following Lemma
Lemma 1. If PX,Y = PXPY |X and QX,Y = QXPY |X then

Df (PX,Y ||QX,Y) = Df (PX ||QX). (14)

Proof. See Proposition 7.1 in [3].

Now we can prove our Theorem 1.

Proof. For games with only one step (normal-form games, functional-form games), there is only one
fixed state. Therefore, the distribution of state-action is equivalent to the distribution of the action.
Formally, for ρπ′i,πE−i , we have:

ρπ′i,πE−i (s,a) = (π′i, πE−i)(s,a) = π′i(ai|s)π−i(a−i|s) , (15)

where the second equation comes from the assumption that policies are independent. Similarly, for
ρπi,πE−i , we also have:

ρπi,πE−i (s,a) = (πi, πE−i)(s,a) = πi(ai|s)π−i(a−i|s) . (16)

1

Therefore, with the help of Lemma 1, we have:

Df (ρπ′i,πE−i ||ρπi,πE−i) = Es0∼η(s)[Df (π′iπ−i||πiπ−i)] = Es0∼η(s)[Df (π′i(·|s0)||πi(·|s0))] .

(17)

A.2 Proof of Theorem 2

Let us restate our Theorem 2
Theorem 2. For a given empirical payoff matrix A ∈ RM×N and the reward vector aM+1 for policy
πM+1
i , the lower bound of Divocc is given by:

Divrew(πM+1
i) ≥σ

2
min(A)(1− 1>(A>)†aM+1)2

M
+ ||(I−A>(A>)†)aM+1||2 , (18)

where (A>)† is the Moore–Penrose pseudoinverse of A>, and σmin(A) is the minimum singular
value of A.

Proof.

min
1>β=1
β≥0

||A>β − aM+1||22 = min
1>β=1
β≥0

||A>β −A>(A>)†aM+1||2 + ||(I−A>(A>)†)aM+1||2

≥ min
1>β=1

||A>β −A>(A>)†aM+1||2 + ||(I−A>(A>)†)aM+1||2

= min
1>β=1

||A>(β − (A>)†aM+1)||2 + ||(I−A>(A>)†)aM+1||2

≥σ2
min(A) min

1>β=1
||β − (A>)†aM+1||2 + ||(I−A>(A>)†)aM+1||2

=
σ2
min(A)(1− 1>(A>)†aM+1)2

M
+ ||(I−A>(A>)†)aM+1||2 ,

where the first equation comes from that we decompose aM+1 into A>(A>)†aM+1 + (I −
A>(A>)†)aM+1. The last equation comes from the analytic calculation of min1>β=1 ||β −
(A>)†aM+1||2 using Lagrangian.

A.3 Proof of Theorem 3

Now let us first restate the propositions.
Proposition 1. If N = 1 and the underlying game φi(·, ·) is a symmetric two-player zero-sum game,
PE is equivalent to exploitability.

To prove this, let us prove the following Lemma 2.
Lemma 2. For any policy π in two-player symmetric zero-sum games:

φi(π, π) = 0 . (19)

Proof. To begin with, due to the assumption that the game is symmetric, we get:

φi(πi, π−i) = φ−i(π−i, πi) . (20)

Since the game is also zero-sum, we have:

φ−i(π−i, πi) = −φi(π−i, πi) . (21)

By combing Equation 20 and Equation 33, for any πi and π−i, we get:

φi(πi, π−i) + φi(π−i, πi) = 0 . (22)

Let πi = π−i = π, we get what we need to prove:

φi(π, π) = 0 . (23)

2

Now we can begin proof of our proposition.

Proof. To prove this theorem, we need a further assumption that PSRO maintains only one population
for two-player symmetric game, which is a quite common practice. Therefore, the joint Nash
aggregated policy satisfies that πE = (πi, π−i) satisfies πi = π−i. Therefore, with the help of
Lemma 2:

φi(πi, π−i) = φ−i(π−i, πi) = 0 . (24)
Furthermore, exploitability for symmetric zero-sum game can be written as:

Expl(πE) =

2∑
i=1

max
π′i

φi(π
′
i, π−i)− φi(πi, π−i) (25)

=

2∑
i=1

max
π′i

φi(π
′
i, π−i) (26)

= 2 max
π′i

φi(π
′
i, π−i) , (27)

where the last equation comes from the symmetry of the game and πi = π−i.

