
A Appendix

Preliminaries

Throughout the appendix, we make frequent use of Gaussian integrals. We introduce short-hand
notations

�
Dt ≡

�
dt√
2π

e−t2/2 and H(x) ≡
�∞
x

Dt. Also, when we do not specify the integration
range it is understood that we are integrating from −∞ to∞.

A.1 Capacity supplemental materials

A.1.1 Replica calculation of distribution-constrained capacity

In this section, we present the replica calculation of the distribution-constrained storage capacity of a
perceptron.

As described in main text Eqn.2, we need to perform a quenched average ⟨·⟩ over the patterns ξµ and
labels ζµ for log V , which can be carried out using the replica trick, ⟨log V ⟩ = limn→0(⟨V n⟩−1)/n.
Following [29, 28], we consider first integer n, and at the end perform analytic continuation of n→ 0.
The replicated Gardner volume is:

V =

∏n
α=1

�
dwα

[∏P
µ=1 Θ

(
ζµwα·ξµ

||wα|| − κ
)]

δ(||wα||2 −N)δ

(�
dk

(
q̂(k)− q(k)

))
∏n

α=1

�
dwαδ(||wα||2 −N)

(13)

Let’s rewrite the Heaviside step function using Fourier representation of the δ-function δ(x) =�∞
−∞

dk
2π e

ikx as (defining zµα = ζµwα·ξµ

||wα|| )

Θ(zµα − κ) =

� ∞

κ

dρµαδ(ρ
µ
α − zµα) =

� ∞

κ

dρµα

�
dxµ

α

2π
eix

µ
α(ρµ

α−zµ
α). (14)

Note that now all the ξµ, ζµ dependence is in e−ixµ
αzµ

α . We perform the average with respect to
ξµi ∼ p(ξµi ) = N (0, 1) and p(ζµ) = 1

2δ(ζ
µ + 1) + 1

2δ(ζ
µ − 1) (also note that ||wα|| =

√
N ):

〈∏
µα

e−ixµ
αzµ

α

〉
ξη

=
∏
µj

〈
exp

{
− i√

N
ζµξµj

∑
α

xµ
αw

α
j

}〉
ξζ

=
∏
µi

〈
exp

− (ζµ)2

2N

∑
αβ

xµ
αx

µ
βw

α
i w

β
i


〉

ζ

=
∏
µ

exp

− 1

2N

∑
αβ

xµ
αx

µ
β

∑
i

wα
i w

β
i

 .

(15)

Introducing the replica overlap parameter qαβ = 1
N

∑
i w

α
i w

β
i , and notice that the µ index gives P

identical copies of the same integral. We can suppress the µ indices and write

〈∏
µα

Θ(zµα − κ)

〉
ξζ

=

[� ∞

κ

(∏
α

dραdxα

2π

)
eK

]P
, (16)

where
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K = i
∑
α

xαρα −
1

2

∑
αβ

qαβxαxβ (17)

captures all the data dependence in the quenched free energy landscape, and therefore it is called
the ‘energetic’ part of the free energy. In contrast, the δ-functions in Eqn.13 are called ‘entropic’
part because they regulate what kind of weights are considered in the version space (space of viable
weights).

The entropic part

δ(Nqαβ −
∑
i

wα
i w

β
i ) =

�
dq̂αβ
2π

exp

{
iNq̂αβqαβ − iq̂αβ

∑
i

wα
i w

β
i

}
. (18)

Note that the normalization constraint δ(||wα||2−N) is automatically satisfied by requiring qαα = 1.
Using replica-symmetric ansatz: q̂αβ = − i

2 (∆q̂δαβ + q̂1), and qαβ = (1− q)δαβ + q, we have

iN
∑
αβ

q̂αβqαβ =
nN

2
[∆q̂ + q̂1(1− q)] +O(n2). (19)

and

−i
∑
αβ

q̂αβ
∑
i

wα
i w

β
i = −1

2
(∆q̂ + q̂1)

∑
α

∑
i

(wα
i )

2 − 1

2
q̂1
∑
(αβ)

∑
i

wα
i w

β
i

= −1

2
∆q̂
∑
α

∑
i

(wα
i )

2 − 1

2
q̂1
∑
i

(∑
α

wα
i

)2

HST
= −1

2
∆q̂
∑
α

∑
i

(wα
i )

2 +
√
−q̂1

∑
i

ti

(∑
α

wα
i

)
,

(20)

where in the last step HST denotes Hubbard-Stratonovich transformation
�

dt√
2π

e−t2/2ebt = eb
2/2

that we use to linearize the quadratic term at the cost of introducing an auxiliary Gaussian variable t
to be averaged over later.

Recall that q̂(k) =
�
eikwp̂(w) = 1

N

∑N
i eikw

α
i , the distribution constraint becomes

δ

( �
dk (q̂(k)− q(k))

)
= δ

(�
dk

(
1

N

N∑
i

eikw
α
i − q(k)

))

=

�
dλ̂α(k)

2π
exp

{�
dkiλ̂α(k)

(∑
i

eikw
α
i −Nq(k)

)}
.

(21)

Note that
∑

i

�
dkiλ̂α(k)e

ikwα
i = 2πi

∑
i λα(−wα

i ) by inverse Fourier transform. Next,

−iN
�

dkλ̂α(k)q(k) =− iN

�
dk

(�
dweikwλα(w)

)(�
dw′eikw

′
q(w′)

)
= −2πiN

�
dwdw′λα(w)q(w

′)δ(w + w′)

= −2πiN
�

dwq(w)λα(−w).

(22)
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Now we can write down the full free energy. We ignore overall constant coefficients such as 2π’s and
i’s in the integration measure, which become irrelevant upon taking the saddle-point approximation.
We also leave out the denominator of V , as it does not depend on data and is an overall constant.
Note that under the replica-symmetric ansatz the replica index α gives n identical copies of the same
integral and thus the replica index α can be suppressed (same for synaptic index i):

⟨V n⟩ =
�

dqdλ̂(k)d∆q̂dq̂1e
nN(G0+G1), (23)

where (please note that q is replica overlap, and q(w) is the imposed target distribution)

G0 =
1

2
∆q̂ +

1

2
q̂1(1− q)− 2πi

�
dwq(w)λ(−w) + ⟨logZ(t)⟩t ,

Z(t) =

�
dw exp

{
2πiλ(−w)− 1

2
∆q̂w2 +

√
−q̂1tw

}
.

(24)

Note that integrals in Eqn.23 can be evaluated using saddle-point approximation in the thermodynamic
limit N →∞.

Redefining 2πiλ(−w)− 1
2∆q̂w2 → −λ(w) and −q̂1 → q̂1, we have

G0 =
1

2
∆q̂ − 1

2
q̂1(1− q) +

�
dwq(w)λ(w)− 1

2
∆q̂

�
dwq(w)w2 + ⟨logZ(t)⟩t ,

Z(t) =

�
dw exp

{
−λ(w) +

√
q̂1tw

}
.

