
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLEMENT: DOES DEEP ACTIVE LEARNING WORK
IN THE WILD?

Anonymous authors
Paper under double-blind review

1 DETAILS OF THE BENCHMARKING METHODS

Core-set (GSx: Greedy sampling in x space) Sener & Savarese (2017). This approach only relies
upon the diversity of points in the input space, X , when selecting new query locations. A greedy
selection criterion is used, given by

qGSx(x
∗) = min

x∈L∪Q
dist(x∗, x)

where L is the labeled set, Q is the already selected query points and dist being L2 distance.

Greedy sampling in y space (GSy) Wu et al. (2019). Similar to GSx which maximizes diversity in
the x space in a greedy fashion, GSy maximizes the diversity in the y space in a greedy fashion:

qGSy(x
∗) = min

y∈L∪Q
dist(f(x∗), y)

where f(x) is the current model prediction of the x and y is the labels in the already labeled training
set plus the predicted labels for the points (to be labeled) selected in the current step.

Greedy sampling in xy space (GSxy) Wu et al. (2019). Named as ’Improved greedy sampling (iGS)’
in the original paper Wu et al. (2019), this approach combines GSx and GSy and uses multiplication
of the distance of both x and y space in its acquisition function:

qGSxy(x
∗) = min

(x,y)∈L∪Q
dist(x∗, x) ∗ dist(f(x∗), y)

Query-by-committee (QBC) Seung et al. (1992) The QBC approach is pure uncertainty sampling if
we set q(x) = qQBC(x):

qQBC(x) =
1

N

N∑
n=1

(f̂n(x)− µ(x))2

Here f̂n denotes the nth model in an ensemble of Nens models (DNNs in our case), and µ(x) is
the mean of the ensemble predictions at x. In each iteration of AL these models are trained on all
available training data at that iteration.

QBC with diversity (Div-QBC) Kee et al. (2018). This method improves upon QBC by adding a
term to q that also encourages the selected query points to be diverse from one another. This method
introduces a hyperparameter for the relative weight of the diversity and QBC criteria and we use an
equal weighting (α = 0.5 Kee et al. (2018)).

qQBCDiv(x) = (1− α) ∗ qQBC(x) + α ∗ qdiv(x)
qdiv(x

∗) = qGSx(x
∗)

QBC with diversity and density (DenDiv-QBC) Kee et al. (2018). This method builds upon
Div-QBC by adding a term to q(x) that encourages query points to have uniform density. This

method introduces two new hyperparameters for the relative weight (α = β =
1

3
) of the density,

diversity, and QBC criteria, and we use an equal weighting as done in the original paper Kee et al.
(2018).

qQBCDivDen(x) = (1− α− β) ∗ qQBC(x)

+ α ∗ qdiv(x) + β ∗ qden(x)

qden(x
∗) =

1

k

∑
x∈Nk(x∗)

sim(x∗, x)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

where Nk(x
∗) is the k nearest neighbors of an unlabeled point, sim(x∗, x) is the cosine similarity

between points.

Bayesian active learning by disagreement (BALD) Tsymbalov et al. (2018). BALD uses the Monte
Carlo dropout technique to produce multiple probabilistic model output to estimate the uncertainty
of model output and uses that as the criteria of selection (same as qQBC(x)). We used 25 forward
passes to estimate the disagreement.

Expected model output change (EMOC) Käding et al. (2018); Ranganathan et al. (2020). EMOC is
a well-studied AL method for the classification task that strives to maximize the change in the model
(output) by labeling points that have the largest gradient. However, as the true label is unknown, some
label distribution assumptions must be made. Simple approximations like uniform probability across
all labels exist can made for classification but not for regression tasks. Ranganathan et al. (2020)
made an assumption that the label is simply the average of all predicted output in the unlabeled set
(y′(x′) = Ex∈Uf(x)) and we use this implementation for our benchmark of EMOC.

qEMOC(x
′) = Ey′|x′Ex||f(x;ϕ′)− f(x;ϕ)||1
≈ Ex||∇ϕf(x;ϕ) ∗ ∇ϕL(ϕ; (x′, y′))||1

where f(x;ϕ) is the current model output for point x with model parameter ϕ, ϕ′ is the updated
parameter after training on labeled point x’ with label y’ and L(ϕ; (x′, y′) is the loss of the model
with current model parameter ϕ on new labeled data (x′, y′).

