
Cal-QL: Calibrated Offline RL Pre-Training for
Efficient Online Fine-Tuning

Anonymous Author(s)
Affiliation
Address
email

Abstract

A compelling use case of offline reinforcement learning (RL) is to obtain a policy1

initialization from existing datasets followed by fast online fine-tuning with limited2

interaction. However, existing offline RL methods tend to behave poorly during3

fine-tuning. In this paper, we study the fine-tuning problem in the context of4

conservative offline RL methods and we devise an approach for learning an effective5

initialization from offline data that also enables fast online fine-tuning capabilities.6

Our approach, calibrated Q-learning (Cal-QL), accomplishes this by learning7

a conservative value function initialization that underestimates the value of the8

learned policy from offline data, while also ensuring that the learned Q-values9

are at a reasonable scale. We refer to this property as calibration, and define it10

formally as providing a lower bound on the true value function of the learned11

policy and an upper bound on the value of some other (suboptimal) reference12

policy, which may simply be the behavior policy. We show that a conservative13

offline RL algorithm that also learns a calibrated value function leads to effective14

online fine-tuning, enabling us to take the benefits of offline initializations in online15

fine-tuning. In practice, Cal-QL can be implemented on top of the conservative16

Q learning (CQL) [32] for offline RL within a one-line code change. Empirically,17

Cal-QL outperforms state-of-the-art methods on 9/11 fine-tuning benchmark tasks18

that we study in this paper.19

1 Introduction20

Online Fine-Tuning

R
et

ur
n

Fast Sample-Efficient Online Fine-Tuning

Offline Pre-training

Oracle

Calibrated [ours]

Prior Algorithm 1

Prior Algorithm 2

Offline
Dataset

Finetuned
Agent Environment

Online

Dataset

Agent

Offline

Dataset

Figure 1: We study offline RL pre-training followed
by online RL fine-tuning. Some prior offline RL meth-
ods tend to exhibit slow performance improvement in
this setting (yellow), resulting in worse asymptotic per-
formance. Others suffer from initial performance degra-
dation once online fine-tuning begins (red), resulting in
a high cumulative regret. We develop an approach that
“calibrates” the learned value function to attain a fast
improvement with a smaller regret (blue).

Modern machine learning successes follow a21

common recipe: pre-training models on general-22

purpose, Internet-scale data, followed by fine-23

tuning the pre-trained initialization on a limited24

amount of data for the task of interest [22, 7].25

How can we translate such a recipe to sequential26

decision-making problems? A natural way to27

instantiate this paradigm is to utilize offline re-28

inforcement learning (RL) methods [37] for ini-29

tializing value functions and policies from static30

datasets, followed by online fine-tuning to im-31

prove this initialization with limited active inter-32

action. If successful, such a recipe might enable33

effective online RL with much fewer samples34

than current methods that learn from scratch.35

Many algorithms for offline RL have been ap-36

plied to online fine-tuning. Empirical results37

across such works suggest a counter-intuitive trend: policy initializations obtained from more ef-38

fective offline RL methods tend to exhibit worse online fine-tuning performance, even within the39

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

same task (see Table 2 of [31] & Figure 4 of [57]). On the other end, online RL methods training40

from scratch (or RL from demonstrations [53], where the replay buffer is seeded with the offline41

data) seem to improve online at a significantly faster rate. But these online methods require actively42

collecting data by rolling out policies from scratch, which inherits similar limitations to naïve online43

RL methods in problems where data collection is expensive or dangerous. Overall, these results44

suggest that it is challenging to devise an offline RL algorithm that both acquires a good initialization45

from prior data and also enables efficient fine-tuning.46

How can we devise a method to learn an effective policy initialization that also improves during47

fine-tuning? Prior work [32, 6] shows that one can learn a good offline initialization by optimizing48

the policy against a conservative value function obtained from an offline dataset. But, as we show in49

Section 4.1, conservatism alone is insufficient for efficient online fine-tuning. Conservative methods50

often tend to “unlearn” the policy initialization learned from offline data and waste samples collected51

via online interaction in recovering this initialization. We find that the “unlearning” phenomenon is a52

consequence of the fact that value estimates produced via conservative methods can be significantly53

lower than the ground-truth return of any valid policy. Having Q-value estimates that do not lie54

on a similar scale as the return of a valid policy is problematic. Because once fine-tuning begins,55

actions executed in the environment for exploration that are actually worse than the policy learned56

from offline data could erroneously appear better, if their ground-truth return value is larger than the57

learned conservative value estimate. Hence, subsequent policy optimization will degrade the policy58

performance until the method recovers.59

If we can ensure that the conservative value estimates learned using the offline data are calibrated,60

meaning that these estimates are on a similar scale as the true return values, then we can avoid the61

unlearning phenomenon caused by conservative methods (see the formal definition in 4.1). Of course,62

we cannot enforce such a condition perfectly, since it would require eliminating all errors in the value63

function. Instead, we devise a method for ensuring that the learned values upper bound the true values64

of some reference policy whose values can be estimated more easily (e.g., the behavior policy), while65

still lower bounding the values of the learned policy. Though this does not perfectly ensure that the66

learned values are correct, we show that it still leads to sample-efficient online fine-tuning. Thus,67

our practical method, calibrated Q-learning (Cal-QL), learns conservative value functions that are68

“calibrated” against the behavior policy, via a simple modification to existing conservative methods.69

The main contribution of this paper is Cal-QL, a method for acquiring an offline initialization that70

facilitates online fine-tuning. Cal-QL aims to learn conservative value functions that are calibrated71

with respect to a reference policy (e.g., the behavior policy). Our analysis of Cal-QL shows that72

Cal-QL attains stronger guarantees on cumulative regret during fine-tuning. In practice, Cal-QL73

can be implemented on top of conservative Q-learning [32], a prior offline RL method, without74

any additional hyperparameters. We evaluate Cal-QL across a range of benchmark tasks from [10],75

[51] and [44], including robotic manipulation and navigation. We show that Cal-QL matches or76

outperforms the best methods on all tasks, in some cases by 30-40%.77

2 Related Work78

Several prior works suggest that online RL methods typically require a large number of samples [50,79

54, 61, 26, 64, 18, 38] to learn from scratch. We can utilize offline data to accelerate online80

RL algorithms. Prior works do this in a variety of ways: incorporating the offline data into the81

replay buffer of online RL [48, 53, 23, 52], utilizing auxiliary behavioral cloning losses with policy82

gradients [46, 27, 67, 66], or extracting a high-level skill space for downstream online RL [17, 1].83

While these methods improve the sample efficiency of online RL from scratch, as we will also show84

in our results, they do not eliminate the need to actively roll out poor policies for data collection.85

To address this issue, a different line of work first runs offline RL for learning a good policy and value86

initialization from the offline data, followed by online fine-tuning [45, 30, 41, 3, 56, 36, 42]. These87

approaches typically employ offline RL methods based on policy constraints or pessimism [12, 49, 16,88

15, 30, 51, 36] on the offline data, then continue training with the same method on a combination of89

offline and online data once fine-tuning begins [43, 28, 62, 32, 4]. Although pessimism is crucial for90

offline RL [25, 6], using pessimism or constraints for fine-tuning [45, 30, 41] slows down fine-tuning91

or leads to initial unlearning, as we will show in Section 4.1. In effect, these prior methods either92

fail to improve as fast as online RL or lose the initialization from offline RL. We aim to address this93

limitation by understanding some conditions on the offline initialization that enable fast fine-tuning.94

Our work is most related to methods that utilize a pessimistic RL algorithm for offline training but95

incorporate exploration in fine-tuning [36, 42, 56]. In contrast to these works, our method aims to96

2

learn a better offline initialization that enables standard online fine-tuning. Our approach fine-tunes97

naïvely without ensembles [36] or exploration [42] and, as we show in our experiments, this alone is98

enough to outperform approaches that employ explicit optimism during data collection.99

3 Preliminaries and Background100

The goal in RL is to learn the optimal policy for an MDP M = (S,A, P, r, ρ, γ). S,A denote101

the state and action spaces. P (s′|s, a) and r(s, a) are the dynamics and reward functions. ρ(s)102

denotes the initial state distribution. γ ∈ (0, 1) denotes the discount factor. Formally, the goal is103

to learn a policy π : S 7→ A that maximizes cumulative discounted value function, denoted by104

V π(s) = 1
1−γ

∑
t Eat∼π(st) [γ

tr(st, at)|s0 = s]. The Q-function of a given policy π is defined as105

Qπ(s, a) = 1
1−γ

∑
t Eat∼π(st) [γ

tr(st, at)|s0 = s, a0 = a], and we use Qπ
θ to denote the estimate106

of the Q-function of a policy π as obtained via a neural network with parameters θ.107

Given access to an offline dataset D = {(s, a, r, s′)} collected using a behavior policy πβ , we aim108

to first train a good policy and value function using the offline dataset D alone, followed by an109

online phase that utilizes online interaction in M. Our goal during fine-tuning is to obtain the110

optimal policy with the smallest number of online samples. This can be expressed as minimizing the111

cumulative regret over rounds of online interaction: Reg(K) := Es∼ρ
∑K

k=1

[
V ⋆(s)− V πk

(s)
]
.112

As we demonstrate in Section 7, existing methods face challenges in this setting.113

Our approach will build on the conservative Q-learning (CQL) [32] algorithm. CQL imposes an114

additional regularizer that penalizes the learned Q-function on out-of-distribution (OOD) actions115

while compensating for this pessimism on actions seen within the training dataset. Assuming that the116

value function is represented by a function, Qθ, the training objective of CQL is given by117

min
θ

α (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸
Conservative regularizerR(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
, (3.1)

where BπQ̄(s, a) is the backup operator applied to a delayed target Q-network, Q̄: BπQ̄(s, a) :=118

r(s, a) + γEa′∼π(a′|s′)[Q̄(s′, a′)]. The second term is the standard TD error [40, 13, 20]. The first119

term R(θ) (in blue) is a conservative regularizer that aims to prevent overestimation in the Q-values120

for OOD actions by minimizing the Q-values under the policy π(a|s), and counterbalances by121

maximizing the Q-values of the actions in the dataset following the behavior policy πβ .122

4 When Can Offline RL Initializations Enable Fast Online Fine-Tuning?123

A starting point for offline pre-training and online fine-tuning is to simply initialize the value function124

with one that is produced by an existing offline RL method and then perform fine-tuning. However,125

we empirically find that initializations learned by many offline RL algorithms can perform poorly126

during fine-tuning. We will study the reasons for this poor performance for the subset of conservative127

methods to motivate and develop our approach for online fine-tuning, calibrated Q-learning.128

4.1 Empirical Analysis129

0 1 2 3 4 5

Environment Steps ×104

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

CQL

IQL

AWAC

TD3+BC

Figure 2: Multiple prior offline RL al-
gorithms suffer from difficulties during
fine-tuning including poor asymptotic per-
formance and initial unlearning.