(25)

We seek the saddle-point solution for G0 with respect to the order parameters ∆q̂, λ(w), and q̂1:

0 =
∂G0

∂∆q̂
⇒ 1 =

�
dwq(w)w2 =

〈
w2
〉
q(w)

, (26)

0 =
∂G0

∂λ(w)
⇒ q(w) =

〈
1

Z(t)
exp

{
−λ(w) +

√
q̂1tw

}〉
. (27)

We observe that the saddle-point equation Eqn.26 fixes the second moment of the imposed distribution
q(w) to 1 and therefore can be thought of as a second moment constraint. G0 now simplifies to

G0 = −1

2
q̂1(1− q) +

�
dwq(w)λ(w) + ⟨logZ(t)⟩t . (28)

The remaining q̂1 saddle-point equation is a bit more complicated,

0 =
∂G0

∂q̂1
= −1

2
(1− q) +

t

2
√
q̂1

〈
1

Z(t)

�
dww exp

{
−λ(w) +

√
q̂1tw

}〉
t

(29)

Integration by parts for the second term in rhs:

1− q =
1√
q̂1

�
Dt

1

Z

√
q̂1

�
dww2 exp

{
−λ(w) +

√
q̂1tw

}
− 1√

q̂1

�
Dt

1

Z2

√
q̂1

(�
dww exp

{
−λ(w) +

√
q̂1tw

})2

=
〈〈

w2
〉
f(w)

〉
t
−
〈
⟨w⟩2f(w)

〉
t
,

(30)
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where in the last step we have defined an induced distribution f(w) =
Z(t)−1 exp

{
−λ(w) +

√
q̂1tw

}
. Since the second moments are fixed to 1, we have

q =
〈
⟨w⟩2f(w)

〉
t
, (31)

which gives a nice interpretation of q in terms of the average overlap of w in the induced distribution
f(w).

Limit q → 1

We are interested in the critical load αc where the version space (space of viable weights) shrinks to a
single point, i.e., there exists only one viable solution. Since q measures the typical overlap between
weight vectors in the version space, the uniqueness of the solution implies q → 1 at αc. In this limit,
the order parameters {q̂1, λ(w)} diverges and we need to re-derive the saddle point equations Eqn.27
and Eqn.31 in terms of the undiverged order parameters {u, r(w)}:

q̂1 =
u2

(1− q)2
; λ(w) =

r(w)

1− q
. (32)

Now G0 becomes

G0 =
1

1− q

{
−1

2
u2 +

�
dwq(w)r(w) + (1− q) ⟨logZ(t)⟩t

}
, (33)

and

Z(t) =

�
dw exp

1

1− q
{−r(w) + utw} . (34)

We can perform a saddle-point approximation for the w integral in Z(t) at the saddle value w such
that r′(w) = ut:

Z(t) = exp

{
−r(w) + utw

1− q

}
. (35)

Then

G0 =
1

1− q

{
−1

2
u2 +

�
dwq(w)r(w)− ⟨r(w)⟩t + u ⟨tw⟩

}
. (36)

Let’s use integration by parts to rewrite

�
dwq(w)r(w) = −

�
Q(w)r′(w)dw

⟨r(w)⟩t =
�

dt√
2π

e−t2/2r(w) = −
�

P (t)r′(w)dw,

(37)

where Q(w) is the CDF of the imposed distribution q(w) and P (t) = 1
2

[
1 + Erf( t√

2
)
]

is the normal
CDF.

Now the saddle-point equation

0 =
∂G0

∂r′(w)
⇒ Q(w) = P (t) (38)
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determines w(t) implicitly. The u equation gives

0 =
∂G0

∂u
⇒ u = ⟨tw⟩t =

〈
dw

dt

〉
t

(39)

where in the last equality we have used integration by parts. Using Eqn.38-39 G0 is simplified to

G0 =
1

2(1− q)

〈
dw

dt

〉2

t

. (40)

The energetic part

We would like to perform a similar procedure as shown above, to Eqn.17 using the replica-symmetric
ansatz. We observe that the effect of the distribution constraint is entirely captured in G0 and
therefore G1 is unchanged compared with the standard Gardner calculation of perceptron capacity.
We reproduce the calculation here for completeness.

Under the replica-symmetric ansatz qαβ = (1− q)δαβ + q, Eqn.17 becomes

K = i
∑
α

xαρα −
1− q

2

∑
α

x2
α −

q

2

(∑
α

xα

)2

HST
= i
∑
α

xαρα −
1− q

2

∑
α

x2
α − it

√
q
∑
α

xα.

(41)

where we have again used the Hubbard-Stratonovich transformation to linearize the quadratic piece.
Performing the Gaussian integrals in xα (define α = P

N ),

nG1 = α log

[〈� ∞

κ

dρ√
2π(1− q)

exp

{
−
(ρ+ t

√
q)2

2(1− q)

}〉n

t

]
. (42)

At the limit n→ 0,

nG1 = αn

〈
log

[� ∞

κ

dρ√
2π(1− q)

exp

{
−
(ρ+ t

√
q)2

2(1− q)

}]〉
t

. (43)

Perform the Gaussian integral in ρ and define κ̃ =
κ+t

√
q√

1−q
, we have

G1 = α

�
Dt logH(κ̃). (44)

At the limit q → 1, α → αc,
�∞
−∞ Dt is dominated by

�∞
−κ

Dt, and H(κ̃) → 1√
2πκ̃

e−κ̃2/2. The

O
(

1
1−q

)
(leading order) contribution gives

G1 = − 1

2(1− q)
αc

� ∞

−κ

Dt(κ+ t)2. (45)

Let G = G0 +G1. As n→ 0, ⟨V n⟩ = en(NG) → 1 + n (NG), and ⟨log V ⟩ = limn→0
⟨V n⟩−1

n =
NG.

Combining with Eqn.40 (relabel t↔ x to distinguish between the two auxiliary Gaussian variables),
we have
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⟨log V ⟩ = N

2(1− q)

[〈
dw

dx

〉2

x

− αc

� ∞

−κ

Dt(κ+ t)2

]
(46)

Capacity αc is reached when Eqn.13 goes to zero. We arrive at the distribution-constrained capacity

αc(κ) = α0(κ)

〈
dw

dx

〉2

x

, (47)

where α0(κ) =
[�∞

−κ
Dt(κ+ t)2

]−1

is the unconstrained capacity.

Instructive Examples

(1) Standard normal distribution w ∼ N (0, 1).

In this case w = x and αc(κ) = α0(κ).

(2) Normal distribution with nonzero mean w ∼ N (µ, σ2). This is the example discussed in the main
text Fig.1.

In this case w = µ + σx and µ2 + σ2 = 1 due to the second moment constraint Eqn.26. Then
αc(κ) = σ2α0(κ).

(3) Lognormal distribution w ∼ 1√
2πw

exp
{
− (lnw−µ)2

2σ2

}
.

In this case w = eµ+σx where µ = −σ2. αc(κ) = σ2e−σ2

α0(κ).