For PE, it is calculated as:
PE({πi}) = min

π′−i

φi(πi, π
′
−i) (28)

= −max
π′−i

φi(π
′
−i, πi) (29)

= −1

2
Expl(πE) . (30)

The second to last equation comes from Equation 22, and the last equation is due to the assumption
that πi = π−i.

Proposition 2. If there are two populations Pi, Qi and Pi ⊆ Qi, then PE(Pi) ≤ PE(Qi), while
the relationship for exploitability of the Nash aggregated policies of Pi and Qi may or may not hold.

Proof. We begin with proof of the monotonicity of PE. W.o.l.g, let us assume that Pi = {πki }Mk=1,
Qi = {πki }Nk=1, where M ≤ N . Then for the population effectivity of Qi:

PE(Qi) = min
π−i

max
1>α=1
αi≥0

N∑
k=1

αkφi(π
k
i , π−i) . (31)

where α = (α1, · · · , αN)>. Let αi = 0 for M + 1 ≤ i ≤ N , then we get:

min
π−i

max
1>α=1
αi≥0

N∑
k=1

αkφi(π
k
i , π−i) ≥ min

π−i
max

1>α=1,αi≥0
αi=0 ∀M+1≤i≤N

N∑
k=1

αkφi(π
k
i , π−i) (32)

= min
π−i

max
1>α′=1
α′
i
≥0

M∑
k=1

α′kφi(π
k
i , π−i) (33)

= PE(Pi) . (34)
Now we conclude that:

PE(Qi) ≥ PE(Pi) (35)
Regarding exploitability, the analysis comes from our Example 1. Suppose player 1 holds the

population P1 = {

 1
2
1
2
0

} and P2 = P1. Apparently, the Nash aggregated joint policy is

πP
E = (

 1
2
1
2
0

 ,
 1

2
1
2
0

) , (36)

3

since there is only one policy in each players’ population.

Now consider another two populations Q1 = {

 1
2
1
2
0

 ,[0
1
0

]
} and Q2 = Q1. Then the Nash

aggregated joint policy is given by:

πQ
E = (

[
0
1
0

]
,

[
0
1
0

]
). (37)

With simple derivations, the exploitability for πP
E and πQ

E is:

Expl(πP
E) = 1. (38)

Expl(πQ
E) = 2. (39)

Now we can conclude that for player 1 and player 2, even their population both get strictly enlarged
(P1 ⊆ Q1 and P2 ⊆ Q2), they become more exploitable: Expl(πQ

E) ≥ Expl(πP
E).

Proposition 3. If the underlying game φi(·, ·) is a matrix game, then computing PE is still solving a
matrix game.

Proof. The proof follows some simple algebric manipulations. Note that for matrix games, the
reward function is given by:

φi(πi, π−i) = π>i Pπ−i , (40)

where P is the payoff matrix. Then for population effectivity:

PE({πki }Nk=1) = min
π−i

max
1>α=1
αi≥0

N∑
k=1

αkφi(π
k
i , π−i) (41)

= min
π−i

max
1>α=1
αi≥0

N∑
k=1

αk(πki)>Pπ−i (42)

= min
π−i

max
1>α=1
αi≥0

α>(π1
i , · · · , πNi)>Pπ−i . (43)

Therefore, solving PE is still a matrix game with payoff matrix (π1
i , · · · , πNi)>P.

B PE Approximation via PSRO

We have already mentioned the tractability for PE of matrix games in Theorem 3. However, for
more general games, solving exact PE is still very hard. Since PE is still computing an NE, we
here propose using PSRO again as the approximate solver. The only difference is that population of
player i is already fixed by Pi = {πki }Nk=1. Therefore, during iterations of PSRO, only player −i
needs to enlarge its population. We now outline the algorithm PE(n) in Algorithm 2. The intuition
behind this algorithm is that the opponent is enlarging its population gradually and trying to exploit
Pi. Therefore, the metric of PE is actually testing how exploitable a population is by gradually
constructing a real adversarial! The opponent strength n essentially represents how accurate each
best response is.

