A Mathematical Background

A.1 Oriented Hyperplane Arrangements
Any x € R4+ defines a tripartite division of R9+! given by
H® = {w € R¥™! | sign(w’x) = a}, (4)

where o € {—1,0,+1}. The set H" is a hyperplane while H*, H~ are the positive and negative
open half-spaces, respectively. We call their closures + = H% U H* the positive/negative closed
half-spaces. For consistency, we say H° = H°.

We are provided with a finite set of vectors {%;}}¥.; C R9*!. We interpret these vectors as the
training examples in section 3, but for now consider them to be arbitrary vectors. Let HH* denote the
subsets given by (4) for the i-th example. The union of the hyperplanes Uf\il HY separates chambers
of R+ into a finite number of disjoint cells. Each cell can be described as the intersection of open
half-spaces and thus can be indexed by a vector of sign patterns reflecting whether the positive or
negative half-space is used. The structure induced by these hyperplanes along with their orientation

information creates what is known as an oriented hyperplane arrangement (Richter-Gebert & Ziegler,
2017).

A.2 Polyhedral Complexes

We can also describe this arrangement through the notion of a polyhedral complex (Ziegler, 2012).
We first provide some definitions that will be useful. A polyhedral set is any set that is the intersection
of a finite number of closed half-spaces. A polytope is a bounded polyhedral set. Any hyperplane
intersecting a polyhedral set will either divide it into two polyhedral sets or only intersect it on
its boundary. In the latter case, we call such a hyperplane a supporting hyperplane. A face of a
polyhedral set is defined as its intersection with a supporting hyperplane. The dimension of a face
is the dimension of its affine span. If the dimension of a face is k, we call it a k-face. We call
O-faces vertices and 1-faces edges. By convention, the empty set is a face of any polyhedral set. The
1-skeleton of a polyhedral set is the graph formed by its vertices and edges.

A polyhedral complex K is a finite set of polyhedral sets satisfying

1. If P € K and F'is a face of P, then F' € K.
2. If Py, P, € K, then their intersection P; N P, is a face of both Py, Ps.

We call a codimension 0 member of K a chamber of the polyhedral complex. The support of a
polyhedral complex is the union of its polyhedral sets. If a polyhedral complex’s support equals the
entire space, then we call it a polyhedral decomposition of the space. The “is a face of” relation
induces a poset structure on the members of a polyhedral complex, which we call its face poset. This
can be extended further to a meet-semilattice with the meet operation being given by set intersection.
We call this the face semilattice.

Going back to the case of an oriented hyperplane arrangement, leta € {—1,0, +1}" be some sign
pattern. Now let us write

N
R = ﬂ HY . (5)

Since our hyperplanes are all linear (i.e. non-affine), we always have 0 € R?. If R* = {0}, we say
that 2 is null. Define R to be the set of all R#. Then R is a polyhedral complex, which we prove in
appendix B.1.

Every chamber of R corresponds to a non-null R with a € {—1,+1}". If the hyperplanes are
general positions, this correspondence is one-to-one. The face semilattice of R provides information
about how its chambers are arranged in space. For example, let M/ € R be the meet of two chambers.
If M # {0}, then those chambers are neighbors. Then dim M € {1, ..., d} and the sign patterns of
the chambers differ by at least d+ 1 — dim M sign flips, with equality always holding the hyperplanes
are in general positions.
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A.3 Dual Zonotopes

It turns out that we can describe the incidence structure of the polyhedral complex R nicely with a
single polytope called its dual zonotope Z (Ziegler, 2012). A zonotope is any polytope that can be
expressed as the Minkowski sum of a finite set of line segments called its generators (McMullen,
1971). In the case of the dual zonotope of R, these generators are the line segments {[0, %;]} Y ;. We

can thus write
N
Z:{ZAiii|/\ie[O,1]}. (6)
=1

When the generators are in general positions, each k-face of Z is a k-dimension parallelepiped.
Nontrivial linear dependencies between generators, however, lead to k-faces that are the union of
multiple k-dimension parallelepipeds lying in the same k-dimension affine subspace.

The duality between Z and R allows us to associate members of R with faces of Z. Each k-face of
Z corresponds to a codimension k£ member of R. Notably, the vertices of Z, denoted by vert(Z),
correspond to the chambers of R. Relationships between members of R carry over to faces of Z.
For example, two neighboring chambers of /R whose sign patterns differ by a single flipped sign will
correspond to two vertices connected by an edge in Z.

We now describe how to make this correspondence explicit. Let v € vert(Z) be a vertex. It can

be shown that v has a unique representation as Zf\; Aix; with every \; € {0,1}. We call the
vector (A1, ..., An) the barcode of the vertex. We will often treat a vertex interchangeably with its
barcode in this paper with difference being clear by context. Let a be the sign pattern of the chamber
corresponding to v. Thena; = —1if \; =0anda; = +1if \; =1fori=1,..., V.

Now suppose two vertices vq, Vo € vert(Z) are connected by an edge, and that the hyperplanes of
‘R are in general positions. Then there exists a single ¢* such that, WLOG, vy = v + X;«. The sign
pattern of the member of R corresponding to the edge can then be found by finding the sign pattern
for v; and changing its 7*-th entry to be 0.