Geometrical interpretation

Note that although the Jacobian factor
〈
dw
dx

〉
x

takes a simple form, in practice sometimes it might not
be the most convenient form to use. Integrating by parts (p(x) = N (0, 1)),〈

dw

dx

〉
x

=

�
dxp(x)wx (48)

Now define u = P (x) so that du = p(x)dx and w = Q−1(P (x)) = Q−1(u), we can express the
Jacobian in terms of the CDFs

〈
dw

dx

〉
x

=

� 1

0

du
(
Q−1(u)P−1(u)

)
(49)

Furthermore,

〈
dw

dx

〉
x

=
1

2

[� 1

0

du
(
Q−1(u)

)2
+

� 1

0

du
(
P−1(u)

)2 − � 1

0

du
(
Q−1(u)− P−1(u)

)2]
=

1

2

[
2−W2(P,Q)2

]
,

(50)

where we have used second moments equal to 1 and the definition of the Wasserstein-k distance in
the second equality. Therefore, we have arrived at the geometric interpretation of the Jacobian term〈

dw

dx

〉
x

= 1− 1

2
W2(P,Q)2. (51)
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A.1.2 Theory for an arbitrary number of synaptic subpopulations

In this section, we generalize our theory in the above section to the set up of a perceptron with
M synaptic populations indexed by m, wm, such that each wm

i satisfies its own distributions
constraints wm

i ∼ qm(wm). We denote the overall weight vector as w ≡ {wm}Mm=1 ∈ RN×1,
where the total number of weights is N =

∑M
m=1 Nm. The replica overlap now becomes qαβ =

1
N

∑M
m

∑Nm

i wmα
i wmβ

i . The distribution constraint becomes (see Eqn.21 for the case of M = 1)

∏
m

δ

(�
dkm

(
1

Nm

Nm∑
i

eik
mwmα

i − qm(km)

))
. (52)

We introduce q̂αβ , λm(k) to write the δ-functions into Fourier representations, and use replica-
symmetric ansatz q̂αβ = − i

2 (∆q̂δαβ + q̂1), and qαβ = (1 − q)δαβ + q as before. After similar
manipulations that lead to Eqn.25, the entropic part of the free energy becomes (gm = Nm/N is the
fraction of weights in m-th population)

G0 =
1

2
∆q̂ − 1

2
q̂1(1− q) +

∑
m

gm

�
dwmqm(wm)λm(wm)

− 1

2
∆q̂
∑
m

gm

�
dwmqm(wm) (wm)

2
+
∑
m

gm ⟨logZm(t)⟩t ,

Zm(t) =

�
dwm exp

{
−λm(wm) +

√
q̂1tw

m
}
.

(53)

Now the second moment constraint 0 = ∂G0/∂∆q̂ (Eqn.26) becomes the weighted sum of second
moments from each population:

1 =
∑
m

gm

�
dwmqm(wm) (wm)

2
=
∑
m

gm

〈
(wm)

2
〉
qm

. (54)

We take the q → 1 limit as before:

q̂1 =
u2

(1− q)2
; λm(wm) =

rm(wm)

1− q
. (55)

Use saddle-point approximation for Zm(t) and integrate by parts as in Eqn.35-37, the entropic part
becomes

G0 =
1

1− q

{
−1

2
u2 +

∑
m

gmr′m(wm) [P (x)−Qm(wm)] + u
∑
m

gm ⟨twm⟩t

}
. (56)

Now the saddle-point equation for order parameters r′m(wm) and u gives

P (x) = Qm(wm)

u =
∑
m

gm ⟨twm⟩t =
∑
m

gm

〈
dwm

dt

〉
t

.
(57)

Therefore,

G0 =
1

2(1− q)

[∑
m

gm

〈
dwm

dt

〉
t

]2
. (58)
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The energetic part (Eqn.35) remains unchanged and thus (relabel t↔ x)

αc(κ) = α0(κ)

[∑
m

gm

〈
dwm

dx

〉
x

]2
. (59)

E/I balanced lognormals

Now we specialize to the biologically realistic E/I balanced lognormal distributions described in
the main text. We are interested the case with two synaptic populations m = E, I that models the
excitatory/inhibitory synpatic weights of a biological neuron. wE

i ∼ 1√
2πσEwE

exp
{
− (lnwE−µE)2

2σ2
E

}
and wI

i ∼ 1√
2πσIwI

exp
{
− (lnwI−µI)

2

2σ2
I

}
. Let’s denote the E/I fractions as gE = r and gI = 1− r.

The CDF of the lognormals are given by

Qm(wm) =H

[
1

σm
(µm − lnwm)

]
. (60)

The corresponding inverse CDF is

Q−1
m (u) = exp

{
µm − σmH−1(u)

}
. (61)

The capacity is therefore

αc = α0

[∑
m

gm

� 1

0

duQ−1
m (u)P−1(u)

]2

= α0

[
r

� 1

0

duH−1(u) exp
{
µE − σEH

−1(u)
}
+ (1− r)

�
duH−1(u) exp

{
µI − σIH

−1(u)
}]2

.

(62)

This model has five parameters {r, σE , σI , µE , µI}. We use values of r reported in experiments (the
ratio between of E. connections found and I. connections found).

We also have two constraints. The E/I balanced constraint gE
〈
wE
〉
qE

= gI
〈
wI
〉
qI

:

reµE+ 1
2σ

2
E = (1− r)eµI+

1
2σ

2
I , (63)

and the second moment constraint 1 =
∑

m gm

〈
(wm)

2
〉
qm

:

1 = re2(µE+σ2
E) + (1− r)e2(µI+σ2

I ). (64)

Therefore there are two free parameters left and we choose to express µE and µI in terms of the rest:

µI =− 1

2
σ2
I − ln(1− r)− 1

2
ln

[
eσ

2
I

1− r
+

eσ
2
E

r

]

µE =− 1

2
σ2
E − ln r − 1

2
ln

[
eσ

2
I

1− r
+

eσ
2
E

r

]
.

(65)

The parameter landscape is plotted against the two free parameters σE and σI . Here we report
comparisons across different experiments [38, 9, 32, 47, 65, 74] similar to main text Fig.4 (Fig.4 (a) is
included here for reference). We estimate σE and σI using the experimentally reported coefficient of
variation (CV ) as it is a dimensionless quantity suitable for comparison across different experiments.
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Figure 6: Additional parameter landscape for the biologically-realistic distribution. (a)-(b) (theory
from main text Eqn.10 and simulations from DisCo-SGD): (a) Determination of capacity; (b) Example
of weight distribution obtained in simulation. (c) Capacity (normalized by the optimal value in the
landscape) as a function of the lognormal parameters σE and σI . Experimental value is shown in
green with error bars, and optimal capacity is shown in red.

We then estimate σ assuming the underlying experimental E. or I. distributions are lognormal, such
that CV =

√
eσ2 − 1. See e.g. Table S2 in the supplementary materials of [18] for a complied list of

CV s for different experiments.

Note that despite the apparently different shape of distributions, all the experimentally measured
parameter values are within the first quantile of the optimal values predicted by our theory.

A.1.3 Capacity for biased inputs and sparse label

In this section, we generalized our theory in Section A.1.1 to the set up of nonzero-mean input
patterns ξµ and sparse labels ζµ:

p(ξµi ) =N (m, 1−m2)

p(ζµ) =fδ(ζµ − 1) + (1− f)δ(ζµ + 1).
(66)

In this case, we need to include a bias in the perceptron ζ̂µ = sgn(w·ξµ

∥w∥ − b) to be able to correctly
classify patterns in general.

Note that m = 0 and f = 1/2 reduces to the case in Section A.1.1. We observe due to the
multiplicative relation between the Jacobian term and the original Gardner capacity in Eqn.47,
entropic effects (such as distribution constraints and sign-constraints) factors with the energetic
effects (such as the nonzero mean inputs and sparse labels), and they don’t interfere with each other.
Therefore, the calculations for nonzero mean inputs and sparse labels are identical with the original
Gardner case. Here we only reproduce the calculation for completeness. Readers already familiar
with this calculation should skip this part.