C Additional Experimental Results on Google Research Football

In real world games, we expect our models are robust enough to defeat all the previous models in
the model pool and show diverse behaviors to better exploit the opponents. To further evaluate the
performance of all the models generated with different methods during the training process, we rank
all the models with the Elo rating system [2], and the results are shown in Figure 4. It can be found

4

Algorithm 2 PE(n)

1: Input: Population Pi = {πki }Nk=1, Opponent Strength n, Number of iteraions T
2: P−i ← Initialize opponent population with one random policy
3: APi×P−i ← Initialize empirical payoff matrix
4: for t = 1 to T do
5: σi, σ−i ← Nash Equilibrium on APi×P−i

6: πt−i(θ)← Initialize a new opponent policy
7: θ? ← Train πt−i against mixture of

∑
j σ

j
i π

j
i with n gradient steps

8: P−i ← P−i ∪ {πt−i(θ?)}
9: Compute missing entries in the evaluation matrix APi×P−i

10: end for
11: Output: Nash value on APi×P−i

that models generated by PSRO w. BD&RD outperform other methods and reaches an Elo score
of around 1300. This implies that a combination of BD and RD will essentially contribute to the
generation of diverse opponents during the training, so that the final models will be more robust
and less exploitable since they are more likely to be offered strong diverse opponents and have the
chance to learn to defeat them. Additionally, we also visualize the policies of our methods when
playing against other baseline methods and verify our methods truly generate diverse behaviors (see
https://sites.google.com/view/diverse-psro/).

0 50 100 150 200 250 300
Model Step (*1000)

700

800

900

1000

1100

1200

1300

E
lo

 S
co

re

Self-play
PSRO
PSRO-rN
PSRO w. RD
PSRO w. BD
PSRO w. BD&RD

Figure 4: The Elo scores of all the models generated by different methods. Shaded areas represent
the standard deviation.

D Environment Details

D.1 Environment Details of Non-Transitive Mixture Model

In our experiments, we set l = 4 and use 9 Gaussian distributions in the plane. This environment
involves both transitivity and non-transitivity because of the delicately designed S in the reward
function φi(πi, π−i) = π>i Sπ−i + 1>(πi − π−i). S is constructed by:

S[i][k] =

{
0 k = i
1 0 < (k − i) mod (2l + 1) ≤ l
−1 otherwise

D.2 Environment Details of Google Research Football

Google Research Football (GRF) [4] is a physics-based 3D simulator where agents can be trained
to play football. The engine implements a full football game under standard rules (such as goal
kicks, side kicks, corner kicks, etc.), with 11 players on each team and 3000 steps duration for a full
game. It offers several state wrappers (such as Pixels, SMM, Floats) and the players can be controlled

5

https://sites.google.com/view/diverse-psro/

with 19 discrete actions (such as move in 8 directions, high pass, long pass, steal, etc.). The rewards
include both the scoring reward (+1 or −1) and the checkpoint reward, where the checkpoint reward
means that the agent will be reward with +0.1 if it is the first time that the agent’s team possesses the
ball in each of the checkpoint regions.

E Hyperparameter Settings

E.1 Hyperparameter Settings for Real-World Games

We report our hyperparameter setting for real-world metagames in Table 3.

Table 3: The hyperparameters of real-world metagames.

Parameter Value Description

Learning rate 0.5 Learning rate for agents
Improvement threshold 0.03 Convergence criteria
Metasolver Fictitious play Method to compute NE
Metasolver iterations 1000 # of iterations of metasolver
Metasolver iterations for PE 2000 # of iterations to compute PE
of threads in pipeline 1.0 Number of learners in Pipeline-PSRO
of seeds 5 # of trials
λ1 0.2 Weight for BD
λ2 0.2 Weight for RD

E.2 Hyperparameter Settings for Non-Transitive Mixture Model

We report our hyperparameter setting for non-transitive mixture model in Table 4.