A.3.1 Cartesian Power of Zonotopes

Let us consider an m-ary Cartesian power of a zonotope Z"" = H?;l Z. We can see that Z™ is
also a zonotope and is generated by line-segments from the origin to members of | J;" U;‘V:1 {eiiJT},
where e; € R™ is the i-th standard coordinate vector. Each k-face of Z™ is the Cartesian product of
asetof {ki,...,ky,}-faces of Z where k = k1 +- - - + k,,,. Notably, each vertex of Z" corresponds
to a product of m vertices of Z. Edges of Z™ correspond to the product of a single edge of Z with
m — 1 vertices.

B Proofs for Appendix A

B.1 Proof that R is a Polyhedral Complex
Recall that a polyhedral complex K is a finite set of polyhedral sets satisfying

1. If P € K and F'is a face of P, then F' € K.
2. If Py, P, € K, then their intersection P; N P, is a face of both Py, Ps.

Recall that we have defined R as
R={R*CR" |ae{-1,0,+1}"}, (7)

where R? is given by (5). Note that generally |R| < 3" since multiple R? can equal {0}.

It is easy to see that every R? € R is a polyhedral set since it can be can defined as the intersection
of finitely many closed half-spaces. When a; = 0, its corresponding hyperplane in (5) is equivalent
to the intersection of its positive and negative closed half-spaces.

‘We now prove the first condition for R being a polyhedral complex. Suppose R? € R and suppose F’
is a face of R?. Hence I is the intersection of R? with a supporting hyperplane. It is straightforward
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to see that any face of R? can be represented by a R where b; = a; for all i € [N]\ I and
b; = 0,a; = 1 fori € I C [N]. Hence the face I = R® € R.

We now prove the second condition for R being a polyhedral complex. Let R?, R® € R. From (5),

we see that
N

b [7ai [7bi
R*NR® = (H nH". (8)
i=1
We see that H N H}' = HF'if H* = H = H', and that H* N H}" = HY otherwise. It is
easy to see that this intersection can be represented as the intersection of a supporting hyperplane
with either R? or RP. Hence their intersection is a mutual face.

C Proof of Theorem 4.1

Suppose we are given a dataset D = {(x;,y;)}} ., in general position. Given some ¢ > 0, let
D, = {(x},v:)}¥, be any perturbation of D such that ||x; — x}||2 < e.

Let X € RV*(4+1) denote the data matrix in homogeneous coordinates for D. Let X’ denote
the corresponding data matrix for D.. We see that || X — X'||r < v/ Ne. Hence some matrix
P € RV*(4+1) exists such that X’ = X 4 P and || P < v/Ne.

We can interpret the zonotope definition (6) as saying that a zonotope is the image of a hypercube
under the matrix formed by its generators. Hence if Z is the zonotope of the original dataset, we may
write

Z={XTueR" |ue(0,1)V}. )
Let Z’ denote the corresponding zonotope for the perturbed dataset.

We now wish to show that the vertices of Z are in a one-to-one correspondence with the vertices Z’
for sufficiently small e with their sets of vertex barcodes coinciding. Let b € {0, 1}V be some binary
vector such that p = X”b is a vertex of Z. Then we know that some affine hyperplane H C R+!
exists such that H N Z = {p}.

Let g = XTc, where ¢ € {0,1}", be the image of an arbitrary vertex of the hypercube such that
q # p. Note that q is not necessarily a vertex of Z. We thus find some ¢ > 0 such that the distance
from q to the hyperplane H is greater than § for every such q. Furthermore, all such q will lie in
exactly one of the half-spaces formed by the hyperplane.

Let H' C R*! be the affine hyperplane formed by shifting H by PTb. If we let p’ = X'T'b, it is
straightforward to see that p’ € H’. Hence H' intersects the perturbed zonotope Z’.

Let = X'Tc. Note that we can write p’ = p + P’b and = q + PTc. Let us now
bound || PTb||,. We see that ||b||s < v/N. Using known relations between matrix norms, we see

that |[PT ||y < ||PT||r < v/Ne. Hence |[P"b||; < Ne. By the exact same logic, we see that
1PTc|ls < Ne.

Now suppose that we choose € < %. By the triangle inequality, we can see that g’ can move
a distance at most 2Ne < ¢ relative to the hyperplane H’. Since the distance from q to H was
greater than , we see that every such q’ must lie on the same side of the hyperplane H’'. Hence
H'n 2" = {p'}, which implies that p’ is a vertex of Z’. Hence every vertex barcode of Z is a vertex
barcode of Z’. As D, will also be in general position for small enough €, we can swap the roles of Z
and Z’ in our proof to see that every vertex barcode of Z’ is a vertex barcode of Z. It thus follows
that there is a one-to-one correspondence between vertex barcodes of Z and Z’.

By the relationship between zonotope vertices and activation regions shown in section 3, we have
thus proved that the set of convex optimization problems for D are a slightly perturbed version of the
convex optimization problems for D..

As any subset of a set of vectors in general position is also in general position, we can see that the
solution of each convex optimization problem is continuous with respect to perturbations of the data
(Agrawal et al., 2019). The global minimum of the loss is given by the minimum over the set of
per-activation-region local minima. Hence the global minimum is continuous with respect to the
training dataset as it is the composition of two continuous functions.