Offline RL followed by online fine-tuning typically poses130

non-trivial challenges for a variety of methods. While analy-131

sis in prior work [45] notes challenges for a subset of offline132

RL methods, in Figure 2, we evaluate the fine-tuning perfor-133

mance of a variety of prior offline RL methods (CQL [32],134

IQL [30], TD3+BC [11], AWAC [45]) on a particular diag-135

nostic instance of a visual pick-and-place task with a dis-136

tractor object and sparse binary rewards [51], and find that137

all methods struggle to attain the best possible performance,138

quickly. More details about this task are in Appendix D.139

While the offline Q-function initialization obtained from all140

methods attains a similar (normalized) return of around 0.5,141

they suffer from difficulties during fine-tuning: TD3+BC,142

IQL, AWAC attain slow asymptotic performance and CQL unlearns the offline initialization, followed143

by spending a large amount of online interaction to recover the offline performance again, before any144

further improvement. This initial unlearning appears in multiple tasks as we show in Appendix H. In145

this work, we focus on developing effective fine-tuning strategies on top of conservative methods like146

CQL. To do so, we next aim to understand the potential reason behind the initial unlearning in CQL.147

3

0 100000 200000

Training Steps

−40

−30

−20

−10

0

A
ve

ra
ge

Q
-V

a
lu

e

0 100000 200000

Training Steps

0.00

0.25

0.50

0.75

1.00

N
o
rm

a
li

ze
d

S
co

re

Figure 3: The evolution of the average Q-value and the success
rate of CQL over the course of offline pre-training and online
fine-tuning. Fine-tuning begins at 50K steps. The red-colored part
denotes the period of performance recovery which also coincides
with the period of Q-value adjustment.

Why does CQL unlearn initially?148

To understand why CQL unlearns ini-149

tially, we inspect the learned Q-values150

averaged over the dataset in Figure 3.151

Observe that the Q-values learned by152

CQL in the offline phase are much153

smaller than their ground-truth value154

(as expected), but these Q-values dras-155

tically jump and adjust in scale when156

fine-tuning begins. In fact, we observe157

that performance recovery (red seg-158

ment in Figure 3) coincides with a159

period where the range of Q-values160

changes to match the true range. This161

is as expected: as a conservative Q-function experiences new online data, actions much worse than162

the offline policy on the rollout states appear to attain higher rewards compared to the highly under-163

estimated offline Q-function, which in turn deceives the policy optimizer into unlearning the initial164

policy. We illustrate this idea visually in Figure 4. Once the Q-function has adjusted and the range of165

Q-values closely matches the true range, then fine-tuning can proceed normally, after the dip.166

To summarize, our empirical analysis indicates that methods existing fine-tuning methods suffer167

from difficulties such as initial unlearning or poor asymptotic performance. In particular, we observed168

that conservative methods can attain good asymptotic performance, but “waste” samples to correct the169

learned Q-function. Thus, in this paper, we attempt to develop a good fine-tuning method that builds170

on top of an existing conservative offline RL method, CQL, but aims to “calibrate” the Q-function so171

that the initial dip in performance can be avoided.172

4.2 Conditions on the Offline Initialization that Enable Fast Fine-Tuning173

Our observations from the preceding discussion motivate two conclusions in regard to the offline174

Q-initialization for fast fine-tuning: (a) methods that learn conservative Q-functions can attain good175

asymptotic performance, and (b) if the learned Q-values closely match the range of ground-truth176

Q-values on the task, then online fine-tuning does not need to devote samples to unlearn and then177

recover the offline initialization. One approach to formalize this intuition of Q-values lying on a178

similar scale as the ground-truth Q-function is via the requirement that the conservative Q-values179

learned by the conservative offline RL method must be lower-bounded by the ground-truth Q-value of180

a sub-optimal reference policy. This will prevent conservatism from learning overly small Q-values.181

We will refer to this property as “calibration” with respect to the reference policy.182

Definition 4.1 (Calibration). An estimated Q-function Qπ
θ for a given policy π is said to be calibrated183

with respect to a reference policy µ if Ea∼π [Q
π
θ (s, a)] ≥ Ea∼µ [Q

µ(s, a)] := V µ(s),∀s ∈ D.184

If the learned Q-function Qπ
θ is calibrated with respect to a policy µ that is worse than π, it would185

prevent unlearning during fine-tuning that we observed in the case of CQL. This is because the186

policy optimizer would not unlearn π in favor of a policy that is worse than the reference policy187

µ upon observing new online data as the expected value of π is constrained to be larger than V µ:188

Ea∼π [Q
π
θ (s, a)] ≥ V µ(s). Our practical approach Cal-QL will enforce calibration with respect to189

a policy µ whose ground-truth value, V µ(s), can be estimated reliably without bootstrapping error190

(e.g., the behavior policy induced by the dataset). This is the key idea behind our method (as we will191

discuss next) and is visually illustrated in Figure 4.192

5 Cal-QL: Calibrated Q-Learning193

Our approach, calibrated Q-learning (Cal-QL) aims to learn a conservative and calibrated value194

function initializations from an offline dataset. To this end, Cal-QL builds on CQL [32] and then195

constrains the learned Q-function to produce Q-values larger than the Q-value of a reference policy µ196

per Definition 4.1. In principle, our approach can utilize many different choices of reference policies,197

but for developing a practical method, we simply utilize the behavior policy as our reference policy.198

Calibrating CQL. We can constrain the learned Q-function Qπ
θ to be larger than V µ via a simple199

change to the CQL training objective shown in Equation 3.1: masking out the push down of the200

learned Q-value on out-of-distribution (OOD) actions in CQL if the Q-function is not calibrated, i.e.,201

if Ea∼π [Q
π
θ (s, a)] ≤ V µ(s). Cal-QL modifies the CQL regularizer, R(θ) in this manner:202

Es∼D,a∼π [max (Qθ(s, a), V
µ(s))]− Es,a∼D [Qθ(s, a)] , (5.1)

4

where the changes from standard CQL are depicted in red. As long as α (in Equation 3.1) is large, for203

any state-action pair where the learned Q-value is smaller than Qµ, the Q-function in Equation 5.1204

will upper bound Qµ in a tabular setting. Of course, as with any practical RL method, with function205

approximators and gradient-based optimizers, we cannot guarantee that we can enforce this condition206

for every state-action pair, but in our experiments, we find that Equation 5.1 is sufficient to enforce207

the calibration in expectation over the states in the dataset.208

C
al
-Q

L

online
updateC

Q
L

action

learned Q-functionground truth values

Pre-trained Q-function Online fine-tuned Q-function

action during
exploration

bad action appears
optimal

under learned
Q-function

dataset

bad action doesn’t
 appear optimal
under learned

Q-function

action during
exploration

online
update

Figure 4: Intuition behind policy unlearning with CQL and
the idea behind Cal-QL. The plot visualizes a slice of the learned
Q-function and the ground-truth values for a given state. Erroneous
peaks on suboptimal actions (x-axis) arise when updating CQL
Q-functions with online data. This in turn can lead the policy to
deviate away from high-reward actions covered by the dataset in
favor of erroneous new actions, resulting in deterioration of the
pre-trained policy. In contrast, Cal-QL corrects the scale of the
learned Q-values by using a reference value function, such that
actions with worse Q-values than the reference value function do
not erroneously appear optimal in fine-tuning.

Pseudo-code and implementation209

details. Our implementation of Cal-210

QL directly builds on the implemen-211

tation of CQL from Geng [14]. We212

present a pseudo-code for Cal-QL in213

Algorithm 1. Additionally, we list the214

hyperparameters α for the CQL algo-215

rithm and our baselines for each suite216

of tasks in Appendix E. Following the217

protocol in prior work [30, 52], the218

practical implementation of Cal-QL219

trains on a mixture of the offline data220

and the new online data, weighted in221

some proportion during fine-tuning.222

To get V µ(s), we can fit a function223

approximator Qµ
θ or V µ

θ to the return-224

to-go values via regression, but we225

observed that also simply utilizing the226

return-to-go estimates for tasks that227

end in a terminal was sufficient for228

our use case. We show in Section 7,229

how this simple one-line change to the objective drastically improves over prior fine-tuning results.230

6 Theoretical Analysis of Cal-QL231

We will now analyze the cumulative regret attained over online fine-tuning, when the value function232

is pre-trained with Cal-QL, and show that enforcing calibration (Defintion 4.1) leads to a favorable233

regret bound during the online phase. Our analysis utilizes tools from Song et al. [52], but studies the234

impact of calibration on fine-tuning. We also remark that we simplify the treatment of certain aspects235

(e.g., how to incorporate pessimism) as it allows us to cleanly demonstrate benefits of calibration.236

Notation & terminology. In our analysis, we will consider an idealized version of Cal-QL for237

simplicity. Specifically, following prior work [52] under the bilinear model [9], we will operate238

in a finite-horizon setting with a horizon H . We denote the learned Q-function at each learning239

iteration k for a given (s, a) pair and time-step h by Qk
θ(s, a). For any given policy π, let Cπ ≥ 1240

denote the concentrability coefficient such that Cπ := maxf∈C

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s,a)−fh(s,a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s,a)−fh(s,a))2

,241

i.e., a coefficient that quantifies the distribution shift between the policy π and the dataset D, in242

terms of the ratio of Bellman errors averaged under π and the dataset D. Note that C represents243

the Q-function class and we assume C has a bellman-bilinear rank [9] of d. We also use Cµ
π to244

denote the concentrability coefficient over a subset of calibrated Q-functions w.r.t. a reference policy245

µ: Cµ
π := maxf∈C,f(s,a)≥Qµ(s,a)

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s,a)−fh(s,a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s,a)−fh(s,a))2

, which provides Cµ
π ≤ Cπ.246

Similar to C, let dµ denote the bellman bilinear rank of Cµ – the calibrated Q-function class w.r.t. the247

reference policy µ. Intuitively, we have Cµ ⊂ C, which implies that dµ ≤ d. The formal definitions248

are provided in Appendix B.2. We will use πk to denote the arg-max policy induced by Qk
θ .249

Intuition. We intuitively discuss how calibration and conservatism enable Cal-QL to attain a smaller250

regret compared to not imposing calibration. Our goal is to bound the cumulative regret of online251

fine-tuning,
∑

k Es0∼ρ[V
π⋆

(s0)− V πk

(s0)]. We can decompose this expression into two terms:252

Reg(K) =
K∑

k=1

Es0∼ρ

[
V ⋆(s0)−max

a
Qk

θ(s0, a)
]

