
Generating Synthetic Datasets by
Interpolating along Generalized Geodesics

(Supplementary Material)

Jiaojiao Fan1 David Alvarez-Melis2

1 Georgia Tech, Atlanta, Georgia, USA
2Microsoft Research & Harvard University, Cambridge, Massachusetts, USA

A PROOFS

Proof of Lemma 1. By Santambrogio [2017, §4.4], the result holds when m = 2. Then Proposition 7.5 in Agueh and Carlier
[2011] extends the result to the case of m > 2.

Proof of Proposition 1. Since linear combination preserves cyclically monotonicity,
∑m

i=1 aiT
∗
i (x) is the optimal map from

ν to ρGa [McCann, 1995]. Then according to the definition of W2,ν(·, ·), we can write

W 2
2,ν(ρ

G
a , ν) =

∫ ∥∥∥∥∥x−
m∑
i=1

aiT
∗
i (x)

∥∥∥∥∥
2

dν(x). (1)

For scalars p, q1, . . . , qm, it holds that(
p−

m∑
i=1

aiqi

)2

= p2 +

m∑
i=1

a2i q
2
i − 2

m∑
i=1

aipqi +
∑
i ̸=j

aiajqiqj

= p2 +

m∑
i=1

(ai − ai
∑
j ̸=i

aj)q
2
i − 2

m∑
i=1

aipqi +
∑
i̸=j

aiajqiqj

=

m∑
i=1

ai(p− qi)
2 − 1

2

∑
i ̸=j

aiaj(qi − qj)
2.

Plugging this equality into (1) gives

W 2
2,ν(ρ

G
a , ν) =

∫  m∑
i=1

ai∥x− T ∗
i (x)∥2 −

1

2

∑
i ̸=j

aiaj∥T ∗
i (x)− T ∗

j (x)∥2
 dν(x)

=

m∑
i=1

ai

∫
∥x− T ∗

i (x)∥2dν(x)− 1

2

∑
i̸=j

aiaj

∫
∥T ∗

i (x)− T ∗
j (x)∥2dν(x)

=

m∑
i=1

aiW
2
2,ν(µi, ν)−

1

2

∑
i̸=j

aiajW
2
2,ν(µi, µj).

Proof of Proposition 2. Firstly, W2,Q is symmetric and nonnegative by definition. It is non-degenerate since

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<jiaojiaofan@gatech.edu>?Subject=Your UAI 2023 paper


W2,Q(Pi, Pj) ≥ dOT(Pi, Pj) and dOT is a metric. Finally, we show it satisfies the triangular inequality. Indeed,

W2,Q(P1, P3)

=

(∫
∥x1 − x3∥2 +W 2

2 (αy1
, αy3

)dQ(z)

)1/2

≤
(∫

(∥x1 − x2∥+ ∥x2 − x3∥)2 + (W2(αy1
, αy2

) +W2(αy2
, αy3

))2dQ(z)

)1/2

≤
(∫

∥x1 − x2∥2 +W 2
2 (αy1 , αy2)dQ(z)

)1/2

+

(∫
∥x2 − x3∥2 +W 2

2 (αy2 , αy3)dQ(z)

)1/2

= W2,Q(P1, P2) +W2,Q(P2, P3),

where the first inequality is the triangular inequality and the second inequality is the Minkowski inequality.

B IMPLEMENTATION DETAILS OF OTDD MAP

OTDD barycentric projection We use the implementation https://github.com/microsoft/otdd to solve
OTDD coupling. The rest part is straightforward.

OTDD neural map To solve the problem (4.1), we parameterize f,G, ℓ to be three neural networks. In NIST dataset
experiments, we parameterize f as ResNet 1 from WGAN-QC [Liu et al., 2019], and take feature map G to be UNet2 [Ron-
neberger et al., 2015]. We generate the labels ȳ with a pre-trained classifier ℓ(·), and use a LeNet or VGG-5 with Spinal
layers3 [Kabir et al., 2022] to parameterize ℓ(·). In 2D Gaussian mixture experiments, we use Residual MLP to represent all
of them.

We remove the discriminator’s condition on label to simplify the loss function as

sup
f

inf
G

∫ (
∥x−G(z)∥22︸ ︷︷ ︸

feature loss

+W 2
2 (αy, αȳ)︸ ︷︷ ︸
label loss

)
dQ(z)−

∫
f(x̄)dQ(z) +

∫
f(x′)dP (z′)︸ ︷︷ ︸

discriminator loss

.

