
Appendices574

A Implementation details of Cal-QL575

Our algorithm, Cal-QL is illustrated in Algorithm 1. A complete implementation of the functions in576

python-style is provided in Appendix A.2.577

A.1 Cal-QL Algorithm578

We use JQ(✓) to denote the calibrated conservative regularizer for the Q network update:579

JQ(✓) := ↵ (Es⇠D,a⇠⇡ [max (Q✓(s, a), Qµ(s, a))] � Es,a⇠D [Q✓(s, a)])
| {z }

Calibrated conservative regularizer R(✓)

(A.1)

+
1

2
Es,a,s0⇠D

h�
Q✓(s, a) � B⇡Q̄(s, a)

�2i
. (A.2)

Algorithm 1 Cal-QL pseudo-code
1: Initialize Q-function, Q✓, a policy, ⇡�

2: for step t in {1, . . . , N} do
3: Train the Q-function using the conservative regularizer

in Eq. A.1:

✓t := ✓t�1 � ⌘Qr✓JQ(✓) (A.3)

4: Improve policy ⇡� with SAC-style update:

�t := �t�1 + ⌘⇡Es⇠D,a⇠⇡�(·|s)[Q✓(s, a)�log ⇡�(a|s)]
(A.4)

5: end for

580

A.2 Python Implementation581

Listing 1: Training Q networks given a batch of data
582

q_data = critic(batch[’observations ’], batch[’actions ’])583
584

next_dist = actor(batch[’next_observations ’])585
next_pi_actions , next_log_pis = next_dist.sample ()586

587
target_qval = target_critic(batch[’observations ’], next_pi_actions)588
target_qval = batch[’rewards ’] + self.gamma * (1 - batch[’dones’]) * target_qval589

590
td_loss = mse_loss(q_data , target_qval)591

592
num_samples = 4593
random_actions = uniform ((num_samples , batch_size , action_dim), min=-1, max=1)594
random_pi = 0.5 ** batch[’actions ’].shape[-1]595

596
pi_actions , log_pis = actor(batch[’observations ’])597

598
q_rand_is = critic(batch[’observations ’], random_actions) - random_pi599
q_pi_is = critic(batch[’observations ’], pi_actions) - log_pis600

601
Cal -QL’s modification602
mc_return = batch[’mc_return ’]. repeat(num_samples)603
q_pi_is = max(q_pi_is , mc_return)604

605
cat_q = concatenate ([q_rand_is , q_pi_is], new_axis=True)606
cat_q = logsumexp(cat_q , axis =0) # sum over num_samples607
critic_loss = td_loss + ((cat_q - q_data).mean() * cql_alpha)608

609
critic_optimizer.zero_grad ()610
critic_loss.backward ()611
critic_optimizer.step()612613

14

Listing 2: Training the policy (or the actor) given a batch of data
614

return distribution of actions615
pi_actions , log_pis = actor(batch[’observations ’])616

617
calculate q value of actor actions618
qpi = critic(batch[’observations ’], actions)619
qpi = qpi.min(axis =0)620

621
same objective as CQL (kumar et al.)622
actor_loss = (log_pis * self.alpha - qpi).mean()623

624
optimize loss625
actor_optimizer.zero_grad ()626
actor_loss.backward ()627
actor_optimizer.step()628629

B Regret Analysis of Cal-QL630

We provide a theoretical version of Cal-QL in Algorithm 2. Policy fine-tuning has been studied in631

different settings [60, 52, 55]. Our analysis largely adopts the settings and results in Song et al. [52],632

with additional changes in Assumption B.1, Assumption B.3, and Definition B.4. Note that the goal633

of this proof is to demonstrate that a pessimistic functional class (Assumption B.1) allows one to634

utilize the offline data efficiently, rather than providing a new analytical technique for regret analysis.635

See comparisons between Section B.3 and Section C.1. Note that we use f instead of Q✓ in the main636

text to denote the estimated Q function for notation simplicity.637

Algorithm 2 Theoretical version of Cal-QL

1: Input: Value function class F , # total iterations K, offline dataset D⌫

h
of size mo↵ for h 2 [H�1].

2: Initialize f1
h
(s, a) = 0, 8(s, a).

3: for k = 1, . . . , K do
4: Let ⇡t be the greedy policy w.r.t. fk . I.e., ⇡k

h
(s) = arg maxa fk

h
(s, a).

