
Automatic debiasing of neural networks via moment-constrained learning

Supplement to: Automatic debiasing of neural networks via
moment-constrained learning

Equation and reference numbering in this document continues from that of the main
manuscript.

Appendix A. Notes on the numerical experiments

A.1. MADNet architecture

To ensure a fair evaluation, our proposed MADNet architecture emulates that of the
RieszNet (Chernozhukov et al., 2022a) (see Figure 2 for a schematic of the multi-headed
architecture). MADNet uses a shared network of width 200 and depth 3 followed by three
branches: 2 outcome networks (one per binary treatment) each of width 100 and depth 2
and another of depth zero, i.e. a linear combination of the final shared representation layer
that is our ω̂→ prediction. The constraint weight hyperparameter was set to ε̃ = 5, the
weight mixing parameter was set to ϑ = 1, and Exponential Linear Unit (ELU) activation
functions were used throughout. Finally, outcomes Y were scaled by their sample standard
deviation prior to training, with predictions rescaled to the original scale using the same
constant standard deviation estimate.

Ablation study: We compared the performance of the MADNet proposal across learner
architectures, by conducting an ablation study wherein the multi-headed architecture was
replaced with a fully connected MLP architecture. In particular, we used a standard feed-
forward network of width 200 and depth 4 along with the same hyperparameters outlined
above. Results, reported in Table 2, indicate that the multi-headed architecture leads to a
modest reduction in mean absolute error (MAE) in all but the MADNet (IPW) estimator,
and that MADNet estimators tend to outperform their RieszNet counterparts using both
architectures (in terms of reduced MAE).

Hyperparameter sensitivity: We examine sensitivity of our proposal to the penal-
ization strength by running the MADNet with the ε̃ = 1, and other parameters unchanged.
Results, reported in Table 3 show slightly worse performance (increased MAE and increased
Median absolute error), compared to results in Table 2, where ε̃ = 5. This suggests that a
high degree of weight should be given to satisfying the moment constraint.

A.2. MADNet training details

Numerical experiments were run on an Apple M2 Max chip with 32GB of RAM. The MAD-
Net training procedure was also borrowed from Chernozhukov et al. (2022a, Appendix A1),
which itself was borrowed from Shi et al. (2019). Minor modifications are outlined below.
The dataset was split into a training dataset (80%) and validation dataset (20%), with
estimation performed on the entire dataset. The training followed a two stage procedure
outlined below.

ATE benchmarks

1. Fast training: batch size: 64, learning rate: 0.0001, maximum number of epochs: 100,
optimizer: Adam, early stopping patience: 2, L2 weight decay: 0.001

19

Hines Hines

2. Fine-tuning: batch size: 64, learning rate: 0.00001, maximum number of epochs: 600,
optimizer: Adam, early stopping patience: 40, L2 weight decay: 0.001

ADE benchmarks

1. Fast-training: batch size: 64, learning rate: 0.001, maximum number of epochs: 100,
optimizer: Adam, early stopping patience: 2, L2 weight decay: 0.001

2. Fine-tuning: batch size: 64, learning rate: 0.0001, maximum number of epochs: 300,
optimizer: Adam, early stopping patience: 20, L2 weight decay: 0.001

The di!erences between the original implementations and ours are:

• For ADE moment estimation, RieszNet uses a finite di!erence approximation to di!er-
entiate the forward pass with respect to the treatment a. However our implementation
uses automatic di!erentiation provided by JAX. One of the advantages of JAX is that
the ADE can be straightforwardly expressed as jax.grad(f)(a, x).

• On top of the early stopping callback, the original RieszNet and DragonNet implemen-
tations additionally use a learning rate plateau schedule that halves the learning rate
when the validation loss metric has stopped improving over a short patience of epochs
(shorter than the stopping patience). Whilst we implement the same two-stage train-
ing with early stopping, we use a constant learning rate in each of the fast-training
and fine-tuning phases.

• L2 regularization is implemented di!erently between RieszNet and DragonNet. Drag-
onNet use a regularizer to apply a penalty on the layer’s kernel whilst RieszNet uses
an additive L2 regularization term in their loss function (Chernozhukov et al., 2022a,
Equation 5). However, recent work shows that L2 regularization and weight decay
regularization are not equivalent for adaptive gradient algorithms, such as Adam
(Loshchilov and Hutter, 2019). For this reason, we use Adam with weight decay
regularization (provided by optax.adamw).

• We use a larger learning rate (0.9) for the constant additive bias parameters associated
with the MLP outputs for the outcome, i.e. fw,2 and fw,3.

A.3. Naive Lagrangian optimization

We consider the basic di!erential multiplier method (BDMM), as described by Platt et
al. (Platt and Barr, 1987). The authors introduce a so-called damping term ϖ → 0 to the
Lagrangian in (8) to obtain the Lagrangian

Lω(f,ε) ↑ E
[
{ω(Z)↓ f(Z)}2

]
+ εh(f) + ϖh2(f),

with (8) recovered by setting ϖ = 0. Note that when the moment constraint is satisfied,
i.e.h(f) = 0, then Lω does not depend on ϖ. In Figure 4 we see how Naively performing
gradient ascent on ε and gradient descent over f results in oscillatory behavior. Similar
behavior is also observed in the literature on adversarial learning, see e.g. (Schäfer and
Anandkumar, 2019; Mokhtari et al., 2020).