︸ ︷︷ ︸
(i) := miscalibration

+
K∑

k=1

Es0∼ρ

[
max

a
Qk

θ(s0, a)− V πk

(s0)
]

︸ ︷︷ ︸
(ii) := overestimation

. (6.1)

5

This decomposition of regret into terms (i) and (ii) is instructive. Term (ii) corresponds to the amount253

of over-estimation in the learned value function, which is expected to be small if a conservative RL254

algorithm is used for training. Term (i) is the difference between the ground-truth value of the optimal255

policy and the learned Q-function and is negative if the learned Q-function were calibrated against256

the optimal policy (per Definition 4.1). Of course, this is not always possible because we do not know257

V ⋆ a priori. But note that when Cal-QL utilizes a reference policy µ with a high value V µ, close to258

V ⋆, then the learned Q-function Qθ is calibrated with respect to Qµ per Condition 4.1 and term (i)259

can still be controlled. Therefore, controlling this regret requires striking a balance between learning260

a calibrated (term (i)) and conservative (term (ii)) Q-function. We now formalize this intuition and261

defer the detailed proof to Appendix B.6.262

Theorem 6.1 (Informal regret bound of Cal-QL). With high probability, Cal-QL obtains the following263

bound on total regret accumulated during online fine-tuning:264

Reg(K) = Õ
(
min

{
Cµ

π⋆H
√

dK log (|F|), KEρ[V
⋆(s0)− V µ(s0)] +H

√
dµK log (|F|)

})
,

where F is the functional class of the Q-function.265

Comparison to Song et al. [52]. Song et al. [52] analyzes an online RL algorithm that utilizes offline266

data without imposing conservatism or calibration. We now compare Theorem 6.1 to Theorem 1 of267

Song et al. [52] to understand the impact of these conditions on the final regret guarantee. Theorem 1268

of Song et al. [52] presents a regret bound: Reg(K) = Õ
(
Cπ⋆H

√
dK log (|F|)

)
and we note some269

improvements in our guarantee, that we also verify via experiments in Section 7.3: (a) for the setting270

where the reference policy µ contains near-optimal behavior, i.e., V ⋆−V µ ≲ O(H
√
d log (|F|) /K),271

Cal-QL can enable a tighter regret guarantee compared to Song et al. [52]; (b) as we show in272

Appendix B.3, the concentrability coefficient Cµ
π⋆ appearing in our guarantee is no larger than the273

one that appears in Theorem 1 of Song et al. [52], providing another source of improvement; and (c)274

finally, in the case where the reference policy has broad coverage and is highly sub-optimal, Cal-QL275

reverts back to the guarantee from [52], meaning that Cal-QL improves upon this prior work.276

7 Experimental Evaluation277

The goal of our experimental evaluation is to study how well Cal-QL can facilitate sample-efficient278

online fine-tuning. To this end, we compare Cal-QL with several other state-of-the-art fine-tuning279

methods on a variety of offline RL benchmark tasks from D4RL [10], Singh et al. [51], and Nair280

et al. [45], evaluating performance before and after fine-tuning. We also study the effectiveness of281

Cal-QL on higher-dimensional tasks, where the policy and value function must process raw image282

observations. Finally, we perform empirical studies to understand the efficacy of Cal-QL with283

different dataset compositions and the impact of errors in the reference value function estimation.284

Figure 5: Tasks: We evaluate Cal-QL on a diverse set
of benchmark problems: AntMaze and Frankakitchen
domains from [10], Adroit tasks from [45] and a vision-
based robotic manipulation task from [34].

Offline RL tasks and datasets. We evaluate285

Cal-QL on a number of benchmark tasks and286

datasets used by prior works [30, 45] to evalu-287

ate fine-tuning performance: (1) The AntMaze288

tasks from D4RL [10] that require controlling289

an ant quadruped robot to navigate from a start-290

ing point to a desired goal location in a maze.291

The reward is +1 if the agent reaches within a292

pre-specified small radius around the goal and293

0 otherwise. (2) The FrankaKitchen tasks from D4RL require controlling a 9-DoF Franka robot294

to attain a desired configuration of a kitchen. To succeed, a policy must complete four sub-tasks295

in the kitchen within a single rollout, and it receives a binary reward of +1/0 for every sub-task296

it completes. (3) Three Adroit dexterous manipulation tasks [47, 30, 45] that require learning297

complex manipulation skills on a 28-DoF five-fingered hand to (a) manipulate a pen in-hand to a298

desired configuration (pen-binary), (b) open a door by unlatching the handle (door-binary), and299

(c) relocating a ball to a desired location (relocate-binary). The agent obtains a sparse binary300

+1/0 reward if it succeeds in solving the task. Each of these tasks only provides a narrow offline301

dataset consisting of 25 demonstrations collected via human teleoperation and additional trajectories302

collected by a BC policy. Finally, to evaluate the efficacy of Cal-QL on a task where we learn from303

raw visual observations, we study (4) a pick-and-place task from prior work [51, 34] that requires304

learning to pick a ball and place it in a bowl, in the presence of distractors.305

6

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re
antmaze-large-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-large-play-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-play-v2

Cal-QL (Ours)

IQL

CQL

Hybrid RL

SAC

AWAC

O3F

ODT

SAC + offline data

CQL + SAC

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-large-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-large-play-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-play-v2

Cal-QL (Ours)

IQL

CQL

Hybrid RL

SAC

AWAC

O3F

ODT

SAC + offline data

CQL + SAC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-partial-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-complete-v0

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

visual-manipulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

pen-binary-v0

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
S

co
re

door-binary-v0

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

relocate-binary-v0

Figure 6: Online fine-tuning after offline initialization on the benchmark tasks. The plots show the online
fine-tuning phase after pre-training for each method (except SAC-based approaches which are not pre-trained).
Observe that Cal-QL consistently matches or exceeds the speed and final performance of the best prior method
and is the only algorithm to do so across all tasks. (6 seeds)

Comparisons, prior methods, and evaluation protocol. We compare Cal-QL to running online306

SAC [21] from scratch, as well as prior approaches that leverage offline data. This includes naïvely307

fine-tuning offline RL methods such as CQL [32] and IQL [30], as well as fine-tuning with AWAC [45],308

O3F [42] and online decision transformer (ODT) [65], methods specifically designed for offline RL309

followed by online fine-tuning. In addition, we also compare to a baseline that trains SAC [21] using310

both online data and offline data (denoted by “SAC + offline data”) that mimics DDPGfD [53] but311

utilizes SAC instead of DDPG. We also compare to Hybrid RL [52], a recently proposed method312

that improves the sample efficiency of the “SAC + offline data” approach, and “CQL+SAC”, which313

first pre-train with CQL and then run fine-tuning with SAC on a mixture of offline and online data314

without conservatism. More details of each method can be found in Appendix E. We present learning315

curves for online fine-tuning and also quantitatively evaluate each method on its ability to improve the316

initialization learned from offline data measured in terms of (i) final performance after a pre-defined317

number of steps per domain and (ii) the cumulative regret over the course of online fine-tuning. In318

Section 7.2, we run Cal-QL with a higher update-to-data (UTD) ratio and compare it to RLPD [2], a319

more sample-efficient version of “SAC + offline data”.320

7.1 Empirical Results321

We first present a comparison of Cal-QL in terms of the normalized performance before and after322

fine-tuning in Table 1 and the cumulative regret in a fixed number of online steps in Table 2. Following323

the protocol of [10], we normalize the average return values for each domain with respect to the324

highest possible return (+4 in FrankaKitchen; +1 in other tasks; see Appendix E.1 for more details).325

Cal-QL improves the offline initialization significantly. Observe in Table 1 and Figure 6 that while326

the performance of offline initialization acquired by Cal-QL is comparable to that of other methods327

such as CQL and IQL, Cal-QL is able to improve over its offline initialization the most by 106.9% in328

aggregate and achieve the best fine-tuned performance in 9 out of 11 tasks.329

Cal-QL enables fast fine-tuning. Observe in Table 2 that Cal-QL achieves the smallest regret on 8330

out of 11 tasks, attaining an average regret of 0.22 which improves over the next best method (IQL)331

by 42%. Intuitively, this means that Cal-QL does not require running highly sub-optimal policies. In332

tasks such as relocate-binary, Cal-QL enjoys the fast online learning benefits associated with333

naïve online RL methods that incorporate the offline data in the replay buffer (SAC + offline data334

and Cal-QL are the only two methods to attain a score of ≥ 90% on this task) unlike prior offline RL335

methods. As shown in Figure 6, in the kitchen and antmaze domains, Cal-QL brings the benefits336

7

of fast online learning together with a good offline initialization, improving drastically on the regret337

metric. Finally, observe that the initial unlearning at the beginning of fine-tuning with conservative338

methods observed in Section 4.1 is greatly alleviated in all tasks (see Appendix H for details).339

Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid SRL SAC+od SAC Cal-QL (Ours)
large-diverse 25→ 87 40→ 59 00→ 00 59→ 28 00→ 01 36→ 00 → 00 → 00 → 00 33→ 95
large-play 34→ 76 41→ 51 00→ 00 68→ 01 00→ 00 21→ 00 → 00 → 00 → 00 26→ 90
medium-diverse 65→ 98 70→ 92 00→ 00 92→ 97 00→ 03 64→ 98 → 02 → 68 → 00 75→ 98
medium-play 62→ 98 72→ 94 00→ 00 89→ 99 00→ 05 67→ 98 → 25 → 96 → 00 54→ 97
partial 71→ 75 40→ 60 01→ 13 11→ 22 - 71→ 00 → 00 → 07 → 03 67→ 79
mixed 56→ 50 48→ 48 02→ 12 06→ 33 - 59→ 01 → 01 → 00 → 02 38→ 80
complete 13→ 34 57→ 50 01→ 08 17→ 41 - 21→ 06 → 00 → 05 → 06 22→ 68
pen 55→ 13 88→ 92 88→ 92 91→ 89 - 48→ 10 → 54 → 17 → 11 79→ 99
door 22→ 88 41→ 88 29→ 13 04→ 08 - 29→ 66 → 88 → 39 → 17 35→ 92
relocate 06→ 69 06→ 45 06→ 08 03→ 35 - 01→ 00 → 99 → 16 → 00 03→ 98
manipulation 50→ 97 49→ 81 50→ 73 - - 42→ 41 → 00 → 01 → 01 49→ 99
average 42→ 71 50→ 69 16→ 20 44→ 45 00→ 02 42→ 29 → 24 → 23 → 04 44→ 90
improvement + 71.0% + 37.7% + 23.7% + 3.0% N/A - 30.3% N/A N/A N/A + 106.9%

a
Table 1: Normalized score before & after online fine-tuning. Observe that Cal-QL improves over the
best prior fine-tuning method and attains a much larger performance improvement over the course of online
fine-tuning. The numbers represent the normalized score out of 100 following the convention in [10].

Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid RL SAC+od SAC Cal-QL (Ours)
large-diverse 0.35 0.46 1.00 0.62 0.98 0.99 1.00 1.00 1.00 0.20
large-play 0.32 0.52 1.00 0.91 1.00 0.99 1.00 1.00 1.00 0.28
medium-diverse 0.06 0.08 0.99 0.03 0.95 0.06 0.98 0.77 1.00 0.05
medium-play 0.09 0.10 0.99 0.04 0.96 0.06 0.90 0.47 1.00 0.07
partial 0.31 0.49 0.89 0.78 - 0.97 0.98 0.98 0.92 0.27
mixed 0.55 0.60 0.88 0.72 - 0.97 0.99 1.00 0.91 0.27
complete 0.70 0.53 0.97 0.66 - 0.99 0.99 0.96 0.91 0.44
pen 0.86 0.11 0.12 0.13 - 0.90 0.56 0.75 0.87 0.11
door 0.36 0.25 0.81 0.82 - 0.23 0.35 0.60 0.94 0.23
relocate 0.71 0.74 0.95 0.71 - 0.86 0.30 0.89 1.00 0.43
manipulation 0.15 0.32 0.38 - - 0.61 1.00 1.00 0.99 0.11
average 0.41 0.38 0.82 0.54 0.97 0.69 0.82 0.86 0.96 0.22

Table 2: Cumulative regret averaged over the steps of fine-tuning. The smaller the better and 1.00 is the
worst. Cal-QL attains the smallest overall regret, achieving the best performance among 8 / 11 tasks.

7.2 Cal-QL With High Update-to-Data (UTD) Ratio340

We can further enhance the online sample efficiency of Cal-QL by increasing the number of gradient341

steps per environment step made by the algorithm. The number of updates per environment step is342

usually called the update-to-data (UTD) ratio. In standard online RL, running off-policy Q-learning343

with a high UTD value (e.g., 20, compared to the typical value of 1) often results in challenges344

pertaining to overfitting [39, 5, 2, 8]. As expected, we noticed that running Cal-QL with a high345

UTD value also leads these overfitting challenges. To address these challenges in high UTD settings,346

we combine Cal-QL with the Q-function architecture in recent work, RLPD [2] (i.e., we utilized347

layer normalization in the Q-function and ensembles akin to [5]), that attempts to tackle overfitting348

challenges. Note that Cal-QL still first pre-trains on the offline dataset using Equation 5.1 followed349

by online fine-tuning, unlike RLPD that runs online RL right from the start. In Figure 7, we compare350

Cal-QL (UTD = 20) with RLPD [2] (UTD = 20) and also Cal-QL (UTD = 1) as a baseline. Observe351

that Cal-QL (UTD = 20) improves over Cal-QL (UTD = 1) and training from scratch (RLPD).352

7.3 Understanding the Behavior of Cal-QL353

In this section, we aim to understand the behavior of Cal-QL by performing controlled experiments354

that modify the dataset composition, and by investigating various metrics to understand the properties355

of scenarios where utilizing Cal-QL is especially important for online fine-tuning.356

Effect of data composition. To understand the efficacy of Cal-QL with different data compositions,357

we ran it on a newly constructed fine-tuning task on the medium-size AntMaze domain with a358

low-coverage offline dataset, which is generated via a scripted controller that starts from a fixed359

initial position and navigates the ant to a fixed goal position. In Figure 8, we plot the performance of360

Cal-QL and baseline CQL (for comparison) on this task, alongside the trend of average Q-values361

over the course of offline pre-training (to the left of the dashed vertical line, before 250 training362

epochs) and online fine-tuning (to the right of the vertical dashed line, after 250 training epochs),363

and the trend of bounding rate, i.e., the fraction of transitions in the data-buffer for which the364

constraint in Cal-QL actively lower-bounds the learned Q-function with the reference value. For365

comparison, we also plot these quantities for a diverse dataset with high coverage on the task (we use366

the antmaze-medium-diverse from [10] as a representative diverse dataset) in Figure 8.367

8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-large-diverse-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-large-play-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-diverse-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

antmaze-medium-play-v2

Cal-QL (UTD=20) Cal-QL (UTD=1) RLPD (UTD=20)

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

pen-binary-v0

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

door-binary-v0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

relocate-binary-v0

Figure 7: Cal-QL with UTD=20. Incorporating design choices from RLPD enables Cal-QL to achieve
sample-efficient fine-tuning with UTD=20. Specifically, Cal-QL generally attains similar or higher asymptotic
performance as RLPD, while also exhibiting a smaller cumulative regret.

Observe that for the diverse dataset, both naïve CQL and Cal-QL perform similarly, and indeed, the368

learned Q-values behave similarly for both of these methods. In this setting, online learning doesn’t369

spend samples to correct the Q-function when fine-tuning begins leading to a low bounding rate,370

almost always close to 0. Instead, with the narrow dataset, we observe that the Q-values learned by371

naïve CQL are much smaller, and are corrected once fine-tuning begins. This correction co-occurs372

with a drop in performance (solid blue line on left), and naïve CQL is unable to recover from this373

drop. Cal-QL which calibrates the scale of the Q-function for many more samples in the dataset,374

stably transitions to online fine-tuning with no unlearning (solid red line on left).375

Figure 8: Performance of Cal-QL with data compositions.
Cal-QL is most effective with narrow datasets, where Q-
values need to be corrected at the beginning of fine-tuning.

This suggests that in settings with narrow376

datasets (e.g., in the experiment above and377

in the adroit and visual-manipulation378

domains from Figure 6), Q-values learned379

by naïve conservative methods are more380

likely to be smaller than the ground-truth381

Q-function of the behavior policy due to382

function approximation errors. Hence uti-383

lizing Cal-QL to calibrate the Q-function384

against the behavior policy can be signifi-385

cantly helpful. On the other hand, with sig-386

nificantly high-coverage datasets, especially387

in problems where the behavior policy is also random and sub-optimal, Q-values learned by naïve388

methods are likely to already be calibrated with respect to those of the behavior policy. Therefore389

no explicit calibration might be needed (and indeed, the bounding rate tends to be very close to 0390

as shown in Figure 8). In this case, Cal-QL will revert back to standard CQL, as we observe in the391

case of the diverse dataset above. This intuition is also reflected in Theorem 6.1: when the reference392

policy µ is close to a narrow, expert policy, we would expect Cal-QL to be especially effective in393

controlling the efficiency of online fine-tuning. We also present a diagnostic study of Cal-QL when394

the reference value function is estimated by fitting a neural network in Appendix G, and find395

that estimation errors in this model of the reference function do not affect performance significantly.396

8 Discussion, Future Directions, and Limitations397

In this work we developed Cal-QL a method for acquiring conservative offline initializations that398

facilitate fast online fine-tuning. Cal-QL learns conservative value functions that are constrained to be399

larger than the value function of a reference policy. This form of calibration allows us to avoid initial400

unlearning when fine-tuning with conservative methods, while also retaining the effective asymptotic401

performance that these methods exhibit. Our theoretical and experimental results highlight the benefit402

of Cal-QL in enabling fast online fine-tuning. While Cal-QL outperforms prior methods, we believe403

that we can develop even more effective methods by adjusting calibration and conservatism more404

carefully. A limitation of our work is that we do not consider fine-tuning setups where pre-training405

and fine-tuning tasks are different, but this is an interesting avenue for future work.406

9

References407

[1] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery408

for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.409

[2] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with410

offline data. arXiv preprint arXiv:2302.02948, 2023.411

[3] A. Beeson and G. Montana. Improving td3-bc: Relaxed policy constraint for offline learning412

and stable online fine-tuning. arXiv preprint arXiv:2211.11802, 2022.413

[4] J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset414

policy optimization. arXiv preprint arXiv:2009.06799, 2020.415

[5] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. Randomized ensembled double q-learning:416

Learning fast without a model. In International Conference on Learning Representations, 2021.417

URL https://openreview.net/forum?id=AY8zfZm0tDd.418

[6] C.-A. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially trained actor critic for offline419

reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.420

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional421

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.422

[8] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. Sample-423

efficient reinforcement learning by breaking the replay ratio barrier. In The Eleventh Inter-424

national Conference on Learning Representations, 2023. URL https://openreview.net/425

forum?id=OpC-9aBBVJe.426

[9] S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes: A427

structural framework for provable generalization in rl. In International Conference on Machine428

Learning, pages 2826–2836. PMLR, 2021.429

[10] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven430

reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.431

[11] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. arXiv432

preprint arXiv:2106.06860, 2021.433

[12] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-434

ration. arXiv preprint arXiv:1812.02900, 2018.435

[13] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic436

methods. In International Conference on Machine Learning (ICML), pages 1587–1596, 2018.437

[14] X. Geng. Jaxcql: a simple implementation of sac and cql in jax. 2022. URL https://github.438

com/young-geng/JaxCQL.439

[15] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator440

for simple yet effective offline and online rl. In International Conference on Machine Learning,441

pages 3682–3691. PMLR, 2021.442

[16] Y. Guo, S. Feng, N. Le Roux, E. Chi, H. Lee, and M. Chen. Batch reinforcement learning443

through continuation method. In International Conference on Learning Representations, 2020.444

[17] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving445

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,446

2019.447

[18] A. Gupta, A. Pacchiano, Y. Zhai, S. M. Kakade, and S. Levine. Unpacking reward shap-448

ing: Understanding the benefits of reward engineering on sample complexity. arXiv preprint449

arXiv:2210.09579, 2022.450

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum451

entropy deep reinforcement learning with a stochastic actor. In arXiv, 2018. URL https:452

//arxiv.org/pdf/1801.01290.pdf.453

[20] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,454

P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. Technical report, 2018.455

10

https://openreview.net/forum?id=AY8zfZm0tDd
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://github.com/young-geng/JaxCQL
https://github.com/young-geng/JaxCQL
https://github.com/young-geng/JaxCQL
https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,456

P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,457

2018.458

[22] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable459

vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern460

Recognition, pages 16000–16009, 2022.461

[23] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,462

A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Thirty-Second AAAI463

Conference on Artificial Intelligence, 2018.464

[24] C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of rl problems,465

and sample-efficient algorithms. Advances in neural information processing systems, 34:466

13406–13418, 2021.467

[25] Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline rl? In International468

Conference on Machine Learning, pages 5084–5096. PMLR, 2021.469

[26] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In470

International Conference on Machine Learning (ICML), volume 2, 2002.471

[27] B. Kang, Z. Jie, and J. Feng. Policy optimization with demonstrations. In International472

conference on machine learning, pages 2469–2478. PMLR, 2018.473

[28] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline474

reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.475

[29] I. Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.476

URL https://github.com/ikostrikov/jaxrl.477

[30] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.478

arXiv preprint arXiv:2110.06169, 2021.479

[31] I. Kostrikov, J. Tompson, R. Fergus, and O. Nachum. Offline reinforcement learning with fisher480

divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.481

[32] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement482

learning. arXiv preprint arXiv:2006.04779, 2020.483

[33] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-Training for Robots: Offline484