5: For each h, collect mon online tuples Dk

h
⇠ d⇡

k

h
. online data collection

6: Set fk+1
H

(s, a) = 0, 8(s, a).
7: for h = H � 1, . . . 0 do . FQI with offline and online data
8: Estimate fk+1

h
using conservative least squares on the aggregated data: . I.e., CQL

regularized class Ch

f
k+1
h

 arg min
f2C

h

(
bED⌫

h


f(s, a)� r �max

a0
f
k+1
h+1 (s0, a0)

�2

+
KX

⌧=1

bED⌧

h


f(s, a)� r �max

a0
f
k+1
h+1 (s0, a0)

�2
)

(B.1)
9: fk+1

h
= max{fk+1

h
, Qref

h
} . Set a reference policy for calibration (Definition 4.1)

10: end for
11: end for
12: Output: ⇡K

B.1 Preliminaries638

In this subsection, we follow most of the notations and definitions in Song et al. [52]. In particular,639

we consider the finite horizon cases, where the value function and Q function are defined as:640

V ⇡

h
(s) = E

"
H�1X

⌧=h

r⌧ |⇡, sh = s

#
(B.2)

Q⇡

h
(s, a) = E

"
H�1X

⌧=h

r⌧ |⇡, sh = s, ah = a

#
. (B.3)

We also define the Bellman operator T such that 8f : S ⇥ A:641

T f(s, a) = Es,a[R(s, a)] + Es0⇠P (s,a) max
a0

f(s0, a0), 8(s, a) 2 S ⇥ A, (B.4)

where R(s, a) 2 �[0, 1] represents a stochastic reward function.642

15

B.2 Notations643

• Feature covariance matrix ⌃k;h:644

⌃k;h =
kX

⌧=1

Xh(f⌧)(Xh(f⌧))> + �I (B.5)

• Matrix Norm Zanette et al. [63]: for a matrix ⌃, the matrix norm kuk⌃ is defined as:645

kuk⌃ =
p
u⌃u> (B.6)

• Weighted `2 norm: for a given distribution � 2 �(S ⇥ A) and a function f : S ⇥ A 7! R,646

we denote the weighted `2 norm as:647

kfk2
2,� :=

q
E(s,a)⇠�f2(s, a) (B.7)

• A stochastic reward function R(s, a) 2 �([0, 1])648

• For each offline data distribution ⌫ = {⌫0, . . . , ⌫H�1}, the offline data set at time step h649

(⌫h) contains data samples (s, a, r, s0), where (s, a) ⇠ ⌫h, r 2 R(s, a), s0 ⇠ P (s, a).650

• Given a policy ⇡ := {⇡0, . . . , ⇡H�1}, where ⇡h : S 7! �(A), d⇡
h

2 �(s, a) denotes the651

state-action occupancy induced by ⇡ at step h.652

• We consider the value-based function approximation setting, where we are given a function653

class C = C0 ⇥ . . . CH�1 with Ch ⇢ S ⇥ A 7! [0, Vmax].654

• A policy ⇡f is defined as the greedy policy w.r.t. f : ⇡f

h
(s) = arg maxa fh(s, a). Specifi-655

cally, at iteration k, we use ⇡k to denote the greedy policy w.r.t. fk.656

B.3 Assumptions and Defintions657

Assumption B.1 (Pessimistic Realizability and Completeness). For any policy ⇡e
, we say Ch is658

a pessimistic function class w.r.t. ⇡e
, if for any h, we have Q⇡

e

h
2 Ch, and additionally, for any659

fh+1 2 Ch+1, we have T fh+1 2 Ch and fh(s, a)  Q⇡
e

h
(s, a), 8(s, a) 2 S ⇥ A.660

Definition B.2 (Bilinear model Du et al. [9]). We say that the MDP together with the function661

class F is a bilinear model of rand d of for any h 2 [H � 1], there exist two (known) mappings662

Xh, Wh : F 7! Rd
with maxf kXh(f)k2  BX and maxf kWh(f)k2  BW such that663

8f, g 2 F :
���E

s,a⇠d⇡f

h

[gh(s, a) � T gh+1(s, a)]
��� = |hXh(f), Wh(g)i| . (B.8)

Assumption B.3 (Bilinear Rank of Reference Policies). Suppose Qref 2 Cref ⇢ C, where Cref is the664

function class of our reference policy, we assume the Bilinear rank of Cref is dref and dref  d.665

Definition B.4 (Calibrated Bellman error transfer coefficient). For any policy ⇡, we define the666

calibrated transfer coefficient w.r.t. to a reference policy ⇡ref
as667

Cref
⇡

:= max
f2C,f(s,a)�Qref (s,a)

P
H�1
h=0 Es,a⇠d⇡

h
[T fh+1(s, a) � fh(s, a)]

qP
H�1
h=0 Es,a⇠⌫h

(T fh+1(s, a) � fh(s, a))2
, (B.9)

where Qref = Q⇡
ref

.668

B.4 Discussions on the Assumptions669

The pessimistic realizability and completeness assumption (Assumption B.1) is motivated by some670

theoretical studies of the pessimistic offline methods [59, 6] with regularizers:671

min
✓

↵ (Es⇠D,a⇠⇡ [Q✓(s, a)] � Es,a⇠D [Q✓(s, a)])
| {z }

Conservative regularizer R(✓)

+
1

2
Es,a,s0⇠D

h�
Q✓(s, a) � B⇡Q̄(s, a)

�2i
.