15



-
Zonotope Vertex {1,2,3,4,5}
@  Minimal loss in bold. 0.1

Active example indices in {brackets}. {1 2,3, 4}

0.4

{1,2,3}
2.5 {2,3,4,5}

0 2 6 B 10 2 14 16

Figure 4: The zonotope Z associated to the dataset introduced in appendix D.1.

D Examples of Discontinuities at Datasets not in General Position

This section provides examples of the two sources of discontinuities of the minimal loss of a dataset
when it is not in general position.

D.1 Convex Problem Associated to a Vertex being Discontinuous

Here we provide an example of a dataset whose optimal loss is not continuous with respect to the
dataset. For this dataset, the optimal vertex is the same and exists in both the original and perturbed
zonotopes. This means that its associated convex optimization problem is discontinuous with respect
to the dataset.

Let us consider the dataset D C R? x R given by

123 45
X:[ooooo}

Y=[1 2 25 4 5.
Note that X lies entirely within the x5 = 0 hyperplane and thus is not in general position.

Now consider the problem of optimizing a single affine ReLU over D with respect to the L1 loss.
We assume a linear second layer and take the ReLLU’s corresponding second layer weight to be 1.
The zonotope Z associated to this optimization problem is presented in fig. 4.! Each vertex has been
labeled with its minimal loss in bold and with its set of active example indices. The vertex with the
smallest loss of 0.1 is active on all of the examples.

Now consider what happens when we perform the following perturbation on the dataset

123 45
Xéz[ooeoo}’

where € > 0 is arbitrarily small. Let D. = (X,,Y). If we set the parameters (w,b) of our ReLU

T .
tow = [1 72%] and b = 0, we see that we fit D, exactly and thus obtain zero L1 loss. These
parameters belong to the same vertex as the global minimum of the unperturbed dataset. Hence we
conclude that the convex optimization problem associated to this vertex is discontinuous with respect

to the dataset.

D.2 Global Loss in New Vertex of Perturbed Zonotope

Here we provide an example of a dataset whose optimal loss is not continuous with respect to the
dataset. For this dataset, the optimal vertex in the perturbed zonotope does not exist in the original
zonotope.

!"Technically this is a slice of the zonotope along the 22 = 0 plane. The full zonotope is equal to the cylinder
Z —+ Rez .
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Figure 5: The zonotope Z associated to the dataset introduced in appendix D.2.

Let us consider the dataset D C R? x R given by
-1 2 -1 -1
X = [ 0 1 1 —11
0 0 0 O
Y=[4 3 2 1].

Consider the problem of optimizing a single linear ReLU over D with an L1 loss. Assume that the
second layer is linear with the ReLU’s output weight set to 1. Note that X lies entirely within the
z3 = 0 plane and thus is not in general position. The zonotope Z associated to this optimization
problem is presented in fig. 5.2 Each vertex has been labeled with its minimal loss in bold and with
its set of active example indices. The vertex with the smallest loss of 1.25 has the examples {x2, x3}
active.

Now consider what happens when we perform the following perturbation on the dataset

-1 2 -1 -1
lo 1 1 —1] (10)
0 ¢ 0 0

Xe

where € > 0 is arbitrarily small. Let D, = (X, Y"). The global minimum of the loss for D, occurs at

T S
the parameter value w = [—% % %] . The loss value at this point is 0.625, and these parameters

are associated to the zonotope vertex with all examples active. As evident from fig. 5, such a vertex
does not exist in the unperturbed zonotope.

E NP-Hardness

Goel et al. (2020) prove the NP-hardness of optimizing a single ReLU by reducing solving an instance
of the NP-hard set cover problem to optimizing a single ReLLU over a train dataset. In the set cover
problem, we are given a collection 7 = {71, ..., Ty} of subsets of a given set U. Given some
t € N, the goal is determine whether a subcollection S C T exists such that U = J ses S and
S| <t.

Technically this is a slice of the zonotope along the =3 = 0 plane. The full zonotope is equal to the cylinder
Z + Res.
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E.1 Reduction to ReLU Optimization

Goel et al. (2020) use a single ReLLU without a bias as their model, so we may write our network as

T
fw(x) = g(w' x). (11)
The input dimension of their model is d = M + 2. Of these dimensions, M correspond to members
of 7 and two are used as “constraint coordinates”. We use er, to denote a unit coordinate vector
corresponding to T, and e, and e; as the unit coordinate vectors for the constraint coordinates.

Set v = 0.01/M?. Overall, they create N = |U| + M + 2 labeled training examples. For the
constraint coordinates, they create the examples

(X'yay’y) = (e%ry) (12)
and

(x1,91) = (e1,1). (13)

For each T; € T, they create the example
(XTnyTi) = (e’Y + eTw’Y)' (14)

For each u € U, they create the example
(Xusyu) = (€1 + Y er,0). (15)

Tidu

Let D denote the entire labeled dataset, and let X denote the just the examples without labels. Note
that both D and X will generally be multisets since if u, 4 € U belong to exactly the same set of
subsets in 7, then x,, = x,,/.