The analog of Eqn.15 reads (define the local fields as hµ
i =

∑
α xµ

αw
α
i )
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∏
µα

〈
e
− i√

N
xµ
αζµξµ·wα

〉
ξζ

=
∏
µi

〈
exp

{
− i√

N
ζµξµi h

µ
i

}〉
ξζ

=
∏
µi

〈
exp

{
− im√

N
ζµhµ

i −
1

2N
(1−m2) (hµ

i )
2

}〉
ζ

=
∏
µ

〈
exp

−imζµ
∑
α

xµ
αMα −

1−m2

2

∑
αβ

xµ
αx

µ
βqαβ


〉

ζ

,

(67)

where in the second equality we have carried out the Gaussian integral in ξµ and in the third equality
we introduced the order parameters

qαβ =
1

N

∑
i

wα
i w

β
i , Mα =

1√
N

∑
i

wα
i . (68)

Now the full energetic term becomes〈
Θ

(
1√
N

ζµξµ ·wα − bζµ − κ

)〉
ξζ

=
∏
µ

〈� ∞

κ+bζµ

dλµ
α

2π

�
dxµ

α exp

−imζµ
∑
α

xµ
αMα −

1−m2

2

∑
αβ

xµ
αx

µ
βqαβ


〉

ζ

= f
∏
µ

� ∞

κ+b

dλµ
α

2π

�
dxµ

α exp

i
∑
α

xµ
α (λµ

α −mMα)−
1−m2

2

∑
αβ

xµ
αx

µ
βqαβ


+(1− f)

∏
µ

� ∞

κ−b

dλµ
α

2π

�
dxµ

α exp

i
∑
α

xµ
α (λµ

α +mMα)−
1−m2

2

∑
αβ

xµ
αx

µ
βqαβ


= f

∏
µ

� ∞

κ+b−mMα√
1−m2

dλµ
α

2π

�
dxµ

α exp

i
∑
α

xµ
αλ

µ
α −

1

2

∑
αβ

xµ
αx

µ
βqαβ


+(1− f)

∏
µ

� ∞

κ−b+mMα√
1−m2

dλµ
α

2π

�
dxµ

α exp

i
∑
α

xµ
αλ

µ
α −

1

2

∑
αβ

xµ
αx

µ
βqαβ

 .

Now G1 becomes

G1 =
1

1− q

f

� ∞

κ−b+mM√
1−m2

Dt

(
t+

κ+ b−mM√
1−m2

)2

+ (1− f)

� ∞

−κ−b−mM√
1−m2

Dt

(
t+

κ− b+mM√
1−m2

)2
.

(69)

Note that the hat-variables M̂α conjugated with Mα are in subleading order to q̂αβ in the thermody-
namic limit, and therefore G0 is unchanged. Let v = M − b/m, we have now the capacity

αc(κ) =

〈
dw

dx

〉2

x

f � ∞

−κ+mv√
1−m2

Dt

(
t+

κ−mv√
1−m2

)2

+ (1− f)

� ∞

−κ−mv√
1−m2

Dt

(
t+

κ+mv√
1−m2

)2
−1

,

(70)
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Figure 7: αc(κ) for different values of input mean m and label sparsity f . Note that the blue curve
corresponds to the vanilla case shown in main text Fig.4(c).

where the order parameter v needs to be determined from the saddle-point equation

f

� ∞

−κ+mv√
1−m2

Dt

(
t+

κ−mv√
1−m2

)
= (1− f)

� ∞

−κ−mv√
1−m2

Dt

(
t+

κ+mv√
1−m2

)
. (71)

In Fig.7 we numerically solve αc(κ) for different values of m and f .

A.2 Optimal transport theory

In recent years, Wasserstein distances has found diverse applications in fields ranging from machine
learning [7, 26, 49] to geophysics [23, 24, 19, 45, 46]. In optimal transport theory, the Wasserstein-k
distance arise as the minimal cost one needs to pay in transporting one probability distribution to
another, when the moving cost between probability masses are measured by the Lk norm [72]. When
one equips the probability density manifold with the Wasserstein-2 distance as metric, it becomes the
Wasserstein space, a Riemannian manifold of real-valued distributions with a constant nonnegative
sectional curvature [41, 25, 20]. Note that in our statistical mechanical theory main text Eqn.3-5,
the Wasserstein-2 distance naturally arises in the mean-field limit without assuming any a priori
transportation cost.

Here we briefly review the theory of optimal transport. Intuitively, optimal transport concerns the
problem of finding the shortest path of morphing one distribution into another. In the following, we
will use the Monge formulation [66, 3].

Given probability distributions P and Q with supports X and Y , we say that T : X → Y is a
transport map from P to Q if the push-forward of P through T, T#P , equals Q:

Q = T#P ≡ P (T−1(Y )). (72)

Eqn.72 can be understood as moving probability masses x ∈ X from distribution P to y ∈ Y
according to transportation map T , such that upon completion the distribution over Y becomes Q.

We are interested in finding a transportation plan that minimizes the transportation cost as measured
by some distance function d : X × Y → R :

C(T ; d) =

�
X

d(T (x), x)p(x)dx s.t. T#P = Q. (73)

The transportation plan that minimizes Eqn.73 is called the optimal transport plan T ∗ =
argminTC(T ; d). When the distance function d is chosen to be the Lk norm, the minimal cost
becomes the Wasserstein-k distance:

Wk(P,Q) = inf
T

C(T ;Lk)|T#P=Q. (74)
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Optimal 
Transport plan

Figure 8: An example optimal transport plan from standard normal, p(x), to a lognormal distribution
q(w). The optimal transport plan T ∗ is plotted in between the distributions. T ∗ moves p(x) units of
probability mass x to location w, as indicated by the dashed line, and the colors are chosen to reflect
the amount of probability mass to be transported.

In 1-dimension, the Wasserstein-k distance has a closed form given by main text Eqn.6, and the
optimal transport map has an explicit formula in terms of the CDFs: T ∗ = Q−1 ◦ P . An example
of the optimal transport map and how it moves probability masses between distributions is given in
Fig.8 for transport between p(w) = N (0, 1) and q(w) = 1√

2πσw
exp

{
(lnw−µ)2

2σ2

}
. Note that in this

case, the optimal transport plan is simply T ∗(x) = eµ+σx.

Now consider the manifoldM of real-valued probability distributions, where points on this manifold
are probability measures that admits a probability density function. When endowed with the Wk

metric, (M,Wk) becomes a metric space and is in particular a geodesic space [66, 3]. We can
explicitly construct the geodesics connecting points onM. We parameterize the geodesic by the
geodesic time τ ∈ [0, 1]. Then given T ∗ an optimal transport plan, the intermediate probability
distributions along the geodesic take the following form [66]:

Pτ = ((1− τ)Id + τT ∗)# P (75)

where Id is the identity map and Pτ is a constant speed geodesic connecting Pτ=0 = P and
Pτ=1 = Q.