(B.10)

16

Since the goal of the conservative regularizer R(✓) intrinsically wants to enforce672

Q✓(s, ⇡(s))  Q✓(s, ⇡
e(s)), (B.11)

where ⇡ is the training policy and ⇡e is the reference (behavior) policy. One can consider (B.10) as673

the Lagrange duality formulation of the following primal optimization problem:674

min
✓

Es,a,s0⇠D

h�
Q✓(s, a)� B⇡Q̄(s, a)

�2i
, subject to Es⇠D,a⇠⇡ [Q✓(s, a)]  Es⇠D,a⇠⇡e [Q✓(s, a)] ,

(B.12)
where the constraint set is equivalent to Assumption B.1. Although Assumption B.1 directly675

characterizes the constraint set of the primal form of (B.10) the exact theoretical connection between676

the pessimistic realizability and the regularized bellman consistency equation is beyond the scope of677

this work and we would like to leave that for future studies.678

Assumption B.1 allows us to restrict the functional class of interest to a smaller conservative function679

class C ⇢ F , which leads to a smaller Bellman rank of the reference policy (dref  d) suggested680

in Assumption B.3, and a smaller concentrability coefficient (Cref
⇡

 C⇡) defined in Definition B.4,681

and C.2. Assumption B.3 and Definition C.2 provide the Bellman Bilinear rank and Bellman error682

transfer coefficient of the pessimistic functional class C of interest.683

B.5 Proof Structure Overview684

We provide an overview of the proof structure and its dependency on different assumptions below:685

• Theorem B.5: the total regret is decomposed into offline regrets and online regrets.686

– Bounding offline regrets, requiring Definition B.4 and the following lemmas:687

* Performance difference lemma w.r.t. a comparator policy (Lemma C.5).688

* Least square generalization bound (Lemma C.4), requiring Assumption B.1.689

– Bounding online regrets, requiring Definition B.2690

* Performance difference lemma for the online error (Lemma C.6).691

* Least square generalization bound (Lemma C.4), requiring Assumption B.1.692

* Upper bounds with the bilinear model assumption (Lemma C.7).693

* Applying Elliptical Potential Lemma [35] with bellman rank d and dref694

(Lemma C.8), requiring Assumption B.3.695

B.6 Our Results696

Theorem B.5 (Formal Result of Theorem 6.1). Fix � 2 (0, 1), mo↵ = K, mon = 1, suppose and the697

function class C follows Assumption B.1 w.r.t. ⇡e
. Suppose the underlying MDP admits Bilinear rank698

d on function class C and dref on Cref , respectively, then with probability at least 1 � �, Algorithm 2699

obtains the following bound on cumulative suboptimality w.r.t. any comparator policy ⇡e
:700

KX

t=1

V ⇡
e

� V ⇡
k

= eO
⇣
min

n
Cref

⇡e H
p

dK log (|F|/�), K
⇣
V ⇡

e

� V ref
⌘
+H

p
drefK log (|F|/�)

o⌘
.

(B.13)

Note that Theorem B.5 provides a guarantee for any comparator policy ⇡e, which can be directly701

applied to ⇡? described in our informal result (Theorem 6.1). We also change the notation for the702

reference policy from µ in Theorem 6.1 to ⇡ref (similarly, dref , V ref , Cref
⇡e correspond to dµ, V µ, Cµ

⇡e703

in Theorem 6.1) for notation consistency in the proof. Our proof of Theorem B.5 largely follows the704

proof of Theorem 1 of [52], and the major changes are caused by Assumption B.1, Assumption B.3,705

and Definition B.4.706

17

Proof. Let Ek denote the event that
�
fk

0 (s, a)  Qref(s, a)

and Ēk denote the event that707 �
fk

0 (s, a) > Qref(s, a)

. Let V ref(s) = maxa Qref(s, a), we start by noting that708

KX

k=1

V ⇡
e

� V ⇡
f
k

=
KX

k=1

Es⇠⇢


V ⇡

e

0 (s) � V ⇡
f
k

0 (s)

�

=
KX

k=1

Es⇠⇢

h �
Ēk

 ⇣
V ⇡

e

0 (s) � V ref(s)
⌘i

| {z }
�0

+
KX

k=1

Es⇠⇢

h �
Ēk

 ⇣
V ref(s) � max

a

fk

0 (s, a)
⌘i

| {z }
=0, by the definition of Ēk and line 9 of Algorithm 2

+
KX

t=1

Es⇠⇢

 �
Ēk

 ✓
max

a

fk

0 (s, a) � V ⇡
f
k

0 (s)

◆�

| {z }
�1

+
KX

k=1

Es⇠⇢

h
{Ek}

⇣
V ⇡

e

0 (s) � max
a

fk

0 (s, a)
⌘i

| {z }
�2

+
TX

t=1

Es⇠⇢


{Ek}

✓
max

a

fk

0 (s, a) � V ⇡
f
k

0 (s)

◆�

| {z }
�3

.