In this formula, we assume both y and ȳ are hard labels, but in practice, the output of ℓ(·) is a soft label. Simply taking the
argmax to get a hard label can break the computational graph, so we replace the label loss W 2

2 (αy, αȳ) by y⊤Mȳ, where
y is the one-hot label from dataset Q. And M ∈ RCQ×CP

≥0 is the label-to-label matrix where M(i, j) := W 2
2 (αyi

, αyj
). The

matrix M is precomputed before the training, and is frozen during the training.

We pre-train the feature map G to be an identity map before the main adversarial training. We use the Exponential Moving
Average4 of the trained feature maps as the final feature map.

Data processing For all the *NIST datasets, we rescale the images to size 32 × 32, and repeat their channel 3 times
and obtain 3-channel images. We use the default train-test split from torchvision. For the VTAB datasets, we use a
masked auto-encoder with 196 batches and 1024 embed dimension based on ViT-Large. So the final embedding dimension
is 197× 1024 = 201728. We also use the default train-test split from torchvision.

Hyperparameters For the experimental results in §5.2, we use the OTDD neural map and train them using Adam
optimizer with learning rate 10−3 and batch size 64. We train a LeNet for 2000 iterations, and fine-tune for 100 epochs.
Regarding the comparison with other baselines in §5.2, for transfer learning methods, we train a SpinalNet for 104 iterations,
and fine-tune it for 2000 iterations on the test dataset. Training from scratch on the test dataset takes also 2000 iterations.
For the results in §5.3, we pre-train the ResNet-18 model for 5 epochs, then fine-tune the model on the few-shot dataset for
10 epochs. During fine-tuning, we still let the whole network tunable. The batch size is 128, and the learning rate is 10−3.

1https://github.com/harryliew/WGAN-QC
2https://github.com/milesial/Pytorch-UNet
3https://github.com/dipuk0506/SpinalNet
4https://github.com/fadel/pytorch_ema

https://github.com/microsoft/otdd
https://github.com/harryliew/WGAN-QC
https://github.com/milesial/Pytorch-UNet
https://github.com/dipuk0506/SpinalNet
https://github.com/fadel/pytorch_ema


C DISCUSSIONS OVER COMPLEXITY-ACCURACY TRADE-OFF

We agree that our method is more computationally demanding than Mixup in general. Specifically, we consider Mixup and
our methods to occupy different points of a compute-accuracy trade-off characterized by the expressivity of the geodesics
between datasets they define. That being said, the trade-off is nevertheless not a prohibitive one, as shown by the fact that we
can scale our method to VTAB-sized datasets with a very standard GPU setup.

‘Vanilla’ mixup with uniform dataset weights is indeed quite cheap (but, as shown in Table 2, considerably worse than
alternatives). On the other hand, the version of Mixup that uses the ‘optimal’ mixture weights (labeled Mixup - optimal in
Table 2, and the only Mixup version in Table 1) requires solving Eq. (3), which involves non-trivial computing to obtain
OTDD maps. In the context of the trade-off spectrum described above, Mixup with optimal weights is strictly in between
vanilla Mixup and OTDD interpolation.

D ADDITIONAL RESULTS

Figure 1: The numbers above images are the labels. In the first labelling method, all 0 MNIST digits are assigned as class
"0", and they are labelled as class "7" in the bottom labelling.

D.1 OTDD NEURAL MAP VISUALIZATION

We show the OTDD neural map between 2D Gaussian mixture models with 16 components in Figure 2. This example is
very special so that we have the closed-form solution of OTDD map. The feature map is a identity map and the pushforward
label is equal to the corresponding class that has the same conditional distribution p(x|y) as source label. For example,
the sample from top left corner cluster is still mapped to the top left corner cluster, and the label is changed from blue to
orange. This map achieves zero transport cost. Since the transport cost is always non-negative, this map is the optimal
OTDD map. However, Asadulaev et al. [2022], Bunne et al. [2022] enforce mapping to preserve the labels, so with their
methods, the blue cluster would still map to the blue cluster. Thus their feature map is highly non-convex and more difficult
to learn. We refer to Figure 5 in Asadulaev et al. [2022] for their performance on the same example. Compared with them,
our pushforward dataset aligns with the target dataset better.

Figure 2: OTDD neural map for 2D Gaussian mixture distributions.