For the discrete case, we can describe the sample {wτ
i } from Pτ in a simple manner in terms of the

samples {wi} drawn from P and {ŵi} drawn from Q. We can arrange the samples in the ascending
order, or equivalently, forming their order statistics

{
x(i) : x(1) ≤ ... ≤ x(N)

}
, which can be thought

of as atoms in a discrete measure. Then in terms of the order statistics,

wτ
(i) = (1− τ)w(i) + τŵ(i) (76)

Upon infinitetesimal change in the geodesic time, τ → τ + δτ , the geodesic flow becomes

wτ+δτ
(i) = wτ

(i) + δτ
(
ŵ(i) − w(i)

)
(77)

Specializing to the case discussed in main text Section 3, w(i) = wτ=0
(i) is the initialization for the

perceptron weight and therefore just a constant, we can promoted it w(i) → wτ
(i) to fix the overall

scale in the perceptron weight, then we arrive at main text Eqn.9.
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A.3 Generalization supplemental materials

A.3.1 Replica calculation of generalization with sign-constraint

In this section, we calculate the sign-constraint teacher-student setup. To ease notation, let’s denote
the teacher perceptron wt ≡ w0 and the (replicated) student perceptron wa

s ≡ wa. Given random
inputs ξµ with p(ξµi ) = N (0, 1), we generate labels by ζµ = sgn(w0 · ξµ/||w0||+ ηµ), where ηµ is
input noise and ηµ ∼ N (0, σ2). Let’s denote the signs of the teacher perceptron as si = sgn(w0

i ).
The student perceptron’s weights are constrained to have the same sign as that of the teacher’s, so we
insert Θ(siw

a
i ) in the Gardner volume to enforce this constraint (we leave out the denominator part

of V as it does not depend on data and is an overall constant):

⟨V n⟩ξηw0 =

n∏
α=1

〈� ∞

−∞

dwa

√
2π

p∏
µ=1

Θ

(
sgn
(
w0 · ξµ

||w0||
+ ηµ

)
wa · ξµ

||wa||
− κ

) N∏
i

Θ(siw
a
i )

〉
ξηw0

.

(78)

We observe that upon redefining siw
a
i → wa

i , siξ
µ
i → ξµi , we can absorb the sign-constraints into the

integration range of w from [−∞,+∞] to [0,∞]:

⟨V n⟩ξηw0 =

n∏
α=1

〈� ∞

0

dwa

√
2π

p∏
µ=1

Θ

(
sgn
(
w0 · ξµ

||w0||
+ ηµ

)
wa · ξµ

||wa||
− κ

)〉
ξηw0

. (79)

Therefore, sign constraint amounts to restricting all the weights to be positive. In the following, we
denote

�∞
0

as
�
c
.

Let’s define the local fields as

ha
µ =

wa · ξµ√
N

; h0
µ =

w0 · ξµ√
N

+ ηµ (80)

We leave the average over teacher w0 to the very end.

⟨V n⟩ξη =
∏
µa

�
c

dwa

√
2π

�
dha

µΘ

(
sgn(h0

µ)h
a
µ − κ

)〈
δ

(
ha
µ −

wa · ξµ√
N

)〉
ξη

=

�
c

(

n∏
a=1

dwa

√
2π

)

� ∏
µa

dha
µdĥ

a
µ

2π

� ∏
µ

dh0
µdĥ

0
µ

2π

∏
µa

Θ

(
sgn(h0

µ)h
a
µ − κ

)

×
〈
exp

{∑
µa

(
iĥa

µh
a
µ − iĥa

µ

wa · ξµ√
N

)
+
∑
µ

(
iĥ0

µh
0
µ − iĥ0

µ

w0 · ξµ√
N
− iĥ0

µη
µ

)}〉
ξη

=

�
c

(

n∏
a=1

dwa

√
2π

)

� ∏
µa

dha
µdĥ

a
µ

2π

� ∏
µ

dh0
µdĥ

0
µ

2π

∏
µa

Θ

(
sgn(h0

µ)h
a
µ − κ

)

× exp

{∑
µa

iĥa
µh

a
µ +

∑
µ

iĥ0
µh

0
µ

}

×
∏
µ

exp

− 1

2N

∑
a,b

ĥa
µĥ

b
µ

∑
i

wa
i w

b
i +N

(
ĥ0
µ

)2
+ 2

∑
a

ĥa
µĥ

0
µ

∑
i

wa
i w

0
i

 ,

(81)

where in the last step we perform the average over noise ηµ ∼ N (0, σ2) and patterns p(ξµi ) =
N (0, 1), and make use of the normalization conditions

∑
i(w

0
i )

2 = N and
∑

i(w
a
i )

2 = N .
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Now let’s define order parameters

qab =
1

N

∑
i

wa
i w

b
i , Ra =

1

N

∑
i

wa
i w

0
i . (82)

We introduce conjugate variables q̂ab and R̂a to write the δ-functions into its Fourier representations,
and after some algebraic manipulations we can bring the Gardner volume into the following form
(α ≡ p/N ):

⟨⟨V n⟩⟩ξ,z =

�
(
∏
a

dq̂a1 )(
∏
ab

dqabdq̂ab)(
∏
a

dRadR̂a)enNG
, (83)

where (h̄0
µ = γh0

µ; γ = 1/
√
1 + σ2)

nG =nG0 + αnGE

nG0 =− 1

2

∑
ab

q̂abqab −
∑
a

R̂aRa + n ⟨lnZ⟩w0 ,

Z =

�
c

(∏
a

dwa
i√
2π

)
exp

{
1

2

∑
a

q̂a1 (w
a
i )

2 +
1

2

∑
a ̸=b

q̂abwa
i w

b
i +

∑
a

R̂awa
i w

0
i

}
,

nG1 = ln

� ∏
a

dĥadha

2π

�
Dh̄0

∏
a

Θ

(
sgn(

h̄0

γ
)ha − κ

)
× exp

{
i
∑
a

ĥaha − iγh̄0
∑
a

haRa − 1

2

∑
a

(ĥa)2[1− (γRa)2]− 1

2

∑
a ̸=b

ĥaĥb(qab − γ2RaRb)

}
.

(84)

The energetic part G1 is the same as the unconstrained case in [61, 22]. After standard manipulations,
we have

G1 = 2

�
DtH

(
− γRt√

q − γ2R2

)
lnH

(
κ−√qt
√
1− q

)
. (85)

Entropic part

In this subsection, we perform the integrals in the entropic part, and we will see novel terms coming
from the constraint on the student’s integration range.

We start by assuming a replica-symmetric solution for the auxiliary variables introduced in the Fourier
decomposition of the δ-functions,

R̂a = R̂; q̂ab = q̂ + (q̂1 − q̂)δab; q̂a1 = q̂1; ma
i = mi; m̂a

i = m̂i, (86)

and qab = (1− q)δab + q.