(B.14)

Let K1 =
P

K

k=1

�
fk

0 (s, a) > Qref(s, a)

and K2 =
P

K

k=1

�
fk

0 (s, a)  Qref(s, a)

(or equiva-709

lently K1 =
P

K

k=1

�
Ēk

, K2 =

P
K

k=1 {Ek}). For �0, we have710

�0 = K2Es⇠⇢

⇣
V ⇡

e

(s) � V ref(s)
⌘

. (B.15)

For �2, we have711

�2 =
KX

k=1

Es⇠⇢

h
{Ek}

⇣
V ⇡

e

0 (s) � max
a

fk

0 (s, a)
⌘i

(i)


KX

k=1

{Ek}
H�1X

h=0

E
s,a⇠d⇡e

h

⇥
T fk

h+1(s, a) � fk

h
(s, a)

⇤

(ii)


KX

k=1

2

4Cref
⇡e · {Ek}

vuut
H�1X

h=0

Es,a⇠⌫h

h�
fk

h
(s, a) � T fk

h+1(s, a)
�2i

3

5

(iii)
 K1C

ref
⇡e

p
H · �o↵ ,

(B.16)

where �o↵ is similarly defined as Song et al. [52] (See (C.3) of Lemma C.4). Inequality (i) holds712

because of Lemma C.5, inequality (ii) holds by the definition of Cref
⇡e (Definition B.4), inequality (iii)713

holds by applying Lemma C.4 with the function class satisfying Assumption B.1, and Definition B.4.714

Note that the telescoping decomposition technique in the above equation also appears in [58, 24, 9].715

Next, we will bound �1 + �3:716

�1 + �3 =
KX

k=1

�
{Ek} +

�
Ēk

 �
Es⇠d0


max

a

fk

0 (s, a) � V ⇡
f
k

0 (s)

�

(i)


KX

k=1

�
{Ek} +

�
Ēk

 �H�1X

h=0

����Es,a⇠d⇡fk

h

⇥
fk

h
(s, a) � T fk

h+1(s, a)
⇤����

(ii)
=

KX

t=1

"
�

{Ek} +
�
Ēk

 �H�1X

h=0

��⌦Xh(fk), Wh(fk)
↵��
#

(iii)


KX

k=1

"
�

{Ek} +
�
Ēk

 �H�1X

h=0

��Xh(fk)
��
⌃�1

k�1;h

q
�on + �B2

W

#
,

(B.17)

18

where �on is similarly defined as Song et al. [52] (See (C.4) of Lemma C.4). Inequality (i) holds by717

Lemma C.6, equation (ii) holds by the definition of Bilinear model ((B.8) in Definition B.2), inequal-718

ity (iii) holds by Lemma C.7 and Lemma C.4 with the function class satisfying Assumption B.1.719

Using Lemma C.8, we have that720

�1 + �3


KX

k=1

"
�

{Ek}+
�
Ēk

 �H�1X

h=0

���Xh(f
k)
���
⌃�1

k�1;h

q
�on + �B2

W

#

(i)

H

s

2d log

✓
1 +

K1B2
X

�d

◆
· (�on + �B2

W
) ·K1 +H

s

2dref log

✓
1 +

K2B2
X

�dref

◆
· (�on + �B2

W
) ·K2

(ii)

H

 s

2d log

✓
1 +

K1

d

◆
· (�on +B2

X
B2

W
) ·K1 +

s

2dref log

✓
1 +

K2

dref

◆
· (�on +B2

X
B2

W
) ·K2

!
,

(B.18)

where the first part of inequality (i) holds by the assumption that the underlying MDPs have721

bellman rank d (Definition B.2) when Ēk happens, and the second part of inequality (i) holds by722

the assumption that Cref has bilinear rank dref (Assumption B.3) Cref has bellman rank dref when723

Ek happens. Inequality (ii) holds by plugging in � = B2
X

. Substituting (B.15), inequality B.16, and724

inequality (B.18) into (B.14), we have725

KX

t=1

V ⇡
e

� V ⇡
f
k

 �0 + �2 + �1 + �3  K2

⇣
V ⇡

e

(s)� V ref(s)
⌘
+K1C

ref
⇡e

p
H ·�o↵

+H

 s

2d log

✓
1 +

K1

d

◆
· (�on +B2

X
B2

W
) ·K1 +

s

2dref log

✓
1 +

K2

dref

◆
· (�on +B2

X
B2

W
) ·K2

!

(B.19)

Plugging in the values of �on, �o↵ from (C.3) and (C.4), and using the subadditivity of the square726

root function, we have727

KX

k=1

V ⇡
e

� V ⇡
f
k

 K2

⇣
V ⇡

e

(s)� V ref(s)
⌘
+ 16VmaxC

ref
⇡e K1

s
H
mo↵

log

✓
2HK1|F|

�

◆

+

16Vmax

s
1

mon
log

✓
2HK1|F|

�

◆
+BXBW

!
·H

s

2dK1 log

✓
1 +

K1

d

◆

+

16Vmax

s
1

mon
log

✓
2HK2|F|

�

◆
+BXBW

!
·H

s

2drefK2 log

✓
1 +

K2

dref

◆
.