20

Automatic debiasing of neural networks via moment-constrained learning

Figure 4: Top row: Low damping coe”cients in the basic di!erential multiplier method
(BDMM) (Platt and Barr, 1987) lead to oscillatory behavior around the saddle
point solution when the optimisation problem is formulated as an equality con-
strained Lagrangian. Bottom row: Using the inequality constrained Lagrangian
approach described in the main paper results in more stable training and con-
straint satisfaction. A single dataset from the IHDP data is used to showcase this
behavior over 200 epochs.

21

Hines Hines

Table 2: Full reproduction results for our own implementation of each learner/estimator.
Here + SRR, refers to estimator which use the outcome model g̃ described in
Chernozhukov et al. (2022a).

Mean Absolute Error (MAE) Median Absolute Error Standard Error in MAE
Dataset Estimator Architecture

BHP MADNet (DR) Fully connected 0.417 0.394 0.021
Multiheaded 0.391 0.346 0.019

MADNet (Direct) Fully connected 0.512 0.427 0.029
Multiheaded 0.471 0.424 0.026

MADNet (IPW) Fully connected 0.407 0.352 0.023
Multiheaded 0.474 0.404 0.026

RieszNet (DR + SRR) Fully connected 0.447 0.370 0.024
Multiheaded 0.428 0.355 0.023

RieszNet (DR) Fully connected 0.447 0.372 0.024
Multiheaded 0.428 0.353 0.023

RieszNet (Direct + SRR) Fully connected 0.771 0.637 0.041
Multiheaded 0.724 0.617 0.042

RieszNet (Direct) Fully connected 0.733 0.619 0.039
Multiheaded 0.692 0.585 0.040

RieszNet (IPW + SRR) Fully connected 0.477 0.432 0.025
Multiheaded 0.449 0.384 0.025

RieszNet (IPW) Fully connected 0.477 0.432 0.025
Multiheaded 0.449 0.384 0.025

IHDP DragonNet (DR + SRR) Multiheaded 0.101 0.085 0.003

DragonNet (DR) Multiheaded 0.100 0.084 0.002

DragonNet (Direct + SRR) Multiheaded 0.124 0.098 0.004

DragonNet (Direct) Multiheaded 0.123 0.098 0.004

DragonNet (IPW + SRR) Multiheaded 0.262 0.233 0.006

DragonNet (IPW) Multiheaded 0.262 0.233 0.006

MADNet (DR) Fully connected 0.096 0.079 0.003
Multiheaded 0.094 0.076 0.002

MADNet (Direct) Fully connected 0.527 0.383 0.018
Multiheaded 0.504 0.367 0.016

MADNet (IPW) Fully connected 0.680 0.263 0.037
Multiheaded 0.719 0.277 0.039

RieszNet (DR + SRR) Fully connected 0.119 0.091 0.004
Multiheaded 0.109 0.088 0.003

RieszNet (DR) Fully connected 0.119 0.090 0.004
Multiheaded 0.109 0.089 0.003

RieszNet (Direct + SRR) Fully connected 0.135 0.099 0.006
Multiheaded 0.126 0.102 0.004

RieszNet (Direct) Fully connected 0.135 0.105 0.004
Multiheaded 0.118 0.099 0.003

RieszNet (IPW + SRR) Fully connected 0.690 0.304 0.035
Multiheaded 0.665 0.300 0.036

RieszNet (IPW) Fully connected 0.690 0.304 0.035
Multiheaded 0.665 0.300 0.036

Appendix B. Short notes and proofs

B.1. First-order remainder under the standard theory

Claim: E[ϱ̂(W)↓#] = ↓↔µ̂↓ µ, ς̂↓ ς↗ where ϱ̂(W) = m(µ̂,W) + ς̂(Z){Y ↓ µ̂(Z)}.

22

Automatic debiasing of neural networks via moment-constrained learning

Table 3: Numerical experiment results for the Multiheaded MADNet procedure with ε̃ = 1.

Mean Absolute Error (MAE) Median Absolute Error Standard Error in MAE
Dataset Estimator

BHP MADNet (DR) 0.407 0.370 0.021
MADNet (Direct) 0.479 0.415 0.025
MADNet (IPW) 0.544 0.459 0.031

IHDP MADNet (DR) 0.098 0.077 0.003
MADNet (Direct) 0.519 0.382 0.016
MADNet (IPW) 0.712 0.283 0.038

Proof:

E[m(µ̂,W) + ς̂(Z){Y ↓ µ̂(Z)}↓#]

=E[m(µ̂,W) + ς̂(Z){µ(Z)↓ µ̂(Z)}↓m(µ,W)]

=E[m(µ̂↓ µ,W)↓ ς̂(Z){µ̂(Z)↓ µ(Z)}]

=↔µ̂↓ µ,ς↗ ↓ ↔µ̂↓ µ, ς̂↗

=↓ ↔µ̂↓ µ, ς̂↓ ς↗.