RL Enables Learning New Tasks from a Handful of Trials. arXiv e-prints, art. arXiv:2210.05178,485

Oct. 2022. doi: 10.48550/arXiv.2210.05178.486

[34] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-training for robots: Offline487

rl enables learning new tasks from a handful of trials. arXiv preprint arXiv:2210.05178, 2022.488

[35] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.489

[36] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning490

via balanced replay and pessimistic q-ensemble. In Conference on Robot Learning, pages491

1702–1712. PMLR, 2022.492

[37] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,493

and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.494

[38] Q. Li, Y. Zhai, Y. Ma, and S. Levine. Understanding the complexity gains of single-task rl with495

a curriculum. arXiv preprint arXiv:2212.12809, 2022.496

[39] Q. Li, A. Kumar, I. Kostrikov, and S. Levine. Efficient deep reinforcement learning requires497

regulating overfitting. In The Eleventh International Conference on Learning Representations,498

2023. URL https://openreview.net/forum?id=14-kr46GvP-.499

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.500

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.501

[41] J. Lyu, X. Ma, X. Li, and Z. Lu. Mildly conservative q-learning for offline reinforcement502

learning. arXiv preprint arXiv:2206.04745, 2022.503

[42] M. S. Mark, A. Ghadirzadeh, X. Chen, and C. Finn. Fine-tuning offline policies with optimistic504

action selection. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.505

[43] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. Algaedice: Policy506

gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.507

11

https://github.com/ikostrikov/jaxrl
https://openreview.net/forum?id=14-kr46GvP-

[44] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with508

offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/abs/2006.09359.509

[45] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with510

offline datasets. arXiv preprint arXiv:2006.09359, 2020.511

[46] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.512

Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.513

arXiv preprint arXiv:1709.10087, 2017.514

[47] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.515

Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.516

In Robotics: Science and Systems, 2018.517

[48] S. Schaal. Learning from demonstration. Advances in neural information processing systems, 9,518

1996.519

[49] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,520

R. Hafner, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors for offline521

reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.522

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,523

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural524

networks and tree search. nature, 529(7587):484–489, 2016.525

[51] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to526

past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.527

[52] Y. Song, Y. Zhou, A. Sekhari, D. Bagnell, A. Krishnamurthy, and W. Sun. Hybrid RL:528

Using both offline and online data can make RL efficient. In The Eleventh International529

Conference on Learning Representations, 2023. URL https://openreview.net/forum?530

id=yyBis80iUuU.531

[53] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,532

and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics533

problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.534

[54] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,535

R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent536

reinforcement learning. Nature, 575(7782):350–354, 2019.537

[55] A. Wagenmaker and A. Pacchiano. Leveraging offline data in online reinforcement learning.538

arXiv preprint arXiv:2211.04974, 2022.539

[56] J. Wu, H. Wu, Z. Qiu, J. Wang, and M. Long. Supported policy optimization for offline540

reinforcement learning. arXiv preprint arXiv:2202.06239, 2022.541

[57] C. Xiao, H. Wang, Y. Pan, A. White, and M. White. The in-sample softmax for offline542

reinforcement learning. In International Conference on Learning Representations, 2023. URL543

https://openreview.net/forum?id=u-RuvyDYqCM.544

[58] T. Xie and N. Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical545

comparison. In Conference on Uncertainty in Artificial Intelligence, pages 550–559. PMLR,546

2020.547

[59] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal. Bellman-consistent pessimism for548

offline reinforcement learning. Advances in neural information processing systems, 34, 2021.549

[60] T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai. Policy finetuning: Bridging sample-efficient550

offline and online reinforcement learning. Advances in neural information processing systems,551

34:27395–27407, 2021.552

[61] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. Qiu, H. Yu, Y. Yin,553

B. Shi, L. Wang, T. Shi, Q. Fu, W. Yang, L. Huang, and W. Liu. Towards playing full moba554

games with deep reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.555

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,556

pages 621–632. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/557

paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf.558

[62] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based559

offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.560

12

https://arxiv.org/abs/2006.09359
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=u-RuvyDYqCM
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf

[63] A. Zanette, M. J. Wainwright, and E. Brunskill. Provable benefits of actor-critic methods561

for offline reinforcement learning. Advances in neural information processing systems, 34:562

13626–13640, 2021.563

[64] Y. Zhai, C. Baek, Z. Zhou, J. Jiao, and Y. Ma. Computational benefits of intermediate rewards564

for goal-reaching policy learning. Journal of Artificial Intelligence Research, 73:847–896, 2022.565

[65] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In International Conference566

on Machine Learning, pages 27042–27059. PMLR, 2022.567

[66] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep568

reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on569

Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.570

[67] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,571

N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv572

preprint arXiv:1802.09564, 2018.573

13

Appendices574

A Implementation details of Cal-QL575

Our algorithm, Cal-QL is illustrated in Algorithm 1. A complete implementation of the functions in576

python-style is provided in Appendix A.2.577

A.1 Cal-QL Algorithm578

We use JQ(θ) to denote the calibrated conservative regularizer for the Q network update:579

JQ(θ) := α (Es∼D,a∼π [max (Qθ(s, a), Q
µ(s, a))]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸

Calibrated conservative regularizerR(θ)

(A.1)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
. (A.2)

Algorithm 1 Cal-QL pseudo-code

1: Initialize Q-function, Qθ, a policy, πϕ

2: for step t in {1, . . . , N} do
3: Train the Q-function using the conservative regularizer

in Eq. A.1:

θt := θt−1 − ηQ∇θJQ(θ) (A.3)

4: Improve policy πϕ with SAC-style update:

ϕt := ϕt−1 + ηπEs∼D,a∼πϕ(·|s)[Qθ(s, a)−log πϕ(a|s)]
(A.4)

5: end for

580

A.2 Python Implementation581

Listing 1: Training Q networks given a batch of data
582

q_data = critic(batch[’observations ’], batch[’actions ’])583
584

next_dist = actor(batch[’next_observations ’])585
next_pi_actions , next_log_pis = next_dist.sample ()586

587
target_qval = target_critic(batch[’observations ’], next_pi_actions)588
target_qval = batch[’rewards ’] + self.gamma * (1 - batch[’dones’]) * target_qval589

590
td_loss = mse_loss(q_data , target_qval)591

592
num_samples = 4593
random_actions = uniform ((num_samples , batch_size , action_dim), min=-1, max=1)594
random_pi = 0.5 ** batch[’actions ’].shape[-1]595

596
pi_actions , log_pis = actor(batch[’observations ’])597

598
q_rand_is = critic(batch[’observations ’], random_actions) - random_pi599
q_pi_is = critic(batch[’observations ’], pi_actions) - log_pis600

601
Cal -QL’s modification602
mc_return = batch[’mc_return ’]. repeat(num_samples)603
q_pi_is = max(q_pi_is , mc_return)604

605
cat_q = concatenate ([q_rand_is , q_pi_is], new_axis=True)606
cat_q = logsumexp(cat_q , axis =0) # sum over num_samples607
critic_loss = td_loss + ((cat_q - q_data).mean() * cql_alpha)608

609
critic_optimizer.zero_grad ()610
critic_loss.backward ()611
critic_optimizer.step()612613

14

Listing 2: Training the policy (or the actor) given a batch of data
614

return distribution of actions615
pi_actions , log_pis = actor(batch[’observations ’])616

617
calculate q value of actor actions618
qpi = critic(batch[’observations ’], actions)619
qpi = qpi.min(axis =0)620

621
same objective as CQL (kumar et al.)622
actor_loss = (log_pis * self.alpha - qpi).mean()623

624
optimize loss625
actor_optimizer.zero_grad ()626
actor_loss.backward ()627
actor_optimizer.step()628629

B Regret Analysis of Cal-QL630

We provide a theoretical version of Cal-QL in Algorithm 2. Policy fine-tuning has been studied in631

different settings [60, 52, 55]. Our analysis largely adopts the settings and results in Song et al. [52],632

with additional changes in Assumption B.1, Assumption B.3, and Definition B.4. Note that the goal633

of this proof is to demonstrate that a pessimistic functional class (Assumption B.1) allows one to634

utilize the offline data efficiently, rather than providing a new analytical technique for regret analysis.635

See comparisons between Section B.3 and Section C.1. Note that we use f instead of Qθ in the main636

text to denote the estimated Q function for notation simplicity.637

Algorithm 2 Theoretical version of Cal-QL

1: Input: Value function class F , # total iterations K, offline dataset Dν
h of size moff for h ∈ [H−1].

2: Initialize f1
h(s, a) = 0,∀(s, a).

3: for k = 1, . . . ,K do
4: Let πt be the greedy policy w.r.t. fk ▷ I.e., πk

h(s) = argmaxa f
k
h (s, a).

5: For each h, collect mon online tuples Dk
h ∼ dπ

k

h ▷ online data collection
6: Set fk+1

H (s, a) = 0,∀(s, a).
7: for h = H − 1, . . . 0 do ▷ FQI with offline and online data
8: Estimate fk+1

h using conservative least squares on the aggregated data: ▷ I.e., CQL
regularized class Ch

f
k+1
h ← argmin

f∈Ch

{
ÊDν

h

[
f(s, a)− r −max

a′
f
k+1
h+1 (s

′
, a

′
)

]2

+

K∑
τ=1

ÊDτ
h

[
f(s, a)− r −max

a′
f
k+1
h+1 (s

′
, a

′
)

]2
}
(B.1)

9: fk+1
h = max{fk+1

h , Qref
h } ▷ Set a reference policy for calibration (Definition 4.1)

10: end for
11: end for
12: Output: πK

B.1 Preliminaries638

In this subsection, we follow most of the notations and definitions in Song et al. [52]. In particular,639

we consider the finite horizon cases, where the value function and Q function are defined as:640

V π
h (s) = E

[
H−1∑
τ=h

rτ |π, sh = s

]
(B.2)

Qπ
h(s, a) = E

[
H−1∑
τ=h

rτ |π, sh = s, ah = a

]
. (B.3)

We also define the Bellman operator T such that ∀f : S ×A:641

T f(s, a) = Es,a[R(s, a)] + Es′∼P (s,a) max
a′

f(s′, a′), ∀(s, a) ∈ S ×A, (B.4)

where R(s, a) ∈ ∆[0, 1] represents a stochastic reward function.642

15

B.2 Notations643

• Feature covariance matrix Σk;h:644

Σk;h =

k∑
τ=1

Xh(f
τ)(Xh(f

τ))⊤ + λI (B.5)