(B.20)

Setting mo↵ = K, mon = 1 in the above equation completes the proof, we have728

KX

k=1

V ⇡
e

� V ⇡
k

 eO
⇣
Cref

⇡e

p
HK1 log (|F|/�)

⌘
+ eO

⇣
H
p

dK1 log (|F|/�)
⌘

+ K2

⇣
V ⇡

e

(s) � V ref(s)
⌘

+ eO
⇣
H
p

drefK2 log (|F|/�)
⌘



8
<

:

eO
⇣
Cref

⇡e H
p

dK1 log (|F|/�)
⌘

if K1 � K2,

eO
⇣
K2

�
V ⇡

e � V ref
�

+ H
p

drefK2 log (|F|/�)
⌘

otherwise.

 eO
⇣
min

n
Cref

⇡e H
p

dK log (|F|/�), K
⇣
V ⇡

e

� V ref
⌘

+ H
p

drefK log (|F|/�)
o⌘

,

(B.21)

where the last inequality holds because K1, K2  K, which completes the proof.729

19

C Key Results of HyQ [52]730

In this section, we restate the major theoretical results of Hy-Q [52] for completeness.731

C.1 Assumptions732

Assumption C.1 (Realizability and Bellman completeness). For any h, we have Q?

h
2 Fh, and733

additionally, for any fh+1 2 Fh+1, we have T fh+1 2 Fh.734

Definition C.2 (Bellman error transfer coefficient). For any policy ⇡, we define the transfer coefficient735

as736

C⇡ := max

8
<

:0, max
f2F

P
H�1
h=0 Es,a⇠d⇡

h
[T fh+1(s, a) � fh(s, a)]

qP
H�1
h=0 Es,a⇠⌫h

(T fh+1(s, a) � fh(s, a))2

9
=

; . (C.1)

C.2 Main Theorem of Hy-Q737

Theorem C.3 (Theorem 1 of Song et al. [52]). Fix � 2 (0, 1), mo↵ = K, mon = 1, and suppose738

that the underlying MDP admits Bilinear rank d (Definition B.2), and the function class F satisfies739

Assumption C.1. Then with probability at least 1� �, HyQ obtains the following bound on cumulative740

suboptimality w.r.t. any comparator policy ⇡e
:741

Reg(K) = eO
⇣
max{C⇡e , 1}VmaxBXBW

p
dH2K · log(|F|/�)

⌘
. (C.2)

C.3 Key Lemmas742

C.3.1 Least Squares Generalization and Applications743

Lemma C.4 (Lemma 7 of Song et al. [52], Online and Offline Bellman Error Bound for FQI). Let744

� 2 (0, 1) and 8h 2 [H � 1], k 2 [K], let fk+1
h

be the estimated value function for time step h745

computed via least square regression using samples in the dataset {D⌫

h
, D1

h
, . . . , DT

h
} in (B.1) in the746

iteration t of Algorithm 2. Then with probability at least 1 � �, for any h 2 [H � 1] and k 2 [K], we747

have748 ��fk+1
h

� T fk+1
h+1

��2

2,⌫h

 1

mo↵
256V 2

max log(2HK|F|/�) =: �o↵ (C.3)

and749
kX

⌧=1

��fk+1
h

� T fk+1
h+1

��2

2,µ⌧

h

 1

mon
256V 2

max log(2HK|F|/�) =: �on, (C.4)

where ⌫h denotes the offline data distribution at time h, and the distribution µ⌧

h
2 �(s, a) is defined750

such that s, a ⇠ d⇡
⌧

h
.751

C.3.2 Bounding Offline Suboptimality via Performance Difference Lemma752

Lemma C.5 (Lemma 5 of Song et al. [52], performance difference lemma of w.r.t. ⇡e). Let753

⇡e = (⇡e

0, . . . , ⇡
e

H�1) be a comparator policy and consider any value function f = (f0, . . . , fH�1),754

where fh : S ⇥ A 7! R. Then we have755

Es⇠d0

h
V ⇡

e

0 (s) � max
a

f0(s, a)
i


H�1X

i=1

E
s,a⇠d⇡e

i

[T fi+1(s, a) � fi(s, a)] , (C.5)

where we define fH(s, a) = 0, 8(s, a).756

C.3.3 Bounding Online Suboptimality via Performance Difference Lemma757

Lemma C.6 (Lemma 4 of Song et al. [52], performance difference lemma). For any function758

f = (f0, . . . , fH�1) where fh : S ⇥ A 7! R and h 2 [H � 1], we have759

Es⇠d0

h
max

a

f0(s, a) � V ⇡
f

0 (s)
i


H�1X

h=0

���E
s,a⇠d⇡f

h

[fh(s, a) � T fh+1(s, a)]
��� , (C.6)

where we define fH(s, a) = 0, 8s, a.760

20

Lemma C.7 (Lemma 8 of Song et al. [52], upper bounding bilinear class). For any k � 2 and761

h 2 [H � 1], we have762

��⌦Wh(fk), Xh(fk)
↵�� 

��Xh(fk)
��
⌃�1

k�1;h

vuut
k�1X

i=1

E
s,a⇠dfi

h

h�
fk

h
� T fk

h+1

�2i
+ �B2

W
, (C.7)

where ⌃k�1;h is defined as (B.5) and we use df
k

h
to denote d⇡

f
k

h
.763

Lemma C.8 (Lemma 6 of Song et al. [52], bounding the inverse covariance norm). Let764