Learning Loss Yoo & Kweon (2019). Learning Loss is another uncertainty-based AL method
that instead of using proxies calculated (like variance), learns the uncertainty directly by adding an
auxiliary model to predict the loss of the current point that the regression model would make. The
training of the auxiliary model concurs with the main regressor training and it uses a soft, pair-wise
ranking loss instead of Mean Squared Error (MSE) loss to account for the fluctuations of the actual
loss during the training.

qLL(x) = floss(x)

where floss(x) is the output of the loss prediction auxiliary model. In this AL method, there are
multiple hyper-parameters (co-training epoch, total auxiliary model size, auxiliary model connections,
etc.) added to the AL process, all of which we used the same values in the paper if specified Yoo &
Kweon (2019).

Density Aware Core-set (DACS) Kim & Shin (2022) A diversity-based AL method that not only
considers core-set metric but also considers the density and strives to sample low-density regions. The
original DACS also encodes the image space into feature space and uses locality-sensitive hashing
techniques to accelerate the nearest neighbor calculation and prevent computational bottlenecks. As
our scientific computing tasks does not involve high dimensional image as well as having much lower
dataset size in general, instead of encoded feature space distance, we used input space distance and
locality-sensitive hashing was dropped as we don’t face such computational bottleneck for the nearest
neighbor calculation with our smaller pool compared to theirs.

Cluster Margin adapted to regression problem: Cluster Variance (ClusterVar) Citovsky et al.
(2021) To alleviate the robustness issue arising in larger batch AL scenarios, Cluster-Margin Citovsky
et al. (2021) method is proposed to add necessary diversity to the uncertainty sampling. The original
method used margin as its uncertainty metric as it was demonstrated on image classification tasks,
and we adapted it into a variance metric in a regression setting. During Cluster Margin, Hierarchical
Agglomerative Clustering (HAC) is run once on the unlabeled pool before the AL process and during
each round a round-robin selection is carried out from the smallest cluster to the largest cluster, each
time selecting the unlabeled sample with the highest uncertainty metric.

2 DETAILS OF BENCHMARK DATASETS USED

1D sine wave (Wave). A noiseless 1-dimensional sinusoid with varying frequency over x, illustrated
in Fig. 1.

y = x ∗ sin(a1 ∗ sin(a2 ∗ x)),
where a1 = 3 and a2 = 30 is chosen to make a relative complicated loss surface for the neural
network to learn while also having a difference in sensitivity in the domain of x.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2D robotic arm (Arm) Ren et al. (2020) In this problem we aim to predict the 2D spatial location of
the endpoint of a robotic arm based on its joint angles. Illustrated in Fig. 1. The Oracle function is
given by

y0 =

3∑
i=1

cos(
pi

2
xi) ∗ li, y1 = x0 +

3∑
i=1

sin(
pi

2
xi) ∗ li

where y is the position in the 2D plane, x0 is the adjustable starting horizontal position, xi=1,2,3 are
the angles of the arm relative to horizontal reference and li=0,1,2 = [0.5, 0.5, 1] represents the i-th
length of the robotic arm component. The dataset is available under the MIT license.

Figure 1: Schematic illustration of sine wave and robotic arm datasets

Stacked material (Stack) Chen et al. (2019). In this problem, we aim to predict the reflection
spectrum of a material, sampled at 201 wavelength points, based upon the thickness of each of the 5
layers of the material, illustrated in Fig. 2. It was also benchmarked in Ren et al. (2022). An analytic
Oracle function is available based upon physicsChen et al. (2019).

Artificial Dielectric Material (ADM) Deng et al. (2021b) This problem takes the geometric structure
of a material as input, and the reflection spectrum of the material, as a function of frequency, illustrated
in Fig. 2. It was also benchmarked in Deng et al. (2021a). This dataset -released under CC BY 4.0
License - consists of input space of 3D geometric shape parameterized into 14 dimension space and
the output is the spectral response of the material. The oracle function is a DNN Deng et al. (2021a).

NASA Airfoil (Foil) Dua & Graff (2017) NASA dataset published on https://archive.
ics.uci.edu/dataset/291/airfoil+self+noise UCI ML repository under CC BY
4.0 License Dua & Graff (2017) obtained from a series of aerodynamic and acoustic tests of 2D/3D
airfoil blade sections conducted in an anechoic wind tunnel, illustrated in Fig. 3. The input is the
physical properties of the airfoil, like the angle of attack and chord length and the regression target is
the sound pressure in decibels. We use a well-fitted random forest fit to the original dataset as our
oracle function following prior workTrabucco et al. (2022). The fitted random forest architecture and
its weights are also shared in our code repo to ensure future work makes full use of such benchmark
datasets as we did.