B.2. Second-order remainder under the standard theory

Claim: If µ̂ and ς̂ are consistent estimators for µ and ς obtained from an independent
sample, and there exists a constant M such that ς2(Z) < M and var(Y |Z) < M almost
surely, then Gn[ϱ̂(W)↓ ϱ(W)] = op(1).

Proof:

Gn[ϱ̂(W)↓ ϱ(W)] = +Gn[m(µ̂↓ µ,W)]

↓Gn [{ς̂(Z)↓ ς(Z)}{µ̂(Z)↓ µ(Z)}]

↓Gn [ς(Z){µ̂(Z)↓ µ(Z)}]

+Gn [{ς̂(Z)↓ ς(Z)}{Y ↓ µ(Z)}]

By the central limit theorem, these empirical processes are op(1) when the following expres-
sions are op(1)

E
[
m2(µ̂↓ µ,W)

]

E
[
{ς̂(Z)↓ ς(Z)}2{µ̂(Z)↓ µ(Z)}2

]

E
[
ς2(Z){µ̂(Z)↓ µ(Z)}2

]

E
[
{ς̂(Z)↓ ς(Z)}2{Y ↓ µ(Z)}2

]

The first two terms are op(1) by consistency of ς̂ and µ̂, for the final two terms

E
[
ς2(Z){µ̂(Z)↓ µ(Z)}2

]
< M ||µ̂↓ µ||2

E
[
{ς̂(Z)↓ ς(Z)}2var(Y |Z)

]
< M ||ς̂↓ ς||2

hence, these are also op(1) by consistency.
Remark: The requirement for estimator independence can be relaxed if one makes

Donsker class assumptions instead.

23

Hines Hines

B.3. Proof of Theorem 1

Consider (1) with φ̂ = hn(µ̂↑) and ϱ̂(W) = m(µ̂↑,W) + k{ω(Z) ↓ ω̂→(Z)}{Y ↓ µ̂↑(Z)},
where we use the shorthand

k =
h(ω)

||ω ↓ ω→||2

so that, by (5), ς(Z) = k{ω(Z) ↓ ω→(Z)} and ϱ(W) = m(µ,W) + k{ω(Z) ↓ ω→(Z)}{Y ↓

µ(Z)}. Under this parameterization, the plug-in bias on the right hand side of (1) is

↘
nEn[ϱ̂(W)↓ φ̂] =

↘
nkEn[{ω(Z)↓ ω̂→(Z)}{Y ↓ µ̂↑(Z)}] = 0

Applying the result in Supplement B.1, the first-order remainder on the right hand side of
(1) is

↘
nE[ϱ̂(W)↓#] =

↘
nk↔µ̂↑

↓ µ, ω̂→ ↓ ω→↗ = op(1)

Finally the second-order remainder on the right hand side of (1) is

Gn [ϱ̂(W)↓ ϱ(W)] = Gn[m(µ̂↑
↓ µ,W)]

+ kGn

[
{ω̂→(Z)↓ ω→(Z)}{µ̂↑(Z)↓ µ(Z)}

]

↓ kGn [{ω(Z)↓ ω→(Z)}{µ̂↑(Z)↓ µ(Z)}]

↓ kGn

[
{ω̂→(Z)↓ ω→(Z)}{Y ↓ µ(Z)}

]

which is op(1).
We have shown that plug-in bias, first-order remainder and second-order remainder in

(1) are each op(1), hence hn(µ̂↑) is RAL.

B.4. Su!ciency of learning conditional on the unscaled RR

Claim: # = h(↼), where

↼(z) ↑ E[Y |ω(Z)↓ ω→(Z) = ω(z)↓ ω→(z)].

Proof:

= E[Y ς(Z)]

=
h(ω)E[Y {ω(Z)↓ ω→(Z)}]

||ω ↓ ω→||

=
h(ω)E[↼(Z){ω(Z)↓ ω→(Z)}]

||ω ↓ ω→||

= E[↼(Z)ς(Z)]

where in the third step we apply the law of iterated expectation.

24

Automatic debiasing of neural networks via moment-constrained learning

B.5. Proof of orthogonality representation

Claim: Letting µ→ = argminf↓C→ ||µ↓ f ||

µ(z) = µ→(z) +
#

h(ω)
{ω(z)↓ ω→(z)}.

Proof: Note that C
→ = {f ≃ H | ↔f,ς↗ = 0} then by Hilbert’s projection theorem, µ→

exists, with

µ→(z) ↑ µ(z)↓
↔µ,ς↗

||ς||2
ς(z) ⇐⇒ µ(z) = µ→(z) +

#

h(ς)
ς(z)

Where we use ↔µ,ς↗ = # and ||ς||2 = h(ς). Applying (5) completes the proof.

25