Xh(f1), . . . , Xh(fK) 2 Rd
be a sequence of vectors with

��Xh(fk)
��

2
 BX < 1, 8k  K.765

Then we have766
KX

k=1

��Xh(fk)
��
⌃�1

k�1;h


s

2dK log

✓
1 +

KB2
X

�d

◆
, (C.8)

where we define ⌃k;h :=
P

k

⌧=1 Xh(f⌧)Xh(f⌧)T + �I and we assume � � B2
X

holds 8k 2 [K].767

D Environment Details768

D.1 Antmaze769

The Antmaze navigation tasks aim to control an 8-DoF ant quadruped robot to move from a starting770

point to a desired goal in a maze. The agent will receive sparse +1/0 rewards depending on whether771

it reaches the goal or not. We study each method on “medium” and “hard” (shown in Figure 5)772

mazes which are difficult to solve, using the following datasets from D4RL [10]: large-diverse,773

large-play, medium-diverse, and medium-play. The difference between “diverse” and “play”774

datasets is the optimality of the trajectories they contain. The “diverse” datasets contain the trajectories775

commanded to a random goal from random starting points, while the “play” datasets contain the776

trajectories commanded to specific locations which are not necessarily the goal. We used an episode777

length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained the agent using the offline778

dataset for 1M steps. We then trained online fine-tuning for 1M environment steps for each method.779

D.2 Franka Kitchen780

The Franka Kitchen domain require controlling a 9-DoF Franka robot to arrange a kitchen environment781

into a desired configuration. The configuration is decomposed into 4 subtasks, and the agent will782

receive rewards of 0, +1, +2, +3, or +4 depending on how many subtasks it has managed to solve. To783

solve the whole task and reach the desired configuration, it is important to learn not only how to solve784

each subtask, but also to figure out the correct order to solve. We study this domain using datasets785

with three different optimalities: kitchen-complete, kitchen-partial, and kitchen-mixed.786

The “complete” dataset contains the trajectories of the robot performing the whole task completely.787

The “partial” dataset partially contains some complete demonstrations, while others are incomplete788

demonstrations solving the subtasks. The “mixed” dataset only contains incomplete data without any789

complete demonstrations, which is hard and requires the highest degree of stitching and generalization790

ability. We used an episode length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained791

the agent using the offline dataset for 500K steps. We then performed online fine-tuning for 1.25M792

environment steps for each method.793

D.3 Adroit794

The Adroit domain involves controlling a 24-DoF shadow hand robot. There are 3 tasks we consider795

in this domain: pen-binary, relocate-binary, relocate-binary. These tasks comprise a796

limited set of narrow human expert data distributions (⇠ 25) with additional trajectories collected by797

a behavior-cloned policy. We truncated each trajectory and used the positive segments (terminate798

when the positive reward signal is found) for all methods. This domain has a very narrow dataset799

distribution and a large action space. In addition, learning in this domain is difficult due to the sparse800

reward, which leads to exploration challenges. We utilized a variant of the dataset used in prior work801

[44] to have a standard comparison with SOTA offline fine-tuning experiments that consider this802

domain. For the offline learning phase, we pre-trained the agent for 20K steps. We then performed803

online fine-tuning for 300K environment steps for the pen-binary task, and 1M environment steps804

for the door-binary and relocate-binary tasks. The episode length is 100, 200, and 200 for805

pen-binary, door-binary, and relocate-binary respectively.806

21

D.4 Visual Manipulation Domain807

The Visual Manipulation domain consists of a pick-and-place task. This task is a multitask formulation808

explored in the work, Pre-training for Robots (PTR) [33]. Here each task is defined as placing an809

object in a bin. A distractor object was present in the scene as an adversarial object which the agent810

had to avoid picking. There were 10 unique objects and no overlap between the task objects and811

the interfering/distractor objects. The episode length is 40. For the offline phase, we pre-trained the812

policy with offline data for 50K steps. We then performed online fine-tuning for 100K environment813

steps for each method, taking 5 gradient steps per environment step.814

E Experiment Details815

E.1 Normalized Scores816

The visual-manipulation, adroit, and antmaze domains are all goal-oriented, sparse reward817

tasks. In these domains, we computed the normalized metric as simply the goal achieved rate for each818

method. For example, in the visual manipulation environment, if the object was placed successfully in819

the bin, a +1 reward was given to the agent and the task is completed. Similarly, for the door-binary820

task in the adroit tasks, we considered the success rate of opening the door. For the kitchen task, the821

task is to solve a series of 4 sub-tasks that need to be solved in an iterative manner. The normalized822