D.2 MCCANN’S INTERPOLATION BETWEEN DATASETS

Our OTDD map can be extended to generate McCann’s interpolation between datasets. We propose an anolog of McCann’s
interpolation (3.1) in the dataset space. We define McCann’s interpolation between datasets P0 and P1 as

PM
t := ((1− t)Id + tT ∗)♯P0, t ∈ [0, 1],

where T ∗ is the optimal OTDD map from P0 to P1 and t is the interpolation parameter. The superscript M of
PM
t means McCann. We use the same convex combination method in §4.2 to obtain samples from PM

t . Assume
(x0, y0) ∼ P0, (x1, y1) = T ∗(x0, y0) and P0, P1 contain 7, 3 classes respectively, i.e. y0 ∈ {0, 1}7, y1 ∈ {0, 1}3.
Then the combination of features is xt = (1− t)x0 + tx1, and the combination of labels is

yt = (1− t)

[
y0
03

]
+ t

[
07

y1

]
.

Thus (xt, yt) is a sample from ((1− t)Id + tT ∗)♯P0. We visualize McCann’s interpolation between two Gaussian mixture
distributions in Figure 3. This method can map the labeled data from one dataset to another, and do the interpolation between
them. Thus we can use it to map abundant data from an external dataset, to a scarce dataset for data augmentation. For
example, in Figure 4, the target dataset only has 30 samples, but the source dataset has 60000 samples. We learn the OTDD
neural map between them and solve their interpolation. We find that PM

1 creates new data out of the domain of the original
target distribution, which Mixup [Zhang et al., 2018] can not achieve. Thus, the data from PM

t for t close to 1.0 can enrich
the target dataset, and be potentially used in data augmentation for classification tasks.

Figure 3: McCann’s interpolation for 2D labelled datasets. Each color represents a class. When t → 1.0, the samples within
blue classes become less and less, and finally disappear when t = 1.0.

Figure 4: Data augmentation by mapping an external dataset to a few-shot dataset.

D.3 CORRELATION STUDY OF *NIST EXPERIMENTS

A more concrete visualization of the correlation between W2(Pa, Q) and *NIST transfer learning test accuracy is shown
in Figure 5. Among all datasets, USPS and KMNIST lack correlation. We believe it’s caused by (i) small variance in the
distances from pretraining dataset to target dataset, implying a limited relative diversity of datasets on which to draw on and
(ii) (in the case of USPS) a very simple task where baseline accuracy is already very high and hard to improve upon via
transfer.



Figure 5: Pearson correlation between the (averaged) function W2(Pa, Q) and the test accuracy of the fine-tuned model.
Most datasets present a negative correlation between W2(Pa, Q) and the accuracy. When test dataset is USPS or KMNIST
(rightmost two), all three training datasets are similarly distant to the test dataset; thus, the range of W2(Pa, Q) is not wide
enough to show an obvious negative correlation. This explains the nearly zero slope and relatively large p-value for those
two datasets. Similar pattern has been observed in Yeaton et al. [2022, Figure 5(a)].

D.4 FINE-GRAINED ANALYSIS OVER W2(Pa,W ) IN *NIST EXPERIMENTS

In Table 1, we provide a more fine-grained analysis for different aspects of W(Pa, Q) and their effect on transfer accuracy.
To do so, we provide the min, median, range, and standard deviation of W(Pa, Q) in the table below. In addition, as a proxy
for the hardness / best possible gain from transfer learning, we show in the last column OTDD accuracy minus few shot
accuracy, where OTDD accuracy and few shot accuracy are the mean accuracies in Rows 1 and 4, respectively, in Table 1.

Based on these statistics, we make the following observations on the relation between W(Pa, Q) and transfer accuracy:

• The accuracy improvement is strongly driven by mina W(Pa, Q). EMNIST and MNIST are with relatively smaller
mina W(Pa, Q) and share the largest improvement margin. On the other hand, FMNIST and KMNIST as Q have
the largest W(Pa, Q) to the other pre-training datasets, and have relatively smaller accuracy gain. In other words, the
correlation between distance and accuracy is stronger in the part of the convex dataset polytope that is closest to the
target dataset.

• The strength of the correlation between W(Pa, Q) and accuracy seems to depend on the range and standard deviation
of he former. On the one hand, settings with low dynamic range in W(Pa, Q) (like USPS and EMNIST) make
it harder to observe meaningful differences in accuracy. On the other hand, this indicates that those datasets are
roughly (or at least more) equidistant from all pretraining datasets, and therefore any convex combination of them will
also be close to equidistant from the target, yielding no visible improvement.