Hydrodynamics (Hydro) Dua & Graff (2017) Experiment conducted by the Technical University
of Delft, illustrated in Fig. 3, (hosted on https://archive.ics.uci.edu/ml/datasets/
Yacht+Hydrodynamics UCI ML repository under CC BY 4.0 License Dua & Graff (2017)), this
dataset contains basic hull dimensions and boat velocity and their corresponding residuary resistance.
Input is 6 dimensions and output is the 1 dimension. We use a well-fitted random forest fit to the
original dataset as our oracle function. The fitted random forest architecture and its weights are also

3

https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: (a, c) are schematic illustration of two material design datasets (Stack & ADM). (b, d) are
example spectra of their material property after simulations from their geometric parameterization
(typically from Maxwell equation solvers that are slow and hence can benefit from active learning)

shared in our code repository to ensure future work makes full use of such benchmark dataset as we
did.

Figure 3: Schematic illustration of Airfoil and Hydro experiments. Reproduced from the original
source of experiment reports from NASA and Delft University of technology. (a) The Hydro
experiment with an actual yacht being built and resistance was measured in a water flow experiment
as the regression target y. (b) Airfoil experiment where input is the parameters of the airfoil and the
sound pressure level is measured as target y of the regression task.

Bessel equation The solution to the below single dimension second-order differential equation:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

where input is α and x position given. α is limited to non-negative integers smaller than 10 and
x ∈ [0, 10]. The solution examples can be visualized in Fig. 4. Our choice of α values makes the
Bessel functions cylinder harmonics and they frequently appear in solutions to Laplace’s equation
(in cylindrical systems). The implementation we used is the python package ’scipy.special.jv(v,z)’
Virtanen et al. (2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Damping oscillator equation The solution to the below ordinary second-order differential equation:

m
dx2

d2t
+ b

dx

dt
+
mg

l
x = 0

where m is the mass of the oscillator, b is the air drag, g is the gravity coefficient, l is the length of the
oscillator’s string and it has analytical solution of form

x = ae−btcos(α− ψ)

where a is the amplitude, b is the damping coefficient, α is the frequency and ψ is the phase shift.
We assume ψ to be 0 and let a,b,α be the input parameters. The output, unlike our previous ODE
dataset, is taken as the first 100 time step trajectory of the oscillator, making it a high dimensional
manifold (nominal dimension of 100 with true dimension of 3). The trajectory is illustrated in Fig. 4.
We implement the above solution by basic python math operations.

Figure 4: Schematic illustration of Bessel function solution and the damping oscillator solutions.

3 LIST OF POOL RATIO USED IN EXISTING LITERATURE

17000 McCallumzy & Nigamy (1998), 20 to 2000 Kee et al. (2018), 300 to 375Santos et al. (2020),
11-20 Roy et al. (2018), 1000 Burbidge et al. (2007), and 1 to 11 Tan et al. (2019).

4 DETAILS OF MODELS TRAINING AND ARCHITECTURE

In the below Table 1, we present the model architecture for each of our benchmarked datasets. Unless
otherwise noted, all of them are fully connected neural networks.

Table 1: Regression model, f̂ architecture details for each problem. *: for ADM, there are 3 layers of
convolutions after the linear layer)

FEAT SINE ROBO STACK ADM FOIL HYDR BESS DAMP

NODE 20 500 700 1500 200 50 50 500
LAYER 9 4 9 4∗ 4 6 6 6

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We implemented our models in PyTorch Paszke et al. (2019). Beyond the above architectural
differences, the rest of the model training settings are the same across the models: Starting labeled set
of size 80, in each step DAL finds 40 points to be labeled for 50 active learning steps. Each regression
model is an ensemble network of 10 models of size illustrated in Table 1 except the ADM dataset (5
instead of 10 due to RAM issue). The test dataset is kept at 4000 points uniformly sampled across the
x-space and they are fixed the same across all experiments for the same dataset. No bootstrapping
is used to train the ensemble network and the only source of difference between networks in the
ensemble (committee) is the random initialization of weights.

The batch size is set to be 5000 (larger than the largest training set) so that the incomplete last batch
would not affect the training result (as we sample more and more data, we can’t throw away the last
incomplete batch but having largely incomplete batch de-stabilizes training and introduce noise into
the experiment. Adam optimizer is used with 500 training epochs and the model always retrains
from scratch. (We observe that the training loss is much higher if we inherit from the last training
episode and do not start from scratch, which is consistent with other literature Beck et al. (2021)).
The learning rate is generally 1e-3 (some datasets might differ), and the decay rate of 0.8 with the
decay at the plateau training schedule. The regularization weight is usually 1e-4 (dataset-dependent
as well). The hyper-parameters only change with respect to the dataset but never with respect to DAL
used.