score is computed simply as #tasks solved
total tasks .823

E.2 Mixing Ratio Hyperparameter824

In this work, we explore the mixing ratio parameter m, which is used during the online fine-tuning825

phase. The mixing ratio is either a value in the range [0, 1] or the value -1. If this mixing ratio is826

within [0, 1], it represents what percentage of offline and online data is seen in each batch when827

fine-tuning. For example, if the mixing ratio m = 0.25, that means for each batch we sample 25%828

from the offline data and 75% from online data. Instead, if the mixing ratio is -1, the buffers are829

appended to each other and sampled uniformly.830

E.3 Details and Hyperparameters for CQL and Cal-QL831

We list the hyperparameters for CQL and Cal-QL in Table 3. We utilized a variant of Bellman backup832

that computes the target value by performing a maximization over target values computed for k833

actions sampled from the policy at the next state, where we used k = 4 in visual pick and place834

domain and k = 10 in others. In the Antmaze domain, we used the dual version of CQL [32] and835

conducted ablations over the value of the threshold of the CQL regularizer R(✓) (target action gap)836

instead of ↵. In the visual-manipulation domain which is not presented in the original paper, we837

swept over the alpha values of ↵ = 0.5, 1, 5, 10, and utilized separate ↵ values for offline (↵ = 5)838

and online (↵ = 0.5) phases for the final results. We built our code upon the CQL implementation839

from https://github.com/young-geng/JaxCQL [14]. We used a single NVIDIA TITAN RTX840

chip to run each of our experiments.841

E.4 Details and Hyperparameters for IQL842

We list the hyperparameters for IQL in Table 4. To conduct our experiments, we used the of-843

ficial implementation of IQL provided by the authors [30], and primarily followed their recom-844

mended parameters, which they previously ablated over in their work. In the visual-manipulation845

domain which is not presented in the original paper, we performed a parameter sweep over expec-846

tile ⌧ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and temperature � = 1, 3, 5, 10, 25, 50 and selected the847

best-performing values of ⌧ = 0.7 and � = 10 for our final results. In addition, as the second848

best-performing method in the visual-manipulation domain, we also attempted to use separate �849

values for IQL, for a fair comparison with CQL and Cal-QL. However, we found that it has little to850

no effect, as shown in Figure 9.851

E.5 Details and Hyperparameters for AWAC and ODT852

We used the JAX implementation of AWAC from https://github.com/ikostrikov/jaxrl [29].853

We primarily followed the author’s recommended parameters, where we used the Lagrange multiplier854

� = 1.0 for the Antmaze and Franka Kitchen domains, and � = 0.3 for the Adroit domain. In855

22

https://github.com/young-geng/JaxCQL
https://github.com/ikostrikov/jaxrl

the visual-manipulation domain, we performed a parameter sweep over � = 0.1, 0.3, 1, 3, 10 and856

selected the best-performing value of � = 1 for our final results. For ODT, we used the author’s857

official implementation from https://github.com/facebookresearch/online-dt, with the858

author’s recommended parameters they used in the Antmaze domain. In addition, in support of our859

result of AWAC and ODT (as shown in Table 1), the poor performance of Decision Transformers and860

AWAC in the Antmaze domain can also be observed in Table 1 and Table 2 of the IQL paper [30].861

E.6 Details and Hyperparameters for SAC, SAC + Offline Data, Hybrid RL and CQL + SAC862

We used the standard hyperparameters for SAC as derived from the original implementation in [19].863

We used the same other hyperparameters as CQL and Cal-QL. We used automatic entropy tuning for864

the policy and critic entropy terms, with a target entropy of the negative action dimension. For SAC,865

the agent is only trained with the online explored data. For SAC + Offline Data, the offline data and866

online explored data is combined together and sampled uniformly. For Hybrid RL, we use the same867

mixing ratio used for CQL and Cal-QL presented in Table 3. For CQL + SAC, we first pre-train with868

CQL and then run online fine-tuning using both offline and online data, also using the same mixing869

ratio presented in Table 3.870

Table 3: CQL, Cal-QL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
↵ 1 5 - 5 (online: 0.5)
target action gap - - 0.8 -
mixing ratio -1, 0.25, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

Table 4: IQL Hyperparameters
Hyperparameters Adroit Kitchen Antmaze Manipulation
expectile ⌧ 0.8 0.7 0.9 0.7
temperature � 3 0.5 10 10
mixing ratio -1, 0.2, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

F Extended Discussion on Limitations of Existing Fine-Tuning Methods871

0 25000 50000 75000 100000 125000 150000 175000 200000
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

�=1

�=3

�=5

�=10

�=25

�=50

Figure 9: Abalation on IQL’s online temperature values: The change in the temperature � used in online
fine-tuning phase has little to no effect on the sample efficiency.

Figure 10: IQL and CQL: Step 0 on the x-axis is the performance after offline pre-training. Observe while
CQL suffers from initial policy unlearning, IQL improves slower throughout fine-tuning.