Then the entropic part,

Z =

� (∏
a

dwa
i√
2π

)
exp

{
1

2
(q̂1 − q̂)

∑
a

(wa
i )

2 + R̂w0
i

∑
a

wa
i +

1

2
q̂(
∑
a

wa
i )

2

}
HST
=

�
Dt

�
c

(
∏
a

dwa
i√
2π

) exp

{
1

2
(q̂1 − q̂)

∑
a

(wa
i )

2 + (R̂w0
i + t

√
q̂)
∑
a

wa
i

}
,

(87)
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where we have introduced Gaussian variable t to linearize quadratic term as usual. Now the integral
becomes n identical copies and we can drop the replica index a,

G0 = −1

2
q̂1 +

1

2
q̂q − R̂R+ ⟨lnZ⟩t,w0 . (88)

We can bring the log term into the form of an induced distribution f(w),

Z =

� ∞

0

dw√
2π

exp [−f(w)]

f(w) =
1

2
(q̂ − q̂1)w

2 − (R̂w0 + t
√

q̂)w

. (89)

Under saddle-point approximation, we obtain a set of mean field self-consistency equations for the
order parameters:

0 =
∂G0

∂q̂1
⇒ 1 =

〈〈
w2
〉
f

〉
t,w0

0 =
∂G0

∂R̂
⇒ R =

〈
w0 ⟨w⟩f

〉
t,w0

0 =
∂G0

∂q̂
⇒ q =

〈
⟨w⟩2f

〉
t,w0

, (90)

0 =
∂G1

∂q
⇒ q̂ = −2α∂qG1

0 =
∂G1

∂R
⇒ R̂ = α∂RG1

. (91)

q → 1 limit

In this limit the order parameter diverges, and we define the new set of undiverged order parameters
as

R̂ =
R̃

1− q
; q̂ =

q̃2

(1− q)2
; q̂ − q̂1 =

∆

1− q
. (92)

Then

f(w) =
1

1− q

[
1

2
∆w2 − (R̃w0 + tq̃)w

]
=

1

1− q

[
1

2
∆

(
w − 1

∆
(R̃w0 + tq̃)

)2

− 1

2∆
(R̃w0 + tq̃)2

]
.

(93)

Then ⟨w⟩f = 1
∆

(
R̃w0 + tq̃

)
, and the integral over the auxiliary variable is dominated by values of

t such that R̃w0 + tq̃ > 0. In the following, we denote
〈
[g(t)]+

〉
t

as integrating over range of t such
that g(t) > 0. Then the self-consistency equations Eqn.90 take a compact form (after rescaling order
parameters R̃→ R̃∆ , q̃ → q̃∆)
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1 =
1

∆

〈
Θ(R̃w0 + tq̃)

〉
t,w0

1 =

〈[
R̃w0 + tq̃

]2
+

〉
t,w0

R =

〈
w0
[
R̃w0 + tq̃

]
+

〉
t,w0

, (94)

Eqn.90 becomes (κ̃ = κ/
√
1− γ2R2)

R̃∆ =
αγ√
2π

√
1− γ2R2

� ∞

−κ̃

Dt

(
κ̃+ t

)
∆

2

(
2− q̃2∆− 2R̃R

)
=α

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ− t)2

. (95)

The free energy is (recall that γ = 1/
√
1 + σ2)

G =
1

2(1− q)

(
∆− q̃2 − 2R̃R+

1

∆

〈[
R̃w0 + tq̃

]2
+

〉
t,w0

)
−α

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ−t)2.

(96)

A.3.2 Replica calculation of generalization with distribution-constraint

In this subsection, we will consider the case where student weights are constrained to some prior
distribution qs(ws), while the teacher obeys a distribution pt(wt),for an arbitrary pair qs, pt. We can
write down the Gardner volume Vg for generalization as in the capacity case (main text Eqn.2):

Vg =

�
dws

[∏P
µ=1 Θ

(
sgn
(

wt·ξµ

||wt|| + ηµ
)

ws·ξµ

||ws|| − κ
)]

δ(||ws||2 −N)δ

( �
dk (q̂(k)− q(k))

)
�
dwsδ(||ws||2 −N)

.

(97)

We treat the distribution constraint qs(w) similar to Section A.1.1. The entropic part of the free
energy becomes

G0 =− 1

2
q̂1 +

1

2
q̂q − R̂R+

� ∞

−∞
dwqs(w)λ(w) + ⟨lnZ⟩t,wt

Z =

�
dw√
2π

exp [−f(w)]

f(w) =
1

2
(q̂ − q̂1)w

2 − (R̂wt + t
√

q̂)w + λ(w)

. (98)

At the limit q → 1, we make the following ansatz

R̂ =
R̃

1− q
; q̂ =

u2

(1− q)2
; q̂ − q̂1 =

∆

1− q
; λ(w) =

r(w)

1− q
. (99)

Then
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G0 =
1

(1− q)

(
−1

2
u2 +

1

2
∆− R̃R+

�
dwqs(w)r(w)

)
+ ⟨lnZ⟩t,wt

f(w) =
1

1− q

(
1

2
∆w2 − (R̃wt + ut)w + r(w)

) (100)

We can absorb 1
2∆w2 into the definition of r(w), 1

2∆w2 + r(w)→ r(w), and 0 = ∂G0/∂∆ gives
the second moment constraint, 1 =

�
dwqs(w)w

2.

Then,

G0 =
1

(1− q)

(
−1

2
u2 − R̃R+

�
dwq(w)r(w)

)
+ ⟨lnZ⟩t,wt

f(w) =
1

1− q

(
r(w)− (R̃wt + ut)w

) . (101)

Next, we perform a saddle-point approximation on the log-term in G0,

Z =

�
dw√
2π

exp [−f(w)] ≈ exp [−f(ws)] , (102)

where ws is the saddle-point value for the weight, and is determined implicitly by

r′(ws) = R̃wt + ut. (103)

Note that r′(ws) is now an induced random variable from random variables wt and t. For later
convenience, we rescale r′(ws) to define a new random variable z,

z ≡ u−1r′(ws) = t+ u−1R̃wt ≡ t+ εwt, (104)

where we have also defined
ε ≡ u−1R̃. (105)

The induced distribution on z is then

p̃(z) =

�
Dt

�
dwtp(wt)δ(z − t− εwt). (106)

Now the entropic part becomes

G0 =
1

(1− q)

(
−1

2
u2 − R̃R+

�
dwqs(w)r(w) + ⟨(R̃wt + ut)ws⟩t,wt

− ⟨r(ws)⟩t,wt

)
. (107)

Integrate by parts, �
dwq(w)r(w) = −

�
dwQ(w)r′(w), (108)

⟨r(ws)⟩t,wt =

�
Dtdwtpt(wt)r(ws)

=

�
dzδ(z − t− εwt)

�
Dtdwtpt(wt)r(ws)

=

�
dzp̃(z)r(ws)

=−
�

dzP̃ (z)r′(ws)

. (109)

Now 0 = ∂G/∂r′(ws) gives

Q(ws) = P̃ (z). (110)
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which implicitly determines ws(z).