The hyperparameters are tuned in the same way as the model architecture: Assume we have a
relatively large dataset (2000 randomly sampling points) and tune our hyperparameter on this set.
This raises another robustness problem of deep active learning, which is how to determine the model
architecture before we have enough labels. This is currently out of the scope of this work as we
focused on how different DALs behave with the assumption that the model architectures are chosen
smartly and would be happy to investigate this issue in future work.

For the BALD method, we used a dropout rate of 0.5 as advised by previous work. As BALD requires
a different architecture than other base methods (a dropout structure, that is capable of getting a good
estimate even with 50% of the neurons being dropped), the model architecture for the active learning
is different in that it enlarges each layer by a constant factor that can make it the relatively same
amount of total neurons like other DAL methods. Initially, the final trained version of the dropout
model is used as the regression model to be evaluated. However, we found that an oversized dropout
model hardly fits as well as our ensembled counterpart like other DAL methods. Therefore, to ensure
the fairness of comparison, we trained another separate, ensembled regression model same as the
other DALs and reported our performance on that.

For the LearningLoss method, we used the same hyper-parameter that we found in the cited work
in the main text: relative weight of learning loss of 0.001 and a training schedule of 60% of joint
model training and the rest epoch we cut the gradient flow to the main model from the auxiliary
model. For the design of the auxiliary model, we employed a concatenation of the output of the last
three hidden layers of our network, each followed by a fully connected network of 10 neurons, before
being directed to the final fully connected layer of the auxiliary network that produces a single loss
estimate.

For the EMOC method, due to RAM limit and time constraint, we can not consider all the model
parameters during the gradient calculation step (For time constraint, Table 2 gives a good reference
of how much longer EMOC cost, even in this reduced form). Therefore, we implemented two
approximations: (i) For the training set points where the current model gradients are evaluated,
instead of taking the ever-growing set that is more and more biased towards the DAL selection, we
fixed it to be the 80 original, uniformly sampled points. (ii) We limit the number of model parameters
to evaluate the EMOC criteria to 50k. We believe taking the effect of 50 thousand parameters gives
a good representation of the model’s response (output change) for new points. We acknowledge
that these approximations might be posing constraints to EMOC, however, these are practical, solid
challenges for DAL practitioners as well and these are likely the compromise to be made during
application.

4.1 COMPUTATIONAL RESOURCES

Here we report the computational resources we used for this work: AMD CPU with 64 cores;
NVIDIA 3090 GPU x4 (for each of the experiment we used a single GPU to train); 256GB RAM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 ADDITIONAL PERFORMANCE PLOTS

As the benchmark conducts a huge set of experiments that are hard to fit in the main text, here we
present all the resulting figures for those who are interested to dig more takeaways.

5.1 TIME PERFORMANCE OF THE BENCHMARKED DAL METHODS

We also list the time performance of each DAL method, using the ROBO dataset as an example in the
below Table 2. Note that this is only the sampling time cost, not including the model training time,
which is usually significantly larger than the active learning sampling time at each step. The only
DAL method that potentially has a time performance issue is the EMOC method, which requires the
calculation of each of the gradients with respect to all parameters and therefore takes a much longer
time than other DAL methods. However, as it is shown in the main text that it is not a robust method
in our setting, there is no dilemma of performance/time tradeoff presented here.

Table 2: Time performance for average time spent during the sampling process for ROBO dataset per
active learning step (40 points) in ms for pool ratio of 2. LL: LearningLoss

DATASET RANDOM GSX GSXY GSY BALD EMOC

TIME 2.15 4.96 10.27 6.85 9.06 756.6

DATASET LL QBC QBCDIV QBCDIVDEN DACS CLUSTERVAR

TIME 6.53 4.29 9.04 10.38 21.70 4.31

5.2 COMBINED PLOT WITH nAUCMSE AND NDIV

Figure 5: nAUCMSE and nDiv plot for SINE

Figure 6: nAUCMSE and nDiv plot for STACK

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: nAUCMSE and nDiv plot for ADM

Figure 8: nAUCMSE and nDiv plot for FOIL

Figure 9: nAUCMSE and nDiv plot for HYDR

Figure 10: nAUCMSE and nDiv plot for BESS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 11: nAUCMSE and nDiv plot for DAMP

5.3 MSE VS ACTIVE LEARNING STEP PLOT

We also present the traditional plot of the MSE vs active learning step for reference. For each of
the plots below, the MSE are smoothed with a smoothing parameter of 0.5 using the tensorboard
smoothing visualizing function Abadi et al. (2015). The x labels are from 0 - 49, where 0 measures
the end of the first active learning step.