Table 4: The hyperparameters of non-transitive mixture model.

Parameter Value Description

Learning rate 0.1 Learning rate for agents
Optimizer Adam Gradient-based optimization
Betas (0.9, 0.99) Parameter for Adam
Ntrain 5 # of iterations using GD per BR
πi πik = exp(− (xi − µk)

>
Σ (xi − µk) /2) Policy parameterization

Σ 1/2I Covariance of each Gaussian
uk r(cos(2π

2l+1k), sin(2π
2l+1k)) Center of each Gaussian

l 4 9 Gaussian distributions
r 5 Radius of each Gaussian
Metasolver Fictitious play Method to compute NE
Metasolver iterations 1000 # of iterations of metasolver
of threads in pipeline 1.0 Number of learners in Pipeline-PSRO
of iteration 50 # of training iterations for PSRO
of seeds 5 # of trials
λ1 1 Weight for BD
λ2 1500 Weight for RD
Decrease rate of λ1 and λ2 1− 0.7

1+exp(−0.25(t−25)) The weights will decrease as the iteration progresses, where t is the current iteration
of iteration for PE 30 # of training iterations using PSRO for PE

E.3 Hyperparameter Settings for Google Research Football

States and Network Architecture. For GRF, We use a structured multi-head vector as the states
input. The information of each head is listed in Table 5:

The network structure is shown in Figure 5. The shapes of the fully-connected layers for the input
heads are: [32, 64, 64, 16, 16, 128 × 64, 128 × 64, 128 × 128, 128 × 128, 64, 16, 64, 64], followed
by three fully-connected layers (i.e. [512× 256× 128]) and finally output the policy and value.

Hyperparameter Settings for Reinforcement Learning Oracle. We use IMPALA [1] as the
reinforcement learning algorithm to approximate the best response for each opponent selected by
different methods during the training process. The hyperparameters are listed in Table 6.

6

Table 5: The states input for Google Research Football.

Head index Length Information

0 9 Ball information (position, direction, rotation)
1 25 Ball owner information (ball owned team id, ball owned player id)
2 25 Active player information (id, position, direction, area of the field)
3 6 Active player vs. ball (distance, 1/distance)
4 4 Active player vs. ball player (distance, 1/distance)
5 66 Active player vs. self-team players (position, distance, 1/distance, position cosine, direction cosine)
6 66 Active player vs. oppo-team players (position, distance, 1/distance, position cosine, direction cosine)
7 88 Self-team information (position, direction, tired factor, yellow card, active player, offside flag)
8 88 Oppo-team information (position, direction, tired factor, yellow card, active player, offside flag)
9 32 Goal keeper information (distance to self-player/oppo-player, nearest/farthest player information)
10 7 Game mode information (one-hot)
11 29 Legal action and sticky action information
12 76 History (one-hot) actions of last four steps

Figure 5: The shape of input states for each head and the general network structure.

Network Training Details. We carry out the experiments on six servers (CPU: AMD EPYC 7542
128-Core Processor, RAM: 500G), with each one corresponding to one of six methods (i.e. Self-
play, PSRO, PSROrN, PSRO w. BD, PSRO w. RD, PSRO w.BD&RD). For each experiment, the
approximated best response (i.e. checkpoint) is saved only when the win-rate against corresponding
opponent is stable during two checks (check frequency = 1000 model steps, and ∆winrate < 0.05)
or the training model step reaches an upper bound (i.e. 50000 model steps). The λ1 and λ2 we used
for both coefficients are 0.5. For the Google Research Football environment settings, we use both
scoring reward and checkpoint reward for the training.

F Ablation Studies

We also conduct ablation study on the sensitivity of the diversity weights λ1 and λ2 in real-world
games, non-transitive mixture model, and Google Research Football.

F.1 Real-World Games

We report the exploitability and PE by varying λ1 in Figure 6a, 6b and λ2 in Figure 7a, 7b. It can
be found that too large weights can cause the slow convergence and too small weights prevent the
algorithm from finding populations with smaller exploitability and larger PE.