Next,

0 =
∂G

∂u
⇒ u = ⟨ws(z)t⟩t,wt

, (111)

0 =
∂G

∂R̃
⇒ R = ⟨ws(z)wt⟩t,wt . (112)

The free energy then simplifies to

G =
u2

2 (1− q)
+ αG1. (113)

The energetic part as q → 1 becomes (same as the unconstrained and sign-constrained case)

G1 = − 1

1− q

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ− t)2. (114)

The remaining two saddle point equations are (1) the vanishing log-Gardner volume and (2) 0 =
∂G/∂R:

1

2
u2 = α

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ− t)2, (115)

εu = αγ

√
2

π

√
1− γ2R2

� ∞

−κ̃

Dt

(
κ̃+ t

)
. (116)

In summary, the order parameters {R, κ, u, ε} can be determined from a set of self-consistency
equations:

u =⟨ws(z)t⟩t,wt

R =⟨ws(z)wt⟩t,wt

1

2
u2 =α

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ− t)2

εu =
2αγ√
2π

√
1− γ2R2

� ∞

−κ̃

Dt

(
κ̃+ t

) , (117)

where we have introduced κ̃ = κ/
√
1− γ2R2, an auxiliary normal variable t ∼ N (0, 1), and an

induced random variable z ≡ t+ εwt with induced distribution

p̃(z) =

�
Dt

�
dwtpt(wt)δ(z − t− εwt). (118)

Note that ws(z) can be determined implicitly by equating the CDF of the induced variable z and the
distribution that the student is constrained to:

Q(ws) = P̃ (z). (119)

Examples

(1) Lognormal distribution

In the following, we solve ws(z) explicitly from the CDF equation Q(ws) = P̃ (z). For a lognormal
teacher,

pt(wt) =
1

wt

1√
2πσ

exp

{
− (lnwt − µ)2

2σ2

}
. (120)

The second moment constraint implies µ = −σ2.
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The induced CDF of z is

P̃ (z) =

� z

−∞
dz′

� ∞

−∞
Dt

� ∞

0

dwtpt(wt)δ(z
′ − t− εwt). (121)

Let x = (lnw − µ)/σ,

P̃ (z) =

� z

−∞
dz′

� ∞

−∞
Dt

� ∞

−∞
Dxδ(z′ − t− εeµ+σx)

=

� ∞

−∞
DxH(εeµ+σx − z)

. (122)

Now the CDF of ws is

Qs(ws) =

� ws

−∞
qs(w)dw = H

(
− lnws − µ

σ

)
. (123)

Therefore, equating P̃ (z) and Qs(ws):� ∞

−∞
DxH(εeµ+σx − z) = H

(
− lnws − µ

σ

)
, (124)

We can solve for ws(z) by (recall z ≡ t+ εwt)

ws(z) = exp

{
µ+ σH−1

(�
DxH(z − εeµ+σx)

)}
. (125)

Or in terms of error functions

ws(z) = exp

{
µ+
√
2σerf

−1
(�

Dxerf
(
εeµ+σx − z√

2

))}
. (126)

We can also calculate the initial overlap (before any learning):

R0 = ⟨wt ·ws⟩ptqs
= e2µ+σ2

= e−σ2

. (127)

(2) Uniform distribution

Assuming that both the teacher and the student have a uniform distribution in range [0, σ].

The second moment constraint fixes σ =
√
3.

We can solve (as in the lognormal example above),

ws(z) =
1

ε

� z

−∞
dz′ (H(z′ − εσ)−H(z′)) . (128)

(3) Half-normal distribution

Assuming that both the teacher and the student has a half-normal distribution 2√
2πσ

exp
{
− w2

2σ2

}
.

The second moment constraint fixes σ = 1, and

ws(z) = σH−1

{
1

2
−
� z√

1+σ2ε2

−∞
DtH(−σεt)

}
. (129)
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Arbitrary number of synaptic subpopulations

Just like in the case of Section A.1.2, we can generalize our theory above to incorporate distribution
constraints with an arbitrary number of synaptic subpopulations. Let’s consider a student perceptron
with M synaptic populations indexed by m, wm, such that each wm

i satisfies its own distributions
constraints wm

i ∼ Qm(wm). We denote the overall weight vector as w ≡ {wm}Mm=1 ∈ RN×1. The
total number of weights is N =

∑M
m=1 Nm, and we denote the fractions as gm = Nm/N . Since the

derivation is similar to that of Section A.1.2 and Section A.3.2, we will only present the results here.

As before, the order parameters {R, κ, u, ε} can be determined from a set of self-consistency equa-
tions:

u =
∑
m

gm⟨wm(z)t⟩t,wt

R =
∑
m

gm⟨wm(z)wt⟩t,wt

1

2
u2 =α

� κ

−∞
DtH

(
− γRt√

1− γ2R2

)
(κ− t)2

εu =
2αγ√
2π

√
1− γ2R2

� ∞

−κ̃

Dt

(
κ̃+ t

)
, (130)

where κ̃ = κ/
√
1− γ2R2, t ∼ N (0, 1). and an induced random variable z ≡ t+ εwt with induced

distribution the same as Eqn.118.

Note that every wm(z) can be determined by equating the CDF of the induced variable z and the
m-th distribution that wm(z) is constrained to:

Qm(wm) = P̃ (z). (131)

A.3.3 Sparsification of weights in sign-constraint learning

For unconstrained weights, max-margin solutions are considered beneficial for generalization particu-
larly for small size training sets. As a first step toward biological plausibility, one can try to constraint
the sign of individual weights during learning (e.g., excitatory or inhibitory). In the generalization
error setup, we can impose a constraint that the teacher and student have the same set of weight
signs. Surprisingly, we find both analytically and numerically that if the teacher weights are not too
sparse, the max-margin solution generalizes poorly: after a single step of learning (with random
input vectors), the overlap, R, drops substantially from its initial value R0 (by a factor of

√
2 for a

half-Gaussian teacher, see the blue curves in Fig.9(a).

We can verify this by calculating R0 in two different ways. As an example, in the following we
consider the case where both the teacher and student have half-normal distributions.

(1) By definition, the overlap is R = ws·wt

∥ws∥∥wt∥ . Since ws and wt are uncorrelated before learning

(α = 0), the initial overlap is then R0 = ⟨ws⟩⟨wt⟩
||ws||wt||=

2
π ;

(2) Take the α→ 0 limit in Eqn.90 and Eqn.91 and calculate R0+ = limα→0+ R(α) =
√
2

π .

Therefore, in this example R0+ = R0/
√
2.

The source of the problem is that due to the sign constraint, max-margin training with few examples
yields a significant mismatch between the student and teacher weight distributions. After only a
few steps of learning, half of the student’s weights are set to zero, and the student’s distribution,
p(ws) =

1
2δ(0) +

1√
2π

exp{−w2
s

4 }, deviates significantly from the teacher’s half-normal distribution
(Fig.9(b)).
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(b)(a) (c)

Figure 9: Sparsification of weights in sign-constraint learning. (a) An illustration of weight
sparsification. In this schematic, the perceptron lives on this 1-dimensional circle and N = 2. Red
line denotes the hyperplane orthogonal to the perceptron weight before sign-constraint, crosses and
circles indicate examples in different classes. Sign-constraint pushes the weights to the first quadrant,
which zeros half of the weights on average. Blue line indicates the hyperplane obtained after the
sign-constraint. (b) Sparsification of weights due to max-margin training. After only a few iterations,
nearly half of the student weights are set to zero, and the distribution deviates significantly from
the teacher’s distribution. (c) Teacher-student overlap as a function of load α for different learning
paradigms. Dashed lines are from theory, and dots are from simulation. Note the horizontal dashed
lines show the initial drop in overlap from zero example and to just a single example. In this case
teacher has nonzero noise, γ = 0.85.

Uniform Distribution Half-normal Distribution Lognormal Distribution(a) (b) (c)

Figure 10: Generalization (measured by overlap) performance for different distributions and different
noise levels in fixed prior learning. From left to right: uniform, half-normal, and lognormal distri-
bution. In all cases the student is constrained to have the same distribution as that of the teacher’s.
Dashed lines are from theory and dots are from DisCo-SGD simulation.