Using mean squared error, the training loss of the network can be written as

1
Lw) = > (fux) )" (16)
(x,y)€D
Goel et al. (2020) show that if the union of ¢ or fewer members of 7 equals U, then the global
minimum of this loss will be less than or equal to ty2/N. The weights w € R? corresponding to this
optima will have w, = v, w1 = 1, wy, = —1 for all T; € &, and all other parameters set to zero.

The activation pattern for this optima will have x; and x, being active while x,, is inactive for every
w € U. Any x7, will be inactive if T; € S and active otherwise.

E.2 Discontinuous Response to Perturbation

Here, we demonstrate how to create a perturbed dataset D’ so that the the global minimum of loss
will always be at most 2 /N regardless of the solution to the set cover problem. This will hold true
even as the scale of the perturbation € > 0 approaches 0.

In this perturbation, we pick an arbitrary T' € T and set X/, = x,, + eer for the examples correspond-
ing to all u € U. All other examples are left unchanged.

Clearly, ||x — x'||2 < ¢ for all original-perturbed example pairs. To find a w with a loss value of
¥?/N, setw, =, w; = 1, wp < —e~ !, and set all other parameters to 0. In this case, the model’s
predictions are correct for every training example except (x7, y7). In this case, the model predicts 0
while the label is 7, so the total loss is v /N.

Note that the L2 norm of the parameters at the global minimum for the perturbed dataset approaches
infinity as the size of the perturbation e approaches 0.

The activation pattern at this optima will be the same as the activation pattern at the unperturbed
optima except that x7 will be inactive while the rest of the x7, will be active.

We note that this activation pattern is achievable on the unperturbed dataset. However, it requires
setting w; to a small positive value, w., to a relatively large positive value, all wr, for T; # T to
moderate negative values, and wr to a large enough negative value. For example, setting w; = 7,
wy = 2, wy, = —1for T; # T, and wyr = —3 works. Hence as discussed in section 4.1.1, this
discontinuity corresponds to a discontinuity in the constrained convex optimization problem (3)
associated to a vertex rather than the new optimum occurring at a vertex not present in the original
zonotope.
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E.3 Reduction to Dataset in General Position (Proof of Theorem 4.2)

It is possible to perturb some of the examples in appendix E.1 to get a dataset in general position that
is still the reduction of the subset-sum problem.

Theorem E.1. Let 1,2 € R be constants satisfying 0 < §; < 6o < 2—1d For each v € U, replace
X, in the dataset D with let X!, = x,, — 1,,, where m,, € R% is noise sampled IID from the uniform

distribution on |51, 02)%. Denote this updated dataset as D' and let X' denote its examples without
labels. Then X' is in general linear position with probability 1, and the global minimum of

rw)=5 > (fwlx) =y (17)

(x,y)€ED

is less than or equal to tv? /N if and only if a set cover of T exists containing t sets.

The rest of this section is devoted to the proof of theorem E.1. We first prove that X” is indeed in
general position. We then prove both directions of the if and only if statement.

E.3.1 General Position of Perturbed Dataset

Lemma E.2. The examples of the perturbed dataset X' are in general linear position.

Proof. We examine linear rather than affine dependencies between examples since the ReLU that we
are using has no bias. Let us partition the training examples as

X' = X[ UXrU{x1,x,}. (18)

where X7 corresponds the examples (14) and XY, to corresponds to the examples in (15) with
perturbations as in theorem E.1.

From their definitions, it is clear that the set of N vectors X'r U {x1,x,} are linearly independent
and thus in general position. Since the {7, },cv are sampled IID from the uniform distribution
on [d1, 52]d, the introduction of the examples X{] almost surely introduces no new nontrivial linear
dependencies. O

E.3.2 Set Cover of Required Size Exists

Now suppose that a set cover S C T of size ¢ exists. Choose parameters w € R¢ with coordinates
wy =1, wy =y, wy, = —2ifT; € S, and wy, = 0 otherwise.

Lemma E.3. The loss on the perturbed dataset is equal to ty? /N when the parameters are set to w.

Proof. We start by looking at the examples that are unchanged from the original dataset D in our
perturbed version D’. We see that fy (x,) = w, = v =y, and fw(x1) = w1 = 1 = yy, so these
two examples have a loss of zero. When T; € S, we have fw (x7,) = ¢(wy + wr,) = ¢(y—2) =0
since y < 2, so these examples incur a loss of y7. /N = 4*/N. When T} ¢ S, we have f (x1,) =
d(wy +wr,) = ¢(y) = v = yr,, so these examples have a loss of zero. Overall these examples
contribute a total of 72 /N to the loss.

Now consider the examples x,, € X{J By definition, x|, = x, —n,, = €1 + ) 15, er, — 0, The
preactivation for such an example is

T/ _ T
WX, =w; + E wr; — W1,
T;Du

=1- Z wr,2 —win,.
ueT; €S

Since S is a set cover of U, we know at least one T; € S exists such that u € T;. Hence 1 —
ZueTi cs wr;2 < —1. Recall that the entries of n,, are all positive and less than d2, and recall that

all entries of w are greater than or equal to —2. Thus, —anu < 2ddy. Because we defined o
such that dy < 2—1d, we see that 2dd < 1. Hence —anu < 1, so we see that the preactivation is
less than —1 + 1 = 0. Thus applying a ReLU activation to this preactivation will output a 0. Thus
fw(x!,) = 0=y, forall u € U. Hence the examples from X, do not contribute to the loss, and the

loss at w is ty2/N. O
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E.3.3 Set Cover of Required Size Does Not Exist

Throughout this section, let w € R? be parameter values as defined in the previous section. We first
prove the following lemma.