F.2 Non-Transitive Mixture Model

We report the exploitability of the final population generated by our algorithm with different λ1
in Table 7 and λ2 in Table 8. In this game, we set both λ1 and λ2 to decrease following the rate
1− 0.7

1+e(−0.25(t−25)) , where t is the current iteration. We can find that in terms of exploitability, PSRO
with only BD cannot help the population to achieve lower exploitability.

7

Table 6: The hyperparameters of the IMPALA algorithm.

Parameter Value

Batch Size 1024
Discount Factor (γ) 0.993
Learning Rate 0.00019896
Number of Actors 100
Optimizer Adam
Unroll Length/n-step 1.0
Entropy Coefficient 0.0001
Value Function Coefficient 1.0
Grad Clip Norm 0.5
Rho (for V-Trace) 1.0
C (for V-Trace) 1.0
λ1 (Weight for BD) 0.5
λ2 (Weight for RD) 0.5

0 20 40 60 80 100 120 140
Training Iterations

10
1

10
0

Ex
pl

oi
ta

bi
lit

y

AlphaStar

1=cdf(-0.2)

1=cdf(-0.4)

1=cdf(-0.6)

1=cdf(-0.8)

1=cdf(-1.0)

1=cdf(-1.2)

1=cdf(-1.5)

1=cdf(-2.0)

1=cdf(-5.0)

(a)

0 20 40 60 80 100 120 140
Training Iterations

10
2

10
1

N
eg

at
iv

e
Po

pu
la

tio
n

Ef
fe

ct
iv

ity

AlphaStar

1=cdf(-0.2)

1=cdf(-0.4)

1=cdf(-0.6)

1=cdf(-0.8)

1=cdf(-1.0)

1=cdf(-1.2)

1=cdf(-1.5)

1=cdf(-2.0)

1=cdf(-5.0)

(b)

Figure 6: Ablation study on λ1. (a):Exploitability vs. training iterations. (b): Negative Population Ef-
fectivity vs. training iterations on the AlphaStar game. cdf(k) =

∫ k
−∞

1√
2π
e−

x2

2 dx is the cumulative
distribution function of the standard normal distribution.

0 20 40 60 80 100 120 140
Training Iterations

10
1

10
0

Ex
pl

oi
ta

bi
lit

y

AlphaStar

2=cdf(-0.2)

2=cdf(-0.4)

2=cdf(-0.6)

2=cdf(-0.8)

2=cdf(-1.0)

2=cdf(-1.2)

2=cdf(-1.5)

2=cdf(-2.0)

2=cdf(-5.0)

(a)

0 20 40 60 80 100 120 140
Training Iterations

10
2

10
1

N
eg

at
iv

e
Po

pu
la

tio
n

Ef
fe

ct
iv

ity

AlphaStar

2=cdf(-0.2)

2=cdf(-0.4)

2=cdf(-0.6)

2=cdf(-0.8)

2=cdf(-1.0)

2=cdf(-1.2)

2=cdf(-1.5)

2=cdf(-2.0)

2=cdf(-5.0)

(b)

Figure 7: Ablation study on λ2. (a):Exploitability vs. training iterations. (b): Negative Population Ef-
fectivity vs. training iterations on the AlphaStar game. cdf(k) =

∫ k
−∞

1√
2π
e−

x2

2 dx is the cumulative
distribution function of the standard normal distribution.

8

Table 7: Exploitability×102 for populations generated by PSRO only with BD with varied diversity
weight λ1.

λ2 7.5 15 75 750 1500 7500

Expl 14.57± 0.69 14.93± 1.87 14.64± 1.48 42.37± 10.12 33.39± 5.71 62.69± 10.90

Table 8: Exploitability×102 for populations generated by PSRO only with RD with varied diversity
weight λ2.