A.3.4 Noisy teacher

We generate examples {ξµ, ζµ}Pµ=1 from a teacher perceptron, wt ∈ RN : ζµ = sgn(wt ·ξµ/||wt||+
ηµ), where ηµ is input noise and ηµ ∼ N (0, σ2). In this subsection we present additional numerical
results for the case when σ ̸= 0. As in previous sections, we define the noise level parameter
γ = 1/

√
1 + σ2.

Our theory’s prediction is confirmed by numerical simulation for a wide range of teacher noise level
γ and teacher weight distributions Pt(wt). We find that distribution-constrained learning performs
consistently better all the way up to capacity (capacity in this framework is due to teacher noise). For
illustration, in Fig.10 we show theory and simulation for fixed prior learning of three different teacher
distributions: uniform, half-normal, and lognormal.

A.4 DisCo-SGD simulations

Avoid vanishing gradients

Note that we often observe a vanishing gradient in DisCo-SGD when we choose a constant learning
rate η1, and in such cases the algorithm tends to find poor margin κ which deviates from the max-
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margin value predicted from the theory. We find that scaling η1 with the standard deviation of the
gradient solves this problem:

η1 = η01/std

(∑
µ

ξµi (ζ̂
µ − ζµ)

)
, (132)

where the standard deviation is computed across the synaptic index i and η01 is a constant.

Mini-batches

For the capacity simulations, we always use full-batch in the SGD update, so it is in fact simply
gradient descent. However, in the case of generalization, we find that training with mini-batches
improves the generalization performance, since it acts as an source of stochasticity during training. In
main text Fig.5 we use mini-batch size B = 0.8P (80% of examples are used for each SGD update).

When we vary teacher’s noise level, we find that scaling B with γ improves the quality of the
solutions, as measured by the generalization performance (or equivalently, the teacher-student
overlap). Generally, the more noisy the teacher is, the smaller the mini-batches should be. This is
because smaller mini-batch size corresponds to higher stochasticity, which helps overcoming higher
teacher noise.

Parameters

All the capacity simulations are performed with the following parameters N = 1000, η01 = 0.01, η2 =
0.6, tmax = 10000, where tmax is the maximum number of iterations of the DisCo-SGD algorithm.

All results are averaged over 300 realizations.

In main text Fig.4, the experimental [38] parameters are gE = 45.8%, σE = 0.833, σI = 0.899.

In main text Fig.5(a): We show the teacher-student overlap as a function of α. Dots are simulations
performed with series of student distribution from σs = 0.1 to σs = 1.4, where the teacher distribution
sits in the middle of this range, σt = 0.7. Each such simulation is performed with fixed σs and
varying load α ∈ [0.05, 2.5]. In main text Fig.5(b): we show the empirical weight distributions found
by unconstrained perceptron learning for α ∈ [0.05, 10]. In main text Fig.5(c) we show optimal
student distribution for α ∈ [0.05, 2.5]. Note that optimal prior learning approaches the teacher
distribution much faster than unconstrained learning.

All the generalization DisCo-SGD simulations are performed with the same parameter as in the
capacity DisCo-SGD simulations, but with two additional parameter: teacher’s noise level γ and
SGD mini-batch size B.

For the simulations in Fig.10 we use

γ = 0.4, B = 0.2P ; γ = 0.55, B = 0.4P ; γ = 0.7, B = 0.6P ; γ = 0.85, B = 0.8P ; γ = 1.0, B =
P (noiseless case).

A.5 Replica symmetry breaking

A.5.1 Bimodal distributions

In deriving the capacity formula, we have assumed replica-symmetry (RS). It is well-known that
replica-symmetry breaking occurs in the Ising perceptron [52, 13], so it is natural to ask to what
extent our theory holds when approaching the Ising limit. Let’s consider a bimodal distribution with
a mixture of two normal distributions with non-zero mean centered around zero,

p(w) =
1

2
N (−µ, σ) + 1

2
N (µ, σ)

The second moment constraint requires µ2 + σ2 = 1.
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Figure 11: Left: Capacity as a function of separation for different size perceptrons. Dots are from
DisCo-SGD simulations and the ‘RS theory’ line is from our theory. Exact values for Ising perceptron
and state-of-the-art numerical values are included as well. Right: Deviation from the RS theory as
a function of separation. This is the same as subtracting the simulation values from the theoretical
predictions in the left figure.

0.0 0.2 0.4 0.6 0.8 1.0
separation

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ca
pa

cit
y N=

RS theory
exact
SBPI

0.0 0.2 0.4 0.6 0.8 1.0
separation

0.0

0.2

0.4

0.6

0.8

1.0
de

vi
at

io
n 

fro
m

 R
S 

th
eo

ry

N=

Figure 12: Finite size effects. Left/Right: we extrapolate simulation values in Fig.11 Left/Right to
infinite N .

We can gradually decrease the Gaussian width σ, or equivalently µ =
√
1− σ2 (which we call

‘separation’ in the following) and compare the capacity theoretically predicted by the RS theory and
numerically found by the DisCo-SGD algorithm.

In Fig.11 we can see that the simulation agrees well with the RS theory until one gets very close
to the Ising limit (µ = 1). To understand finite size effects, we extrapolate to the infinite size limit
(N →∞) in Fig.12, and found that the deviation from RS theory has a sharp transition near µ = 1,
marking the breakdown of the RS theory.

Ising perceptron

It is also interesting to compare our distribution-constrained RS theory to the unconstrained RS theory.
In this Ising limit,

q(w) =
1

2
δ(w − 1) +

1

2
δ(w + 1), (133)

and CDF
Q(w) =

1

2
Θ(w − 1) +

1

2
Θ(w + 1). (134)

Equating Q(w) with the normal CDF P (x) and solve for w(x), we find w(x) = sgn(x). Then
dw/dx = 2δ(x) and

〈
dw
dx

〉
x
= 2√

2π
. Therefore,

lim
Ising

αc(κ = 0) =
4

π
, (135)
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(a) (b)

Figure 13: Optimal student prior distribution as a function of α. (a) Gray curves correspond to a series
of optimal student distributions as a function of α, with the darker color representing larger α. Red is
teacher distribution. (b) Overlap as a function of α for different student priors. Red dashed line is the
optimal overlap calculated from our replica-symmetric theory. Dots are from DisCo-SGD simulations.
For the same α, different color dots represent different overlaps obtained from simulations with
different σs.

which is exactly the same as the prediction from the unconstrained RS theory [52, 13]. In contrast,
the exact capacity of Ising perceptron with replica-symmetry breaking is αc ≈ 0.83. For comparison,
we have included these values in Fig.12(a), as well as the capacity found by the state-of-the-art
supervised learning algorithm (Stochastic Belief Propagation, SBPI [10]) for Ising perceptron.

A.5.2 Sparse distributions

For a teacher with sparse distribution, p(wt) = (1− ρ)δ(wt) +
ρ√

2πσtwt
exp

{
− (lnwt−µt)

2

2σ2
t

}
. We

found that the simulations start to deviate from the theory, and the reason might be due to replica
symmetry breaking. In Fig.13, we use the optimal prior learning paradigm similar to main text Fig.5.
We see that our RS theory no longer gives accurate prediction of overlap in this case.
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