Figure 12: MSE plot for SINE

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 13: MSE plot for ROBO

Figure 14: MSE plot for STACK

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Figure 15: MSE plot for ADM

Figure 16: MSE plot for HYDR

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Figure 17: MSE plot for FOIL

Figure 18: MSE plot for BESS

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 19: MSE plot for DAMP

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Nathan Beck, Durga Sivasubramanian, Apurva Dani, Ganesh Ramakrishnan, and Rishabh Iyer.
Effective evaluation of deep active learning on image classification tasks. arXiv preprint
arXiv:2106.15324, 2021.

Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression based on query by
committee. In International conference on intelligent data engineering and automated learning,
pp. 209–218. Springer, 2007.

Yingshi Chen, Jinfeng Zhu, Yinong Xie, Naixing Feng, and Qing Huo Liu. Smart inverse design
of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale,
11(19):9749–9755, 2019. doi: 10.1039/c9nr01315f. URL https://doi.org/10.1039/
c9nr01315f.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. Advances in Neural Information
Processing Systems, 34:11933–11944, 2021.

Yang Deng, Juncheng Dong, Simiao Ren, Omar Khatib, Mohammadreza Soltani, Vahid Tarokh,
Willie Padilla, and Jordan Malof. Benchmarking data-driven surrogate simulators for artificial
electromagnetic materials. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021a.

Yang Deng, Simiao Ren, Kebin Fan, Jordan M Malof, and Willie J Padilla. Neural-adjoint method
for the inverse design of all-dielectric metasurfaces. Optics Express, 29(5):7526–7534, 2021b.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Christoph Käding, Erik Rodner, Alexander Freytag, Oliver Mothes, Björn Barz, Joachim Denzler,
and Carl Zeiss AG. Active learning for regression tasks with expected model output changes. In
BMVC, pp. 103, 2018.

Seho Kee, Enrique Del Castillo, and George Runger. Query-by-committee improvement with diversity
and density in batch active learning. Information Sciences, 454:401–418, 2018.

Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for active
learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 804–812, 2022.

Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-based active learning for
text classification. In Proc. International Conference on Machine Learning (ICML), pp. 359–367.
Citeseer, 1998.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

14

https://www.tensorflow.org/
https://doi.org/10.1039/c9nr01315f
https://doi.org/10.1039/c9nr01315f
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep active learning for image regression. In Deep Learning Applications, pp.
113–135. Springer, 2020.

Simiao Ren, Willie Padilla, and Jordan Malof. Benchmarking deep inverse models over time, and the
neural-adjoint method. Advances in Neural Information Processing Systems, 33:38–48, 2020.

Simiao Ren, Ashwin Mahendra, Omar Khatib, Yang Deng, Willie J Padilla, and Jordan M Malof.
Inverse deep learning methods and benchmarks for artificial electromagnetic material design.
Nanoscale, 14(10):3958–3969, 2022.

Soumya Roy, Asim Unmesh, and Vinay P Namboodiri. Deep active learning for object detection. In
BMVC, volume 362, pp. 91, 2018.

Javier E Santos, Mohammed Mehana, Hao Wu, Masa Prodanovic, Qinjun Kang, Nicholas Lubbers,
Hari Viswanathan, and Michael J Pyrcz. Modeling nanoconfinement effects using active learning.
The Journal of Physical Chemistry C, 124(40):22200–22211, 2020.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of
the fifth annual workshop on Computational learning theory, pp. 287–294, 1992.

Yao Tan, Liu Yang, Qinghua Hu, and Zhibin Du. Batch mode active learning for semantic seg-
mentation based on multi-clue sample selection. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 831–840, 2019.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. arXiv preprint arXiv:2202.08450, 2022.

Evgenii Tsymbalov, Maxim Panov, and Alexander Shapeev. Dropout-based active learning for
regression. In International conference on analysis of images, social networks and texts, pp.
247–258. Springer, 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression using greedy sampling.
Information Sciences, 474:90–105, 2019.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 93–102, 2019.

15

	Details of the benchmarking methods
	Details of benchmark datasets used
	List of pool ratio used in existing literature
	Details of models training and architecture
	Computational resources

	Additional performance plots
	Time performance of the benchmarked DAL methods
	Combined plot with nAUCMSE and nDiv
	MSE vs active learning step plot