• Matrix Norm Zanette et al. [63]: for a matrix Σ, the matrix norm ∥u∥Σ is defined as:645

∥u∥Σ =
√
uΣu⊤ (B.6)

• Weighted ℓ2 norm: for a given distribution β ∈ ∆(S ×A) and a function f : S ×A 7→ R,646

we denote the weighted ℓ2 norm as:647

∥f∥22,β :=
√

E(s,a)∼βf2(s, a) (B.7)

• A stochastic reward function R(s, a) ∈ ∆([0, 1])648

• For each offline data distribution ν = {ν0, . . . , νH−1}, the offline data set at time step h649

(νh) contains data samples (s, a, r, s′), where (s, a) ∼ νh, r ∈ R(s, a), s′ ∼ P (s, a).650

• Given a policy π := {π0, . . . , πH−1}, where πh : S 7→ ∆(A), dπh ∈ ∆(s, a) denotes the651

state-action occupancy induced by π at step h.652

• We consider the value-based function approximation setting, where we are given a function653

class C = C0 × . . . CH−1 with Ch ⊂ S ×A 7→ [0, Vmax].654

• A policy πf is defined as the greedy policy w.r.t. f : πf
h(s) = argmaxa fh(s, a). Specifi-655

cally, at iteration k, we use πk to denote the greedy policy w.r.t. fk.656

B.3 Assumptions and Defintions657

Assumption B.1 (Pessimistic Realizability and Completeness). For any policy πe, we say Ch is658

a pessimistic function class w.r.t. πe, if for any h, we have Qπe

h ∈ Ch, and additionally, for any659

fh+1 ∈ Ch+1, we have T fh+1 ∈ Ch and fh(s, a) ≤ Qπe

h (s, a),∀(s, a) ∈ S ×A.660

Definition B.2 (Bilinear model Du et al. [9]). We say that the MDP together with the function661

class F is a bilinear model of rand d of for any h ∈ [H − 1], there exist two (known) mappings662

Xh,Wh : F 7→ Rd with maxf ∥Xh(f)∥2 ≤ BX and maxf ∥Wh(f)∥2 ≤ BW such that663

∀f, g ∈ F :
∣∣∣Es,a∼dπf

h

[gh(s, a)− T gh+1(s, a)]
∣∣∣ = |⟨Xh(f),Wh(g)⟩| . (B.8)

Assumption B.3 (Bilinear Rank of Reference Policies). Suppose Qref ∈ Cref ⊂ C, where Cref is the664

function class of our reference policy, we assume the Bilinear rank of Cref is dref and dref ≤ d.665

Definition B.4 (Calibrated Bellman error transfer coefficient). For any policy π, we define the666

calibrated transfer coefficient w.r.t. to a reference policy πref as667

Cref
π := max

f∈C,f(s,a)≥Qref (s,a)

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))2

, (B.9)

where Qref = Qπref

.668

B.4 Discussions on the Assumptions669

The pessimistic realizability and completeness assumption (Assumption B.1) is motivated by some670

theoretical studies of the pessimistic offline methods [59, 6] with regularizers:671

min
θ

α (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸
Conservative regularizerR(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
.

(B.10)

16

Since the goal of the conservative regularizer R(θ) intrinsically wants to enforce672

Qθ(s, π(s)) ≤ Qθ(s, π
e(s)), (B.11)

where π is the training policy and πe is the reference (behavior) policy. One can consider (B.10) as673

the Lagrange duality formulation of the following primal optimization problem:674

min
θ

Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
, subject to Es∼D,a∼π [Qθ(s, a)] ≤ Es∼D,a∼πe [Qθ(s, a)] ,

(B.12)
where the constraint set is equivalent to Assumption B.1. Although Assumption B.1 directly675

characterizes the constraint set of the primal form of (B.10) the exact theoretical connection between676

the pessimistic realizability and the regularized bellman consistency equation is beyond the scope of677

this work and we would like to leave that for future studies.678

Assumption B.1 allows us to restrict the functional class of interest to a smaller conservative function679

class C ⊂ F , which leads to a smaller Bellman rank of the reference policy (dref ≤ d) suggested680

in Assumption B.3, and a smaller concentrability coefficient (Cref
π ≤ Cπ) defined in Definition B.4,681

and C.2. Assumption B.3 and Definition C.2 provide the Bellman Bilinear rank and Bellman error682

transfer coefficient of the pessimistic functional class C of interest.683

B.5 Proof Structure Overview684

We provide an overview of the proof structure and its dependency on different assumptions below:685

• Theorem B.5: the total regret is decomposed into offline regrets and online regrets.686

– Bounding offline regrets, requiring Definition B.4 and the following lemmas:687

* Performance difference lemma w.r.t. a comparator policy (Lemma C.5).688

* Least square generalization bound (Lemma C.4), requiring Assumption B.1.689

– Bounding online regrets, requiring Definition B.2690

* Performance difference lemma for the online error (Lemma C.6).691

* Least square generalization bound (Lemma C.4), requiring Assumption B.1.692

* Upper bounds with the bilinear model assumption (Lemma C.7).693

* Applying Elliptical Potential Lemma [35] with bellman rank d and dref694

(Lemma C.8), requiring Assumption B.3.695

B.6 Our Results696

Theorem B.5 (Formal Result of Theorem 6.1). Fix δ ∈ (0, 1),moff = K,mon = 1, suppose and the697

function class C follows Assumption B.1 w.r.t. πe. Suppose the underlying MDP admits Bilinear rank698

d on function class C and dref on Cref , respectively, then with probability at least 1− δ, Algorithm 2699

obtains the following bound on cumulative suboptimality w.r.t. any comparator policy πe:700

K∑
t=1

V πe

− V πk

= Õ
(
min

{
Cref

πe H
√

dK log (|F|/δ), K
(
V πe

− V ref
)
+H

√
drefK log (|F|/δ)

})
.

(B.13)

Note that Theorem B.5 provides a guarantee for any comparator policy πe, which can be directly701

applied to π⋆ described in our informal result (Theorem 6.1). We also change the notation for the702

reference policy from µ in Theorem 6.1 to πref (similarly, dref , V ref , Cref
πe correspond to dµ, V

µ, Cµ
πe703

in Theorem 6.1) for notation consistency in the proof. Our proof of Theorem B.5 largely follows the704

proof of Theorem 1 of [52], and the major changes are caused by Assumption B.1, Assumption B.3,705

and Definition B.4.706

17

Proof. Let Ek denote the event that
{
fk
0 (s, a) ≤ Qref(s, a)

}
and Ēk denote the event that707 {

fk
0 (s, a) > Qref(s, a)

}
. Let V ref(s) = maxa Q

ref(s, a), we start by noting that708

K∑
k=1

V πe − V πfk

=

K∑
k=1

Es∼ρ

[
V πe

0 (s)− V πfk

0 (s)

]

=

K∑
k=1

Es∼ρ

[
1
{
Ēk

}(
V πe

0 (s)− V ref(s)
)]

︸ ︷︷ ︸
Γ0

+

K∑
k=1

Es∼ρ

[
1
{
Ēk

}(
V ref(s)−max

a
fk
0 (s, a)

)]
︸ ︷︷ ︸

=0, by the definition of Ēk and line 9 of Algorithm 2

+

K∑
t=1

Es∼ρ

[
1
{
Ēk

}(
max

a
fk
0 (s, a)− V πfk

0 (s)

)]
︸ ︷︷ ︸

Γ1

+

K∑
k=1

Es∼ρ

[
1 {Ek}

(
V πe

0 (s)−max
a

fk
0 (s, a)

)]
︸ ︷︷ ︸

Γ2

+

T∑
t=1

Es∼ρ

[
1 {Ek}

(
max

a
fk
0 (s, a)− V πfk

0 (s)

)]
︸ ︷︷ ︸

Γ3

.

(B.14)

Let K1 =
∑K

k=1 1
{
fk
0 (s, a) > Qref(s, a)

}
and K2 =

∑K
k=1 1

{
fk
0 (s, a) ≤ Qref(s, a)

}
(or equiva-709

lently K1 =
∑K

k=1 1
{
Ēk

}
, K2 =

∑K
k=1 1 {Ek}). For Γ0, we have710

Γ0 = K2Es∼ρ

(
V πe

(s)− V ref(s)
)
. (B.15)

For Γ2, we have711

Γ2 =

K∑
k=1

Es∼ρ

[
1 {Ek}

(
V πe

0 (s)−max
a

fk
0 (s, a)

)]
(i)

≤
K∑

k=1

1 {Ek}
H−1∑
h=0

Es,a∼dπe

h

[
T fk

h+1(s, a)− fk
h (s, a)

]
(ii)

≤
K∑

k=1

Cref
πe · 1 {Ek}

√√√√H−1∑
h=0

Es,a∼νh

[(
fk
h (s, a)− T fk

h+1(s, a)
)2]

(iii)

≤ K1C
ref
πe

√
H ·∆off ,

(B.16)

where ∆off is similarly defined as Song et al. [52] (See (C.3) of Lemma C.4). Inequality (i) holds712

because of Lemma C.5, inequality (ii) holds by the definition of Cref
πe (Definition B.4), inequality (iii)713

holds by applying Lemma C.4 with the function class satisfying Assumption B.1, and Definition B.4.714

Note that the telescoping decomposition technique in the above equation also appears in [58, 24, 9].715

Next, we will bound Γ1 + Γ3:716

Γ1 + Γ3 =

K∑
k=1

(
1 {Ek}+ 1

{
Ēk

})
Es∼d0

[
max

a
fk
0 (s, a)− V πfk

0 (s)

]
(i)

≤
K∑

k=1

(
1 {Ek}+ 1

{
Ēk

})H−1∑
h=0

∣∣∣∣Es,a∼dπfk

h

[
fk
h (s, a)− T fk

h+1(s, a)
]∣∣∣∣

(ii)
=

K∑
t=1

[(
1 {Ek}+ 1

{
Ēk

})H−1∑
h=0

∣∣〈Xh(f
k),Wh(f

k)
〉∣∣]

(iii)

≤
K∑

k=1

[(
1 {Ek}+ 1

{
Ēk

})H−1∑
h=0

∥∥Xh(f
k)
∥∥
Σ−1

k−1;h

√
∆on + λB2

W

]
,

(B.17)

18

where ∆on is similarly defined as Song et al. [52] (See (C.4) of Lemma C.4). Inequality (i) holds by717

Lemma C.6, equation (ii) holds by the definition of Bilinear model ((B.8) in Definition B.2), inequal-718

ity (iii) holds by Lemma C.7 and Lemma C.4 with the function class satisfying Assumption B.1.719