Lemma E.4. If the minimal loss over the original dataset D is less than or equal to ty> /N, then the
minimal loss over the perturbed dataset D' is less than or equal to ty*/N.

Proof. From the proof of Theorem 8 in Goel et al. (2020), we know that the minimal loss over the
original dataset is less than or equal to ¢y /N only if a set cover of size ¢ exists. This lemma then
follows directly from lemma E.3. O

We now have the following.

Lemma E.5. If the minimal loss over the perturbed dataset D' is greater than tv% /N, then no set
cover of U exists that is comprised of t or fewer sets from T.

Proof. The contraposition of lemma E.4 states that if the the minimal loss over the perturbed dataset
D’ is greater than ty? /NN, then the minimal loss over the original dataset D is greater than ty2/N.
From the proof of Theorem 8 in Goel et al. (2020), this implies that no set cover of U exists that
consists of ¢ or fewer sets from 7. O

F Proof for Upper Bound on Required Overparameterization

In this section, we provide a proof of theorem 4.3. We begin with the following lemma.

Lemma F.1. Let A, B C R? be finite subsets such that |B| = d + 1 and the d-th coordinate of any
a € A is strictly less than the d-th coordinate of any b € B. Furthermore, assume that their union
AU B is in general position. For any b € B, let y» € R be its label. Then there exist parameters
w1, wy € R satisfying

wia <0, wib >0,
wia <0, wib >0,

foralla € A andb € B such that the function

F(x) = p(Wi%) — o(wix) (19)
satisfies f(a) = 0foralla € Aand f(b) = yp, forallb € B.

Proof. Let a € R be some value that is strictly greater than the d-th coordinate of any a € A
and strictly less than the d-th coordinate of b € B. Such an « is guaranteed to exist based on the
assumptions of the lemma. Now let u = e4 — aey.; € R Ttis clear that u”a < 0 foralla € A
and u’’b > 0 for all b € B. We can thus multiply u by a positive scalar to get a vector i1 € R4*!
such that i’a < —1 foralla € Aand a”b > 1 forall b € B.

Let us now look at the unconstrained problem of finding a w € Rt such that w”'b = y, for all
b € B. As B contains d + 1 examples in general positions, such a w will always exist and can be
found via standard linear regression.

Define
_ T
Ba =maxg(w"a) (20)
and
_ _wlh
B = max o(~w'b). 1)

Let 8 = max{S84, 5} Then setting w; = w + S and w, = (1 satisfies the conditions of the
lemma. O
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Algorithm 3 Modified Greedy Local Search (mGLS) Heuristic

Input: data D = {x;, y; }¥,, output weights v € R™*1, max steps T € N
Ap € vert(Z2™) {Random initial zonotope vertex.}
fort € {0,...,7} do
A1 — Ay
W* <« solution of (3) for A;
if any of the constraints in (3) are equalities then
Ay + A, with all those constraints flipped
Ny « subset of neighbors of A, differing only on one of those constraints
N < ({Af}, N, neighbors(A;) \ Ny)
else
N < (neighbors(A;))
end if
for G € N do
for A’ € Gdo
if L*(A’; D) < L*(A411;D) then
At+1 — A
continue main loop
end if
end for
end for
if At+1 = At then
return A,
end if
end for
return Ar

We are now ready for the proof. Let D and Dy, fork =1,.. ., [%1 be defined as in section 4.2.1.
Let us do a proof by induction on k. Suppose that f is a ReLU network with 2 [%1 — 2 hidden

units fitting the labels in U,]z,;ll Dy exactly.

Let us now relabel the entire dataset by subtracting the predictions of f from the labels to get

D = {(X7y - f(X)) ‘ (Xay) € D} (22)

Define D}, accordingly. Clearly, we have the labels being all zero for all examples in D’ \ D;,. The
labels for examples in D}, will generally be non-zero.

We can use lemma F.1 to find a unit layer network g such that g(x) = 0 = y for all (x,y) € D’ \ D;,
and g(x) = y for all (x,y) € Dj. Hence g fits D’ exactly. From this it is clear that f + ¢ fits the
original dataset D exactly. We can find a ReLU network with 2 [%1 hidden units representing f + g
by having its last two units be the units of g and the remaining units be the units of f.

G Modified Greedy Local Search

This section provides more information on the additional heuristics used in the mGLS algorithm
introduced in section 4.3.1. The purpose of these modifications is to reduce the typical number of
convex problems that we have to solve in a run of the algorithm.

The major difference is that as we iterate over neighboring zonotope vertices, we move to any vertex
with a lower loss than the current vertex. This is in contrast to algorithm 2, which evaluates the
loss at every neighbor and moves to the one with the lowest loss. Especially near the start of the
optimization procedure, we find that this greatly reduces the number of vertices that we need to solve
convex programs for. The order in which we iterate over the neighbors is mostly random with the
caveat discussed below.