• Intrinsic task hardness matters. Consider USPS: all pretraining datasets, regardless of distance, seem to yield very
similar accuracy on it, and it has the lowest accuracy gain (only ∼5%) among 5 tasks. But considering that the
no-transfer (i.e. 5-shot) accuracy is already almost 81%, it is clear that the benefit from transfer learning is “a priori”
limited, and therefore all pretraining datasets yield a similar minor improvement.

Table 1: Statistics of W(Pa, Q) and transfer accuracy in *NIST experiments (§5.2).

Test dataset
Mean of
W(Pa, Q)

Median of
W(Pa, Q)

Range of
W(Pa, Q)

Standard deviation
of W(Pa, Q)

Mean of accuracy
improvement

EMNIST 34.41 43.71 39.58 9.94 13.46
MNIST 39.13 49.04 44.17 11.35 20.94
FMNIST 44.19 54.75 39.11 10.64 10.62
USPS 42.04 48.32 23.49 6.13 5.28
KMNIST 47.65 53.92 24.83 6.19 10.88



D.5 FULL RESULTS OF VTAB EXPERIMENTS

In Section 5.3, we only showed the relative improvement of the test accuracy compared to non-pretraining. Here we will
show the full test accuracy results. We keep the hyper-parameters consistent through all pre-training datasets. Table 2 clearly
shows that the interpolation dataset with optimal weight assigned by our method can have a better performance than a naïve
uniform weight. And with the same weight, our OTDD map will give a higher accuracy than Mixup because Mixup does not
use the information from the reference dataset (see Figure 4).

Poor sub-pooling performance We show the sub-pooling baseline as a non-trivial method to combine datasets. However,
it performs poorly, and we believe there are two main reasons for this. First, this baseline wastes relevant label data, by
discarding the original labels of the pretraining dataset and replacing them with the inputted nearest-neighbor label from the
target examples. Secondly, it only uses the neighbors of the pet dataset, leaving all other datapoints unused.

Table 2: Test accuracy (mean ± std over 5 runs in percent) of 1000-shot learning on Oxford-IIIT Pet test dataset. Non-transfer
learning skips the pre-training step.

Transfer learning

OTDD map (optimal weight) 22.60 ± 1.01
OTDD map (uniform weight) 21.06 ± 0.45

Mixup (optimal weight) 17.45 ± 2.2
Mixup (uniform weight) 15.4 ± 1.56

CALTECH101 18.24 ± 3.42
DTD 11.46 ± 0.68

FLOWERS102 11.11 ± 1.92
POOLING 14.88 ± 0.57

SUB-POOLING 14.88 ± 0.57
Non-transfer learning 11.71 ± 1.65

References

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on Mathematical Analysis, 43
(2):904–924, 2011.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, and Evgeny Burnaev. Neural optimal transport with general cost
functionals. arXiv preprint arXiv:2205.15403, 2022.

Charlotte Bunne, Andreas Krause, and Marco Cuturi. Supervised training of conditional monge maps. arXiv preprint
arXiv:2206.14262, 2022.

HM Dipu Kabir, Moloud Abdar, Abbas Khosravi, Seyed Mohammad Jafar Jalali, Amir F Atiya, Saeid Nahavandi, and Dipti
Srinivasan. Spinalnet: Deep neural network with gradual input. IEEE Transactions on Artificial Intelligence, 2022.

Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein gan with quadratic transport cost. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4832–4841, 2019.

Robert J McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Mathematical Journal, 80(2):
309–323, 1995.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer,
2015.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of Mathematical Sciences,
7(1):87–154, 2017.

Anna Yeaton, Rahul G Krishnan, Rebecca Mieloszyk, David Alvarez-Melis, and Grace Huynh. Hierarchical optimal
transport for comparing histopathology datasets. arXiv preprint arXiv:2204.08324, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In
International Conference on Learning Representations, 2018.


	Proofs
	Implementation details of OTDD map
	Discussions over complexity-accuracy trade-off
	Additional results
	OTDD neural map visualization
	McCann's interpolation between datasets
	Correlation study of *NIST experiments
	Fine-grained analysis over W2 (Pa,W) in *NIST experiments
	Full results of VTAB experiments