Using Lemma C.8, we have that720

Γ1 + Γ3

≤
K∑

k=1

[(
1 {Ek}+ 1

{
Ēk

})H−1∑
h=0

∥∥∥Xh(f
k)
∥∥∥
Σ−1

k−1;h

√
∆on + λB2

W

]
(i)

≤H

√
2d log

(
1 +

K1B2
X

λd

)
· (∆on + λB2

W) ·K1 +H

√
2dref log

(
1 +

K2B2
X

λdref

)
· (∆on + λB2

W) ·K2

(ii)

≤H

(√
2d log

(
1 +

K1

d

)
· (∆on +B2

XB2
W) ·K1 +

√
2dref log

(
1 +

K2

dref

)
· (∆on +B2

XB2
W) ·K2

)
,

(B.18)

where the first part of inequality (i) holds by the assumption that the underlying MDPs have721

bellman rank d (Definition B.2) when Ēk happens, and the second part of inequality (i) holds by722

the assumption that Cref has bilinear rank dref (Assumption B.3) Cref has bellman rank dref when723

Ek happens. Inequality (ii) holds by plugging in λ = B2
X . Substituting (B.15), inequality B.16, and724

inequality (B.18) into (B.14), we have725

K∑
t=1

V πe

− V πfk

≤ Γ0 + Γ2 + Γ1 + Γ3 ≤ K2

(
V πe

(s)− V ref(s)
)
+K1C

ref
πe

√
H ·∆off

+H

(√
2d log

(
1 +

K1

d

)
· (∆on +B2

XB2
W) ·K1 +

√
2dref log

(
1 +

K2

dref

)
· (∆on +B2

XB2
W) ·K2

)
(B.19)

Plugging in the values of ∆on,∆off from (C.3) and (C.4), and using the subadditivity of the square726

root function, we have727

K∑
k=1

V πe

− V πfk

≤ K2

(
V πe

(s)− V ref(s)
)
+ 16VmaxC

ref
πe K1

√
H

moff
log

(
2HK1|F|

δ

)

+

(
16Vmax

√
1

mon
log

(
2HK1|F|

δ

)
+BXBW

)
·H

√
2dK1 log

(
1 +

K1

d

)

+

(
16Vmax

√
1

mon
log

(
2HK2|F|

δ

)
+BXBW

)
·H

√
2drefK2 log

(
1 +

K2

dref

)
.

(B.20)

Setting moff = K,mon = 1 in the above equation completes the proof, we have728

K∑
k=1

V πe − V πk

≤ Õ
(
Cref

πe

√
HK1 log (|F|/δ)

)
+ Õ

(
H
√

dK1 log (|F|/δ)
)

+K2

(
V πe

(s)− V ref(s)
)
+ Õ

(
H
√

drefK2 log (|F|/δ)
)

≤

Õ
(
Cref

πe H
√

dK1 log (|F|/δ)
)

if K1 ≫ K2,

Õ
(
K2

(
V πe − V ref

)
+H

√
drefK2 log (|F|/δ)

)
otherwise.

≤ Õ
(
min

{
Cref

πe H
√
dK log (|F|/δ), K

(
V πe − V ref

)
+H

√
drefK log (|F|/δ)

})
,

(B.21)

where the last inequality holds because K1,K2 ≤ K, which completes the proof.729

19

C Key Results of HyQ [52]730

In this section, we restate the major theoretical results of Hy-Q [52] for completeness.731

C.1 Assumptions732

Assumption C.1 (Realizability and Bellman completeness). For any h, we have Q⋆
h ∈ Fh, and733

additionally, for any fh+1 ∈ Fh+1, we have T fh+1 ∈ Fh.734

Definition C.2 (Bellman error transfer coefficient). For any policy π, we define the transfer coefficient735

as736

Cπ := max

0,max
f∈F

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))2

 . (C.1)

C.2 Main Theorem of Hy-Q737

Theorem C.3 (Theorem 1 of Song et al. [52]). Fix δ ∈ (0, 1),moff = K,mon = 1, and suppose738

that the underlying MDP admits Bilinear rank d (Definition B.2), and the function class F satisfies739

Assumption C.1. Then with probability at least 1− δ, HyQ obtains the following bound on cumulative740

suboptimality w.r.t. any comparator policy πe:741

Reg(K) = Õ
(
max{Cπe , 1}VmaxBXBW

√
dH2K · log(|F|/δ)

)
. (C.2)

C.3 Key Lemmas742

C.3.1 Least Squares Generalization and Applications743

Lemma C.4 (Lemma 7 of Song et al. [52], Online and Offline Bellman Error Bound for FQI). Let744

δ ∈ (0, 1) and ∀h ∈ [H − 1], k ∈ [K], let fk+1
h be the estimated value function for time step h745

computed via least square regression using samples in the dataset {Dν
h,D1

h, . . . ,DT
h } in (B.1) in the746

iteration t of Algorithm 2. Then with probability at least 1− δ, for any h ∈ [H − 1] and k ∈ [K], we747

have748 ∥∥fk+1
h − T fk+1

h+1

∥∥2
2,νh

≤ 1

moff
256V 2

max log(2HK|F|/δ) =: ∆off (C.3)

and749
k∑

τ=1

∥∥fk+1
h − T fk+1

h+1

∥∥2
2,µτ

h

≤ 1

mon
256V 2

max log(2HK|F|/δ) =: ∆on, (C.4)

where νh denotes the offline data distribution at time h, and the distribution µτ
h ∈ ∆(s, a) is defined750

such that s, a ∼ dπ
τ

h .751

C.3.2 Bounding Offline Suboptimality via Performance Difference Lemma752

Lemma C.5 (Lemma 5 of Song et al. [52], performance difference lemma of w.r.t. πe). Let753

πe = (πe
0, . . . , π

e
H−1) be a comparator policy and consider any value function f = (f0, . . . , fH−1),754

where fh : S ×A 7→ R. Then we have755

Es∼d0

[
V πe

0 (s)−max
a

f0(s, a)
]
≤

H−1∑
i=1

Es,a∼dπe
i

[T fi+1(s, a)− fi(s, a)] , (C.5)

where we define fH(s, a) = 0,∀(s, a).756

C.3.3 Bounding Online Suboptimality via Performance Difference Lemma757

Lemma C.6 (Lemma 4 of Song et al. [52], performance difference lemma). For any function758

f = (f0, . . . , fH−1) where fh : S ×A 7→ R and h ∈ [H − 1], we have759

Es∼d0

[
max

a
f0(s, a)− V πf

0 (s)
]
≤

H−1∑
h=0

∣∣∣Es,a∼dπf

h

[fh(s, a)− T fh+1(s, a)]
∣∣∣ , (C.6)

where we define fH(s, a) = 0,∀s, a.760

20

Lemma C.7 (Lemma 8 of Song et al. [52], upper bounding bilinear class). For any k ≥ 2 and761

h ∈ [H − 1], we have762

∣∣〈Wh(f
k), Xh(f

k)
〉∣∣ ≤ ∥∥Xh(f

k)
∥∥
Σ−1

k−1;h

√√√√k−1∑
i=1

E
s,a∼dfi

h

[(
fk
h − T fk

h+1

)2]
+ λB2

W , (C.7)

where Σk−1;h is defined as (B.5) and we use df
k

h to denote dπ
fk

h .763

Lemma C.8 (Lemma 6 of Song et al. [52], bounding the inverse covariance norm). Let764

Xh(f
1), . . . , Xh(f

K) ∈ Rd be a sequence of vectors with
∥∥Xh(f

k)
∥∥
2
≤ BX < ∞,∀k ≤ K.765

Then we have766
K∑

k=1

∥∥Xh(f
k)
∥∥
Σ−1

k−1;h

≤
√

2dK log

(
1 +

KB2
X

λd

)
, (C.8)

where we define Σk;h :=
∑k

τ=1 Xh(f
τ)Xh(f

τ)T + λI and we assume λ ≥ B2
X holds ∀k ∈ [K].767

D Environment Details768

D.1 Antmaze769

The Antmaze navigation tasks aim to control an 8-DoF ant quadruped robot to move from a starting770

point to a desired goal in a maze. The agent will receive sparse +1/0 rewards depending on whether771

it reaches the goal or not. We study each method on “medium” and “hard” (shown in Figure 5)772

mazes which are difficult to solve, using the following datasets from D4RL [10]: large-diverse,773

large-play, medium-diverse, and medium-play. The difference between “diverse” and “play”774

datasets is the optimality of the trajectories they contain. The “diverse” datasets contain the trajectories775

commanded to a random goal from random starting points, while the “play” datasets contain the776

trajectories commanded to specific locations which are not necessarily the goal. We used an episode777

length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained the agent using the offline778

dataset for 1M steps. We then trained online fine-tuning for 1M environment steps for each method.779

D.2 Franka Kitchen780

The Franka Kitchen domain require controlling a 9-DoF Franka robot to arrange a kitchen environment781

into a desired configuration. The configuration is decomposed into 4 subtasks, and the agent will782

receive rewards of 0, +1, +2, +3, or +4 depending on how many subtasks it has managed to solve. To783

solve the whole task and reach the desired configuration, it is important to learn not only how to solve784

each subtask, but also to figure out the correct order to solve. We study this domain using datasets785

with three different optimalities: kitchen-complete, kitchen-partial, and kitchen-mixed.786

The “complete” dataset contains the trajectories of the robot performing the whole task completely.787

The “partial” dataset partially contains some complete demonstrations, while others are incomplete788

demonstrations solving the subtasks. The “mixed” dataset only contains incomplete data without any789

complete demonstrations, which is hard and requires the highest degree of stitching and generalization790

ability. We used an episode length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained791

the agent using the offline dataset for 500K steps. We then performed online fine-tuning for 1.25M792

environment steps for each method.793

D.3 Adroit794

The Adroit domain involves controlling a 24-DoF shadow hand robot. There are 3 tasks we consider795

in this domain: pen-binary, relocate-binary, relocate-binary. These tasks comprise a796

limited set of narrow human expert data distributions (∼ 25) with additional trajectories collected by797

a behavior-cloned policy. We truncated each trajectory and used the positive segments (terminate798

when the positive reward signal is found) for all methods. This domain has a very narrow dataset799

distribution and a large action space. In addition, learning in this domain is difficult due to the sparse800

reward, which leads to exploration challenges. We utilized a variant of the dataset used in prior work801

[44] to have a standard comparison with SOTA offline fine-tuning experiments that consider this802

domain. For the offline learning phase, we pre-trained the agent for 20K steps. We then performed803

online fine-tuning for 300K environment steps for the pen-binary task, and 1M environment steps804

for the door-binary and relocate-binary tasks. The episode length is 100, 200, and 200 for805

pen-binary, door-binary, and relocate-binary respectively.806

21

D.4 Visual Manipulation Domain807

The Visual Manipulation domain consists of a pick-and-place task. This task is a multitask formulation808

explored in the work, Pre-training for Robots (PTR) [33]. Here each task is defined as placing an809

object in a bin. A distractor object was present in the scene as an adversarial object which the agent810

had to avoid picking. There were 10 unique objects and no overlap between the task objects and811

the interfering/distractor objects. The episode length is 40. For the offline phase, we pre-trained the812

policy with offline data for 50K steps. We then performed online fine-tuning for 100K environment813

steps for each method, taking 5 gradient steps per environment step.814

E Experiment Details815

E.1 Normalized Scores816

The visual-manipulation, adroit, and antmaze domains are all goal-oriented, sparse reward817

tasks. In these domains, we computed the normalized metric as simply the goal achieved rate for each818

method. For example, in the visual manipulation environment, if the object was placed successfully in819

the bin, a +1 reward was given to the agent and the task is completed. Similarly, for the door-binary820

task in the adroit tasks, we considered the success rate of opening the door. For the kitchen task, the821

task is to solve a series of 4 sub-tasks that need to be solved in an iterative manner. The normalized822

score is computed simply as #tasks solved
total tasks .823

E.2 Mixing Ratio Hyperparameter824

In this work, we explore the mixing ratio parameter m, which is used during the online fine-tuning825

phase. The mixing ratio is either a value in the range [0, 1] or the value -1. If this mixing ratio is826

within [0, 1], it represents what percentage of offline and online data is seen in each batch when827

fine-tuning. For example, if the mixing ratio m = 0.25, that means for each batch we sample 25%828

from the offline data and 75% from online data. Instead, if the mixing ratio is -1, the buffers are829

appended to each other and sampled uniformly.830

E.3 Details and Hyperparameters for CQL and Cal-QL831

We list the hyperparameters for CQL and Cal-QL in Table 3. We utilized a variant of Bellman backup832

that computes the target value by performing a maximization over target values computed for k833

actions sampled from the policy at the next state, where we used k = 4 in visual pick and place834

domain and k = 10 in others. In the Antmaze domain, we used the dual version of CQL [32] and835

conducted ablations over the value of the threshold of the CQL regularizer R(θ) (target action gap)836

instead of α. In the visual-manipulation domain which is not presented in the original paper, we837

swept over the alpha values of α = 0.5, 1, 5, 10, and utilized separate α values for offline (α = 5)838

and online (α = 0.5) phases for the final results. We built our code upon the CQL implementation839

from https://github.com/young-geng/JaxCQL [14]. We used a single NVIDIA TITAN RTX840

chip to run each of our experiments.841

E.4 Details and Hyperparameters for IQL842

We list the hyperparameters for IQL in Table 4. To conduct our experiments, we used the of-843

ficial implementation of IQL provided by the authors [30], and primarily followed their recom-844

mended parameters, which they previously ablated over in their work. In the visual-manipulation845

domain which is not presented in the original paper, we performed a parameter sweep over expec-846

tile τ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and temperature β = 1, 3, 5, 10, 25, 50 and selected the847

best-performing values of τ = 0.7 and β = 10 for our final results. In addition, as the second848

best-performing method in the visual-manipulation domain, we also attempted to use separate β849

values for IQL, for a fair comparison with CQL and Cal-QL. However, we found that it has little to850

no effect, as shown in Figure 9.851

E.5 Details and Hyperparameters for AWAC and ODT852

We used the JAX implementation of AWAC from https://github.com/ikostrikov/jaxrl [29].853

We primarily followed the author’s recommended parameters, where we used the Lagrange multiplier854

λ = 1.0 for the Antmaze and Franka Kitchen domains, and λ = 0.3 for the Adroit domain. In855

22

https://github.com/young-geng/JaxCQL
https://github.com/ikostrikov/jaxrl

the visual-manipulation domain, we performed a parameter sweep over λ = 0.1, 0.3, 1, 3, 10 and856

selected the best-performing value of λ = 1 for our final results. For ODT, we used the author’s857

official implementation from https://github.com/facebookresearch/online-dt, with the858

author’s recommended parameters they used in the Antmaze domain. In addition, in support of our859

result of AWAC and ODT (as shown in Table 1), the poor performance of Decision Transformers and860

AWAC in the Antmaze domain can also be observed in Table 1 and Table 2 of the IQL paper [30].861

E.6 Details and Hyperparameters for SAC, SAC + Offline Data, Hybrid RL and CQL + SAC862

We used the standard hyperparameters for SAC as derived from the original implementation in [19].863

We used the same other hyperparameters as CQL and Cal-QL. We used automatic entropy tuning for864

the policy and critic entropy terms, with a target entropy of the negative action dimension. For SAC,865

the agent is only trained with the online explored data. For SAC + Offline Data, the offline data and866

online explored data is combined together and sampled uniformly. For Hybrid RL, we use the same867

mixing ratio used for CQL and Cal-QL presented in Table 3. For CQL + SAC, we first pre-train with868

CQL and then run online fine-tuning using both offline and online data, also using the same mixing869

ratio presented in Table 3.870

Table 3: CQL, Cal-QL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
α 1 5 - 5 (online: 0.5)
target action gap - - 0.8 -
mixing ratio -1, 0.25, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

Table 4: IQL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
expectile τ 0.8 0.7 0.9 0.7
temperature β 3 0.5 10 10
mixing ratio -1, 0.2, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

F Extended Discussion on Limitations of Existing Fine-Tuning Methods871

0 25000 50000 75000 100000 125000 150000 175000 200000

Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

β=1

β=3

β=5

β=10

β=25

β=50

Figure 9: Abalation on IQL’s online temperature values: The change in the temperature β used in online
fine-tuning phase has little to no effect on the sample efficiency.

Figure 10: IQL and CQL: Step 0 on the x-axis is the performance after offline pre-training. Observe while
CQL suffers from initial policy unlearning, IQL improves slower throughout fine-tuning.

23

https://github.com/facebookresearch/online-dt

In this section, we aim to highlight some potential reasons behind the slow improvement of other872

methods in our empirical analysis experiment in Section 4.1, and specifically, we use IQL for the873

analysis. We first swept over the temperature β values used in the online fine-tuning phase for IQL,874

which controls the constraint on how closely the learned policy should match the behavior policy. As875

shown in Figure 9, the change in the temperature β has little to no effect on the sample efficiency.876

Another natural hypothesis is that IQL improves slowly because we are not making enough updates877

per unit of data collected by the environment. To investigate this, we ran IQL with (a) five times as878

many gradient steps per step of data collection (UTD = 5), and (b) with a more aggressive policy879

update. Observe in Figure 10 that (a) does not improve the asymptotic performance of IQL, although880

it does improve CQL meaning that there is room for improvement on this task by making more881

gradient updates. Observe in Figure 10 that (b) often induces policy unlearning, similar to the failure882

mode in CQL. These two observations together indicate that a policy constraint approach can slow883

down learning asymptotically, and we cannot increase the speed by making more aggressive updates884

as this causes the policy to find erroneously optimistic out-of-distribution actions, and unlearn the885

policy learned from offline data.886

G Impact of Estimation Errors in the Reference Value Function887

Figure 11: The performance of
Cal-QL using a neural net ap-
proximator for the reference value
function is comparable to using
the Monte-Carlo return.

In our experiments, we compute the reference value functions using888

Monte-Carlo return estimates. However, this may not be available in889

all tasks. How does Cal-QL behave when reference value functions890

must be estimated using the offline dataset itself? To answer this,891

we ran an experiment on the kitchen domain, where instead of892

using an estimate for Qµ based on the Monte-Carlo return, we train893

a neural network function approximator Qµ
θ to approximate Qµ894

via supervised regression on to Monte-Carlo return, which is then895

utilized by Cal-QL. Observe in Figure 11, that the performance of896

Cal-QL largely remains unaltered. This implies as long as we can897

obtain a reasonable function approximator to estimate the Q-function898

of the reference policy (in this case, the behavior policy), errors in899

the reference Q-function do not affect the performance of Cal-QL900

significantly.901

H Initial Unlearning of CQL on Multiple Tasks902

In this section, we show the learning curves of CQL and Cal-QL from Figure 6 and zoom in on the903

x-axis to provide a clearer visualization of CQL’s initial unlearning in the Franka Kitchen, Adroit,904

and the visual-manipulation domains. As depicted in Figure 12, it is evident across all tasks that905

while CQL experiences initial unlearning, Cal-QL can effectively mitigate it and quickly recovers its906

performance. Regarding the Antmaze domain, as we discussed in section 7.3, CQL does not exhibit907

initial unlearning since the default dataset has a high coverage of data. However, we can observe a908

similar phenomenon if we narrow down the dataset distribution (as shown in Figure 8).909

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-partial-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-mixed-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-complete-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×104

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

visual-manipulation

Cal-QL (Ours) CQL

0 1 2 3 4 5

Environment Steps ×104

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

pen-binary-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

door-binary-v0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

relocate-binary-v0

Figure 12: While CQL experiences initial unlearning, Cal-QL effectively mitigates it and quickly recovers its
performance.

24

	Introduction
	Related Work
	Preliminaries and Background
	When Can Offline RL Initializations Enable Fast Online Fine-Tuning?
	Empirical Analysis
	Conditions on the Offline Initialization that Enable Fast Fine-Tuning

	Cal-QL: Calibrated Q-Learning
	Theoretical Analysis of Cal-QL
	Experimental Evaluation
	Empirical Results
	Cal-QL With High Update-to-Data (UTD) Ratio
	Understanding the Behavior of Cal-QL

	Discussion, Future Directions, and Limitations
	Implementation details of Cal-QL
	Cal-QL Algorithm
	Python Implementation

	Regret Analysis of Cal-QL
	Preliminaries
	Notations
	Assumptions and Defintions
	Discussions on the Assumptions
	Proof Structure Overview
	Our Results

	Key Results of HyQ song2023hybrid
	Assumptions
	Main Theorem of Hy-Q
	Key Lemmas
	Least Squares Generalization and Applications
	Bounding Offline Suboptimality via Performance Difference Lemma
	Bounding Online Suboptimality via Performance Difference Lemma

	Environment Details
	Antmaze
	Franka Kitchen
	Adroit
	Visual Manipulation Domain

	Experiment Details
	Normalized Scores
	Mixing Ratio Hyperparameter
	Details and Hyperparameters for CQL and Cal-QL
	Details and Hyperparameters for IQL
	Details and Hyperparameters for AWAC and ODT
	Details and Hyperparameters for SAC, SAC + Offline Data, Hybrid RL and CQL + SAC

	Extended Discussion on Limitations of Existing Fine-Tuning Methods
	Impact of Estimation Errors in the Reference Value Function
	Initial Unlearning of CQL on Multiple Tasks