We also make use of geometric information coming the optimal parameter values given the current
vertex to preferentially try some subsets of neighboring vertices first. If they lie at the boundary
of the current activation region, then it stands to reason that activation regions on the other side
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of that boundary are more likely to have better solutions. Solutions lying on the boundary of an
activation region have a subset of preactivations that are exactly zero. Equivalently, a subset of the
inequalities in (3) become equalities at the solution. In such cases, we first try the vertex that has
all of those constraints flipped. Note that this vertex is not usually a neighbor of the current current
in the 1-skeleton of the zonotope and might not even be feasible. If feasible and k constraints are
flipped, then that vertex and the current vertex belong to the same k-face of the zonotope. We then try
the neighbors of the current vertex that correspond to flipping one of those constraints. Afterwards,
we try the remaining neighbors.

H Experimental Details

H.1 Synthetic Data
H.1.1 Synthetic Dataset Generation

Here we present the details of the generation of the synthetic datasets used in the experiments in this
paper.

We start out with the dimension of the input d and the number of units mge, in the shallow ReLU
network used to generate the labels. We use this to calculate the number of examples N = (d+1)mgen.
We then generate the examples {x;}¥.; C R? by sampling them i.i.d. from a standard normal

distribution.

We use a randomly generated ReLU network to label these examples. We can express this network as
g(X) = ng,;n(b(Wgen)_() + Cgen- (23)

We generate the parameters Vo, € R, Weye, € R™Men X (d+1) and Cgen € R by via sampling from
standard normal distributions. The label for the i-th example can then be expressed as y; = g(x;).

H.1.2 Training Details

All experiments on the synthetic datasets used the mean squared error (MSE) loss. The network
architecture for these experiments takes the form of

f(x) =vIp(Wx) +c, (24)

where v € R™, W € Rmx(d“), and ¢ € R. We use m € N to denote the number of units in the
network that we train on the dataset.

Gradient Descent  All experiments involving gradient descent on synthetic datasets in this paper
used batch gradient descent with a learning rate of le-3 for 400,000 steps. All parameters, including
the second layer weights v, ¢, were trained. We used the parameter initialization scheme from Glorot
& Bengio (2010).

Random Vertex A random vertex was selected by sampling the first layer weights W e R™*(d+1)
from a standard Gaussian and taking its corresponding activation pattern over the dataset. We
randomly initialize v with values chosen uniformly from the set {—1, 1}. Optimizing over all of the
parameters of a shallow ReLLU network within a single activation region is non-convex. However, the
problems of training W, ¢ given a fixed v and training v, c given a fixed W are convex. The former is
a slight variant of (3) while the latter is simple linear regression over fixed features. We thus iterate
between solving these two problems until we converge to fixed loss value.

This process is guaranteed to converge to a local minima of the loss (Xu & Yin, 2013). However, it
is possible that our process of optimizing the second layer weights here is suboptimal and does not
reach the global optimum within the activation region.

GLS Heuristic Here we fix v.€ R™ to have m/2 entries set to -1 and m/2 entries set to +1. We
slightly modify the convex problem (3) to include optimizing the ¢ € R in addition to the first layer
weights W € R7*(4+1) We choose the starting vertex at random by sampling the first layer weights
W from a standard Gaussian and taking its corresponding activation pattern over the dataset. We set
T = 1024 as the maximum number of steps.
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Table A1: Results of all synthetic data experiments performed in this paper. The large numbers are
the median final MSE over 16 runs for GLS heuristic and over 8 runs for gradient descent and random
vertex. The subscript numbers provide the standard deviation over the runs. Some cells are empty
as the particular combination of d, mgen, m, and optimization method was not needed for our set of
comparisons.

GLS HEURISTIC

d  meen m  GRADIENT DESCENT RANDOM VERTEX

4 2 2 3.82E-103.25-04 1.25E-011 75-01 8.27E-011 4800
4 2 3 3.43E-1176g-10 3.85E-051 26-02 —

4 2 4 6.01E-123_7E,09 4.10E-088_1E,07 1.58E-015_3E,01
4 2 8 - 8.81E-091 45-08 8.29E-131 7502
4 2 16 - 1.13E-087.3¢-08 4.11E-171.26-16
4 4 4 8.30E-03 35-01 1.98E-036.65-02 8.11E-015.5:.01
4 4 6 5.04E-1257¢-10 3.13E-047 76-04 -

4 4 8 6.54E-129.78-10 4.70E-05538-05 8.47E-097 gk-02
4 4 16 - 5.08E-071.88-05 1.68E-121 611
4 4 32 — 2.71E-075.18-06 1.97E-154.78-15
4 8 8 8.53E-0353£-03 8.47E-038.3£-03 4.68E-014.08-01
4 8 12 2.52E-11436-10 7.59E-049 8504 -

4 8 16 2.21E-117.68-09 6.07E-046.95-04 9.96E-033.15-02
4 8 32 - 1.70E-057.95-05 6.68E-12595-10
4 8 64 - 6.26E-004.85-05 3.49E-14; 8514
8 4 4 2.54E-031 2501 1.44E-024.45-02 3.74E002.0r00
8 4 6 6.11E-111 48-02 1.11E-035.68-02 -

8 4 8 7.69E-12g25-02 6.96E-084.25-05 4.94E-014.75-01
8 4 16 - 2.24E-085.68-08 5.33E-124.18-08
8 4 32 - 6.25E-097 55-00 2.40B-131 1512
8 8 8 7.47E-031A25,02 2.45E-029A95,03 3.67E002_7Eoo
8 8 12 7.30E-121.2¢-10 1.69E-043 104 -

8 8 16 5.83E- 13705,12 2.07E-069A5E,05 1.77E008,95,01
8 8 32 - 8.01E-08; 1g-07 3.09E-126.55-11
8 8 64 - 2.43E-086.65-09 3.15E-134.15-13
8 16 16 - 2.72E-023,3E,02 7.07E002_7E00
8 16 24 - 1.61E-031 85-03 -

8 16 32 — 8.57E-052 1804 1.47E00¢.38-01
8 16 64 - 5.62E-074.85-07 2.35E-023.95-02
8 16 128 - 1.03E-077.6&-08 3.16E-134.7-12
16 8 8 — 2.79E-024.58-02 1.85E01¢.4r00
16 8 12 - 9.05E-072.26-05 -

16 8 16 — 1.10E-072.08-08 8.76E002.7r00
16 8 32 - 2.86E-08¢.45-09 1.74E0038 25-01
16 8 64 — 9.53E-097 2609 2.82E-137.9.11
16 16 16 - 4.99E-021 65-02 2.81E016.4r00
16 16 24 - 4.70E-051 1g-04 -

16 16 32 - 4.80E-072.18-06 1.63E015.0r00

8.13E-08 9g-08
2.75E-083 05-09

4.03E001 0r00
3.42E-133. 8812

H.1.3 Full Results

We experimented with a range of d, mgen, and m values. Present our full results in table Al. The
scores represent the median of 16 runs for random vertex scores and the median of § runs for the rest.
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H.2 Toy Versions of Real-World Datasets
H.2.1 Dataset Creation

Our datasets were created from the MNIST (LeCun et al., 2010) and Fashion MNIST (Xiao et al.,
2017) datasets. Both datasets are 10-way multiclass classification datasets; however, our mGLS
algorithm only works for ReLU networks with scalar output. Hence we have to create binary
classification tasks from these datasets.

We did this by restricting each dataset to two classes and having the task to correctly differentiate
between only those two classes. For MNIST, we chose the 4 and the 9 classes. For Fashion MNIST,
we chose the pullover and the coat classes. These classes were chosen for the interclass similarity of
their examples, which increases the difficulty of the task.

To reduce the dimensionality of the data, we performed principle components analysis (PCA) using
the scikit-learn Python package (Pedregosa et al., 2011) on all of the training examples in each
dataset belonging to their respective two chosen classes. When then used the first d € {8,16}
whitened components for our dataset. We then took the first N € {350, 700} examples in the training
split as our training dataset. We always chose the same examples across experiments to reduce
variance.

H.2.2 Training Details

Since these datasets were binary classification tasks, we used the sigmoid cross entropy loss function
0(9,y) = —y§ + o(4), where o is the logistic sigmoid function. The network architecture for these
experiments takes the form of

Fx) = vTo(Wx) +c, (25)

where v € R™, W € Rmx(d“), and ¢ € R. We use m € N to denote the number of units in the
network that we train on the dataset. In all experiments in this section, set v to a vector containing
half ones and half negative ones and froze it throughout training. The rest of the variables were
optimized during training. Note that this is different than what we did for the synthetic datasets.

Gradient Descent We trained for one million steps with a learning rate of 1e-3 using batch gradient
descent. We used the parameter initialization scheme from Glorot & Bengio (2010).

Random Vertex A random vertex was selected by sampling the first layer weights W e R™*(d+1)
from a standard Gaussian and taking its corresponding activation pattern over the dataset. We then
solved its corresponding convex program (3) using the ECOS (Domabhidi et al., 2013) solver in the
cvxpy Python package (Diamond & Boyd, 2016). We also optimized the bias ¢ € R in the final layer
as well as the first layer parameters parameters in the convex program.

mGLS Heuristic We chose the initial vertex by sampling the first layer weights W € R™>(d+1)
from a standard Gaussian and taking its corresponding activation pattern over the dataset. Like for
the random vertex experiment, we also optimized the second layer bias ¢ € R in the convex program.
We used the mGLS algorithm presented in appendix G to perform the optimization. We set T' = 2048
as the maximum number of steps.

H.2.3 Full Results

We experimented with a range of d, N,m values on both MNIST 5/9 and Fashion MNIST
coat/pullover. We present our full results comparing gradient descent to the random vertex method
in table A2 and comparing gradient descent to mGLS in table A3. Random vertex results are the
median of 16 runs while the results for the other two methods are the median of 8 runs.
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Table A2: Results of all experiments comparing gradient descent to random vertex optimization in

this paper. The subscripts provide standard deviation across runs.

GRADIENT DESCENT

RANDOM VERTEX

DATASET
d N m LosS AcC (%) LosS ACC (%)
8 350 4 1.16E-011 1502 95.60.30 6.04E-016.76-02 67.43.53
8 350 8 5.37E-027.98-03 98.90.45 5.27E-011 18-01 72.93.30
MNIST 8 350 16  2.09E-0226p05 99.5016  3.21E-Ol7seen  85.3447
8 350 32 8.38E-035.15-04 100.0¢.00 2.30E-015.05-02 91.4, 3¢
8 350 64 4.21E-03; 504  100.00.00 1.71E-O14.95-00  94.1;36
8 700 4 1.62E-011.95-03 93.20.73 6.50E-013.76-02 63.49.13
8 700 8 1.24E-01¢.75-03 95.00.56 4.94E-013.65-02 75.97.11
8 700 16 7.90E-026.18-03 97.60.49 3.95E-016.45-02 82.1434
8 700 32 3.97E-021 55-03 99.4¢.05 2.79E-015.75-02 88.63.02
8 700 64 1.94E-02¢.56-04 100.00.04 2.14E-012.28-02 91.51.06
16 350 4 1.78E-022.25-03 99.50.18 5.95E-017.85-02 68.77.10
16 350 8 5.75E-037 45-04 100.0¢.00 4.89E-01128-01 75.4998
16 350 16 2.49E-035 85-04 100.0¢.00 4.14E-011 18-01 80.07.91
16 350 32 1.12E-035.08-05 100.0¢.00 1.39E-019.15-02 95.03.95
16 350 64 4.87E-04525-05 100.0¢.00 4.81E-023.95-02 99.11.29
16 700 4 3.51E-024.45-03 99.30.18 6.61E-015.65-02 57.77.61
16 700 8 1.16E-021 35-03 99.90.16 5.34E-019.08-02 72.87.68
16 700 16 4.61E-037.95-04 100.0¢.00 4.37E-013.75-02 78.9¢6.01
16 700 32 2.06E-03 1504 100.00.00 2.36E-016.36-02 90.13.11
16 700 64 1.00E-034.05-05 100.0¢.00 1.20E-013.35.02 95.61.44
8 350 4 2.98E-011.05-02 88.40.67 5.97E-017.25-02 68.43.60
8 350 8 2.24E-011 35-02 91.4071 5.58E-015.55-02 72.9¢6.28
FASHIONMNIST ¢ 350 16  1.396-Oloseos  95.9000  4.96E-Olssror  78.633
8 350 32 6.71E-027.45-03 98.80.43 3.78E-012.8:-02 85.1163
8 350 64 3.21E-0223:03 100.0¢.19 2.91E-01315.02 88.1134
8 700 4 3.52E-013.88-03 84.8¢ .53 6.62E-015.15-02 60.57.12
8 700 8 3.15E-016.45-03 86.60.63 5.99E-014.45-02 69.34.66
8 700 16 2.48E-011 0502 90.50.76 5.17E-014.25.02 76.13.20
8 700 32 1.65E-015.05-03 94.3¢ 50 4.31E-013.05-02 80.71.78
8 700 64 8.70E-026.05-03 98.30.37 3.66E-01; 7602 84.41 27
16 350 4 1.93E-01 65-02 92.41 5 6.24E-016.25-02 64.49 07
16 350 8 8.33E-02 3:-02 98.00.70 5.46E-Ol¢om02  72.75.67
16 350 16 3.71E-023.76-03 99.30.14 4.27E-015.25-02 80.13.29
16 350 32 1.43E-0233£-03 100.0¢.20 3.00E-014.45-02 87.32.31
16 350 64 6.72E-03435-04 100.0¢.00 1.65E-011.05-01 94.3422
16 700 4 2.84E-011 15-02 88.1¢.48 6.30E-014.65-02 64.85.66
16 700 8 1.95E-0153.58-03 92.00.31 5.95E-014.95-02 68.4437
16 700 16 1.13E-017.55-03 96.50.58 5.19E-014.65-02 75.7327
16 700 32 4.53E-023.45-03 99.4¢.5 4.26E-017.45-02 81.41.45
16 700 64 2.05E-021 5803 100.0¢.06 3.43E-011.58-02 85.61.14
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Table A3: Results of all experiments comparing gradient descent to mGLS in this paper. The
subscripts provide standard deviation across runs.

GRADIENT DESCENT MGLS HEURISTIC
Loss Acc (%) Loss Acc (%)

4 1.16E-011 1502 95.60.80 1.09E-013.7g-02 95.61.76
MNIST 8 5.37E-027.9-03 98.90.45 1.95E-03 55.02 100.0¢.58
16 2.09E-025.68-03 99.50.16 8.24E-041 2503 100.0¢.00
32 8.38E-035. 1504 100.09¢.00 3.73E-02g.55-03 99.00.61

4 2.98E-011.05-02 88.40.67 2.88E-011 8602 88.30.64
8 2.24E-011 35-02 91.49071 1.72E-014.58-02 93.71.99
FASHIONMNIST 16 | 395010805 95.9000  2.91E-03150.00  100.00.47
32 6.71E-027.45-03 98.80.43 2.33E-026.15-02 99.45 45

DATASET m
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