23

https://github.com/facebookresearch/online-dt

In this section, we aim to highlight some potential reasons behind the slow improvement of other872

methods in our empirical analysis experiment in Section 4.1, and specifically, we use IQL for the873

analysis. We first swept over the temperature � values used in the online fine-tuning phase for IQL,874

which controls the constraint on how closely the learned policy should match the behavior policy. As875

shown in Figure 9, the change in the temperature � has little to no effect on the sample efficiency.876

Another natural hypothesis is that IQL improves slowly because we are not making enough updates877

per unit of data collected by the environment. To investigate this, we ran IQL with (a) five times as878

many gradient steps per step of data collection (UTD = 5), and (b) with a more aggressive policy879

update. Observe in Figure 10 that (a) does not improve the asymptotic performance of IQL, although880

it does improve CQL meaning that there is room for improvement on this task by making more881

gradient updates. Observe in Figure 10 that (b) often induces policy unlearning, similar to the failure882

mode in CQL. These two observations together indicate that a policy constraint approach can slow883

down learning asymptotically, and we cannot increase the speed by making more aggressive updates884

as this causes the policy to find erroneously optimistic out-of-distribution actions, and unlearn the885

policy learned from offline data.886

G Impact of Estimation Errors in the Reference Value Function887

Figure 11: The performance of
Cal-QL using a neural net ap-
proximator for the reference value
function is comparable to using
the Monte-Carlo return.

In our experiments, we compute the reference value functions using888

Monte-Carlo return estimates. However, this may not be available in889

all tasks. How does Cal-QL behave when reference value functions890

must be estimated using the offline dataset itself? To answer this,891

we ran an experiment on the kitchen domain, where instead of892

using an estimate for Qµ based on the Monte-Carlo return, we train893

a neural network function approximator Qµ

✓
to approximate Qµ894

via supervised regression on to Monte-Carlo return, which is then895

utilized by Cal-QL. Observe in Figure 11, that the performance of896

Cal-QL largely remains unaltered. This implies as long as we can897

obtain a reasonable function approximator to estimate the Q-function898

of the reference policy (in this case, the behavior policy), errors in899

the reference Q-function do not affect the performance of Cal-QL900

significantly.901

H Initial Unlearning of CQL on Multiple Tasks902

In this section, we show the learning curves of CQL and Cal-QL from Figure 6 and zoom in on the903

x-axis to provide a clearer visualization of CQL’s initial unlearning in the Franka Kitchen, Adroit,904

and the visual-manipulation domains. As depicted in Figure 12, it is evident across all tasks that905

while CQL experiences initial unlearning, Cal-QL can effectively mitigate it and quickly recovers its906

performance. Regarding the Antmaze domain, as we discussed in section 7.3, CQL does not exhibit907

initial unlearning since the default dataset has a high coverage of data. However, we can observe a908

similar phenomenon if we narrow down the dataset distribution (as shown in Figure 8).909

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ⇥105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-partial-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ⇥105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-mixed-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ⇥105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

kitchen-complete-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ⇥104

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

visual-manipulation

Cal-QL (Ours) CQL

0 1 2 3 4 5

Environment Steps ⇥104

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

pen-binary-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment Steps ⇥105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

door-binary-v0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Environment Steps ⇥105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

S
co

re

relocate-binary-v0

Figure 12: While CQL experiences initial unlearning, Cal-QL effectively mitigates it and quickly recovers its
performance.

24

	Introduction
	Related Work
	Preliminaries and Background
	When Can Offline RL Initializations Enable Fast Online Fine-Tuning?
	Empirical Analysis
	Conditions on the Offline Initialization that Enable Fast Fine-Tuning

	Cal-QL: Calibrated Q-Learning
	Theoretical Analysis of Cal-QL
	Experimental Evaluation
	Empirical Results
	Cal-QL With High Update-to-Data (UTD) Ratio
	Understanding the Behavior of Cal-QL

	Discussion, Future Directions, and Limitations
	Implementation details of Cal-QL
	Cal-QL Algorithm
	Python Implementation

	Regret Analysis of Cal-QL
	Preliminaries
	Notations
	Assumptions and Defintions
	Discussions on the Assumptions
	Proof Structure Overview
	Our Results

	Key Results of HyQ song2023hybrid
	Assumptions
	Main Theorem of Hy-Q
	Key Lemmas
	Least Squares Generalization and Applications
	Bounding Offline Suboptimality via Performance Difference Lemma
	Bounding Online Suboptimality via Performance Difference Lemma

	Environment Details
	Antmaze
	Franka Kitchen
	Adroit
	Visual Manipulation Domain

	Experiment Details
	Normalized Scores
	Mixing Ratio Hyperparameter
	Details and Hyperparameters for CQL and Cal-QL
	Details and Hyperparameters for IQL
	Details and Hyperparameters for AWAC and ODT
	Details and Hyperparameters for SAC, SAC + Offline Data, Hybrid RL and CQL + SAC

	Extended Discussion on Limitations of Existing Fine-Tuning Methods
	Impact of Estimation Errors in the Reference Value Function
	Initial Unlearning of CQL on Multiple Tasks