λ2 0.5 1.0 5.0 10.0 50.0

Expl 16.23± 0.48 14.06± 1.20 14.77± 0.09 15.60± 1.11 31.29± 12.93

Table 9: The win-rate between the final policies of different methods after trained for 300000 model
steps. (We set λ1 = λ2 = 0.5 as default values for PSRO w. RD and PSRO w. BD&RD)

Method Self-play PSRO PSROrN PSRO w. BD PSRO w. RD PSRO w. BD&RD

PSRO w. RD (λ2 = 1.0) 0.62± 0.01 0.49± 0.03 0.65± 0.02 0.47± 0.01 0.28± 0.04 0.33± 0.02
PSRO w. RD (λ2 = 0.5) 0.68± 0.03 0.61± 0.02 0.74± 0.03 0.54± 0.02 - 0.43± 0.02
PSRO w. RD (λ2 = 0.2) 0.63± 0.02 0.48± 0.02 0.68± 0.02 0.50± 0.01 0.45± 0.03 0.28± 0.03
PSRO w. BD&RD 0.74± 0.02 0.78± 0.01 0.80± 0.05 0.69± 0.02 0.57± 0.02 -

Algorithm 3 Optimization for Matrix Games

1: Input: population Pi for each i, meta-game APi×P−i
, weights λ1 and λ2, learning rate µ

2: σi, σ−i ← Nash on APi×P−i

3: πE ← Aggregate according to σi, σ−i
4: π′i(θ)← Initialize a new random policy for player i
5: BRqual ← Compute best response against mixture of opponents

∑
k σ

k
−iφi(·, πk−i)

6: while the reward p improvement does not meet the threshold do
7: BRocc ← arg maxsj Df (sj ||πi) for each pure strategy sj
8: BR← Choose BR = BRocc with probability λ1 else BR = BRqual

9: θ ← µθ + (1− µ)θBR

10: p← Compute the payoff p after the update according to
∑
k σ

k
−iφi(π

′
i(θ), π

k
−i)

11: end while
12: BRrew ← arg maxsj F (sj) for each pure strategy sj with probability λ2 else BRqual

13: θ ← µθ + (1− µ)θBRrew

14: Output: policy π′i(θ̂)

F.3 Google Research Football

We also conduct an ablation study on the weight of RD λ2 (see Table 9) in the GRF environment,
where we fixed λ1 to be 0.5 and show the results with different λ2.

G Simplified Optimization Method for Unified Diverse Response

In Algorithm 1, we have outlined using RL as the optimization oracle for approximate best response.
However, computing best response in real-world metagames (matrix games) or non-transitive mixture
model (differential games) can be simplified, since the f -divergence objective can be simplified
according to Theorem 1 or the reward function φi is analytically accessible. Now we provide the
simplified optimization methods separately for matrix games in Algorithm 3 and differential games
in Algorithm 4.

9

Algorithm 4 Optimization for Differential Games

1: Input: population Pi for each i, meta-game APi×P−i
, weights λ1 and λ2, number of gradient

updates Ntrain
2: σi, σ−i ← Nash on APi×P−i

3: πE = (πi, πE−i)← Aggregate according to σi, σ−i
4: π′i(θ)← Initialize a new random policy for player i
5: for j = 1 to Ntrain do
6: pj ← Compute payoff against the mixture of opponents pj =

∑
k σ

k
−iφi(π

′
i, π

k
−i)

7: doccj ← Compute BD doccj = Df (π′i||πi) as the f -divergence between πi and π′i
8: aj ← Compute new reward vector as aj = (φi(π

′
i, π

k
−i))

|P−i|
k=1

9: drewj ← Compute the lower bound of RD as F (aj) according to Theorem 2
10: lj ← −(pj + λ1d

occ
j + λ2d

rew
j)

11: Update θ to minimize lj by backpropagation
12: end for
13: Output: policy π′i(θ)

References

[1] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International Conference on Machine Learning, pages 1407-1416. PMLR, 2018.

[2] Arpad E Elo. The rating of chessplayers, past and present. Arco Pub. 1978.

[3] Yury Polyanskiy. Definition and basic properties of f-divergences. http://people.lids.mit.edu/yp/
homepage/data/LN_fdiv.pdf

[4] Karol Kurach, Anton Raichuk, Piotr Stanczyk, MichaZajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel
reinforcement learning environment. In Proceedings of the AAAI Conference on Articial Intelligence, volume
34, pages 4501-4510, 2020.

10

http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf

