Under review as a conference paper at ICLR 2025

A APPENDIX

APPENDIX

The appendix is organized as follows:

e Appendix [A] includes additional detailed algorithms in the Automatic-Dataset-Construction
pipeline.

e Appendix [B]contains dataset statistics and more exploratory data analysis of Clothing ADC.

e Appendix [C|includes experiment details of our benchmark on label noise detection, label noise
learning, and class-imbalanced learning.

BROADER IMPACTS

Our paper introduces significant advancements in dataset construction methodologies, particularly
through the development of the Automatic Dataset Construction (ADC) pipeline:

¢ Reduction in Human Workload: ADC automates the process of dataset creation, significantly
reducing the need for manual annotation and thereby decreasing both the time and costs associated
with data curation.

e Enhanced Data Quality for Research Communities: ADC provides high-quality, tailored
datasets with minimal human intervention. This provides researchers with datasets in the fields of
label noise detection, label noise learning, and class-imbalanced learning, for exploration as well
as fair comparisons.

e Support for Customized LLM Training: The ability to rapidly generate and refine datasets
tailored for specific tasks enhances the training of customized Large Language Models (LLMs),
increasing their effectiveness and applicability in specialized applications.

Furthermore, the complementary software developed alongside ADC enhances these impacts:

e Data Curation and Quality Control: The software aids in curating and cleaning the collected
data, ensuring that the datasets are of high quality that could compromise model training.

¢ Robust Learning Capabilities: It incorporates methods for robust learning with collected data,
addressing challenges such as label noise and class imbalances. This enhances the reliability and
accuracy of models trained on ADC-constructed datasets.

Together, ADC and its accompanying software significantly advance the capabilities of machine
learning researchers and developers by providing efficient tools for high-quality customized data
collection, and robust training.

LIMITATIONS

While ensuring the legal and ethical use of datasets, including compliance with copyright laws and
privacy concerns, is critical, our initial focus is on legally regulated and license-friendly data sources
available through platforms like Google or Bing. Addressing these ethical considerations is beyond
the current scope but remains an essential aspect of dataset usage.

Besides, similar to Traditional-Dataset-Construction (TDC), Automatic-Dataset-Construction (ADC)
is also unable to guarantee fully accurate annotations.

16

Under review as a conference paper at ICLR 2025

A DETAILED ALGORITHMS IN THE GENERATION OF
AUTOMATIC-DATASET-CONSTRUCTION

A.1 THE ALGORITHM OF IMAGE DATA COLLECTION IN ADC

Algorithm 2 Image Data Collection in ADC

1: procedure IMAGEDATACOLLECTION

2: Part A: Get attributes from dataset design

3: attributes < Step 1 Dataset Design

4: categories « ["sweater", "shirt", "pants", ...] > List of categories
5: target_category < "sweater" > Target category (e.g. "

6: attributes <« attributes[target_category] > Get attributes for target category
7 colors, patterns, materials < attributes|"color"],

8: attributes|"pattern"],

9: attributes|"material"]
10: Part B: Create search queries

11: search_queries < { ¢+ p + m + target_category |

12: ¢ € colors,

13: p € patterns,

14: m € materials} > (e.g. "beige fisherman cotton sweater")
15: Part C: Launch distributed image search

16: image_data < distributed_search(search_queries,

17: api = Google_Images | Bing_Images,

18: n_process = 30)

19: end procedure

A.2 THE ALGORITHM OF LEARNING-CENTRIC CURATION METHOD IN ADC

Algorithm 3 Learning-centric curation (early-learning memorization behavior)

1: procedure EARLYSTOPCE(noisyDataset, percentage=25%)
2: Part A: Train classifier over the dataset and apply early stopping
3 D + Load training data > (images and labels)
4: model < Initialize neural network model > (e.g. ResNet)
5: loss_fn < Define loss function > (e.g. cross-entropy)
6 optimizer < Choose optimizer > (e.g. SGD, Adam)
7 for epoch =1to E € {1,2} do
8: model < Trainer(D, loss_fn, optimizer)
9: end for

10: Part B: Record predictions and confidence levels

11: for batch in D do

12: images < Get batch of images

13: outputs < Forward pass: model(images)

14: con fidence < Get confidence levels: softmax(outputs)

15: end for

16: Part C: Remove samples with lowest % confidence level

17: threshold <— Calculate threshold: percentile(con fidence, 100 — z)

18: D «+ Filter out samples with confidence below threshold

19: Return D
20: end procedure

B DATASET STATISTICS IN CLOTHING-ADC

B.1 COLLECTED CLOTHING ADC DATASET

Our collected Clothing-ADC dataset can be found here: Google Drive.

17

https://drive.google.com/file/d/1U-NXvHfmUUqL1l5_PspBIcJwXrlxHZe4/view?usp=sharing

Under review as a conference paper at ICLR 2025

B.2 ATTRIBUTES CANDIDATES IN CLOTHING-ADC

Our automated dataset creation pipeline is capable of generating numerous designs per attribute, as
shown in Table[6] This table provides a detailed list of designs generated by our pipeline, from which
we selected a subset to include in our dataset.

Color Material Pattern

Animal print Gold Pastel Acrylic Lace Tulle Abstract Camouflage Fishnet Leather Printed Thongs
Beige Gray Peach Alpaca Leather Tweed Abstract Floral Chalk stripe Floral Logo Quilted Tie-Dye
Black Green Pink Angora Lightweight Twill Animal Print Check Floral print Low rise Reversible Tie-dye
Blue Grey Plum Bamboo Linen Velvet Animal print Checkered Fringe Mesh Ribbed Toile
Blush Pink Heather Purple Breathable ~ Mesh Viscose Aran Chevron G-strings Military Ripples Trench
Bright Red Ivory Red Cashmere Microfiber Water-resistant | Argyle Colorblock Galaxy Mock turtleneck ~ Satin Tribal
Brown Khaki Rich Burgundy Chambray Modal Windproof Aztec Colorblock Garter Stitch ~ Mosaic Scales Tuck stitch
Burgundy Lavender Royal Blue Chiffon Mohair Wool Basket check Cotton Garter stitch ~ Moss stitch Seamless Tweed
Burnt Orange Light Grey Rust Corduroy Neoprene acrylic Basket rib Cropped Geometric oto Seed stitch Twill
Champagne Maroon Rustic Orange Cotton Nylon bamboo Basket weave Damask Gingham Nailhead Shadow stripe Vintage-inspired
Charcoal Metallic Sage Crochet Organza cotton Basketweave Denim Glen check Nehru Sharkskin ‘Waterproof
Charcoal Grey ~Mustard Silver Denim PVC hemp Batik Diagonal grid ~ Gradient Nordic Sherpa Windowpane
Cream Mustard Yellow Soft Pink Down Polyester linen Bikini Diamond Graphic Ombre Silk
Cream White Navy Striped Embroidered Rayon Tycra Birdseye Ditsy Grid Oversized Slip Stitch
Dark Plum Navy Blue Tan Flannel Reflective modal Blazer Dogtooth Herringbone ~ Oxford Slip stitch
Deep Blue Neon Teal Fleece Ripstop nylon Bomber Embossed High waisted ~ Paisley Solid
Deep Purple Nude Turquoise Fringe Satin polyester Boxer briefs ~ Embroidered Honeycomb Peacoat Striped
Earthy Beige ~ Olive Vibrant Turquoise | Fur Silk rayon Briefs Emoji Houndstooth ~ Pin Dot Stripes
Floral Olive Green ‘Warm Brown Gore Tex Softshell silk Brioche Entrelac Ikat Pinstripe Studded
Forest Green Orange White Gore-Tex Spandex spandex Broken rib Eyelet Intarsia Plaid Suede
Fuchsia Pale Yellow Yellow Hemp Suede tencel Broken stripe Fair Isle Jacquard Polka Dot Tartan

lilac Insulated Synthetic viscose Cable Fibonacci Knit and Purl Polka dot Teddy

Jersey Synthetic Blend ool Cable knit Fisherman Lace Prince of Wales Textured
Knit Tencel

Table 6: The union of attributes across all clothing types in Clothing-ADC dataset.

B.3 HUMAN-IN-THE-LOOP CURATION FOR CLOTHINGADC TESTSET

Our automated dataset collection pipeline enabled us to create a large, noisy labeled dataset. We
asked annotators to select the best-fitting options from a range of samples, as shown in Figure [5]
with each task including at least 4 samples and workers completing 10 tasks per HIT at a cost of
$0.15 per task, totaling $150 estimated wage of $2.5-3 per hour, and after further cleaning the label
noise, we ended up with 20,000 samples in our test set. To participate, workers had to meet specific
requirements, including being Master workers, having a HIT Approval Rate above 85%, and having
more than 500 approved HITs, with the distribution of worker behavior shown in Figure [6]

[Task 6 / 10] Please find 4 or more images of T-shirt with:

Color: Navy, Material: silk, Pattern: Polka dot

If you are not familiar with the any of these key words, feel free to search it on Google. Try your best to find the most relevant images. I am genuinely interested in your opinion and gencrous in accepting your answers.

‘Z‘

m
a 9

'
A

D

<

Next task

Figure 5: Collection of Clothing-ADC test set: A filtering task to the worker instead of annotation
from scratch.

18

Under review as a conference paper at ICLR 2025

30 1404
w254 [] 1201]
g £ 100-
9 =
) I
o Y—
= o 80
Y— —
o 15 [
E .g 60
Q10 =]
= > 40
=]
Z 5 T 20
0 oLt - : —=
0 10 20 30 40 0 1000 2000 3000

Number of HITs completed Time spent per HIT (seconds)

(a) Distribution of the HITs completed per worker (b) Distribution of work time in seconds per HIT.

Figure 6: The behaviors of workers in the creation of test set.

B.4 CoOST ANALYSIS FOR CLOTHINGADC HUMAN-IN-THE-LOOP DATA CURATION

When clean data is required, we recommend combining human involvement with algorithmic ap-
proaches to ensure high accuracy. We collected 20,000 samples for both the test set and evaluation
set, ensuring a robust and reliable dataset.

We evaluate human effort in Table[7. We used the number of mouse clicks required for each label,
excluding overhead costs due to different layout designs across datasets. While other metrics like
time spent or monetary cost could be used within the same dataset, they are not easily comparable
across datasets with different setups and participants.

Dataset Class Count | Noise Rate pe};:rillple Laggszgﬁf:k) Total Cost ($) | Samples Collected
ClothingADC Testset 12k Clean 0.25 $150/ 150 20k / 20k
Cifar-10 N 10 ~18% 1 3 $450 50k
Cifar-100 N 100 ~40% 1 1 $700 50k
Cifar-10 H 10 5% 1 50 $3,856.5 20k

Table 7: Human Effort Comparison with Existing Label Noise Datasets.

B.5 "CLEAN SET" FROM TRADITIONAL METHODS IS NOT ALWAYS CLEAN

The noise rate in the manually annotated dataset iNaturalist is close to 0, suggesting that traditional
methods requiring experts are more robust than our proposed ADC pipeline. However, we would like
to cite|Northcutt et al.|(2021b) that even well-curated and widely-adopted “clean” test datasets, which
have invested significant effort in ensuring data quality, may still contain errors || This highlights that
achieving a 0% noise rate is extremely challenging, even with expert annotation. The table below is
the evidence of such observations (from Table 2 in |Northcutt et al. (2021b)).

Moreover, a “fully-cleaned” set typically consumes much more time and money. When the budget is
limited, the annotation accuracy is much lower. For example, the collection of CIFAR-10N |Wei et al.
(2022b), where each training image of CIFAR-10 (a relatively easy 10-class classification) is assigned
to 3 independent annotators. To collect 3 annotations for each of the 50K images, it takes >2 days
and >1000 dollars on Amazon Mturk. However, the overall annotation error is approximately 18%.
As for CIFAR-100N |Wei et al.| (2022b), this is a much more challenging task where each annotator
is requested to find out the most relevant label for each image among 100 classes (50K images in
all). It takes >2 days and > 800 dollars on Amazon Mturk. However, the overall annotation error is
approximately 40%.

“https://labelerrors.com/

19

Under review as a conference paper at ICLR 2025

Dataset (Test Set) | Size % Error
MNIST 10000 0.15
CIFAR-10 10000 0.54
CIFAR-100 10000 5.85
Caltech-256 29780 1.84
ImageNet 50000 5.83
QuickDraw 50426266 | 10.12
20News 7532 1.09
IMDB 25000 2.90
Amazon Reviews | 9996437 3.90
AudioSet 20371 1.35

Table 8: Error comparison across datasets (from Table 2 in Northcutt et al. (2021b))

C EXPERIMENT DETAILS

C.1 DISTRIBUTION OF HUMAN VOTES FOR LABEL NOISE EVALUATION

On the annotation page, we presented the image and its original label to the worker and asked if
they believed the label was correct (Figure[7). They input their evaluation by clicking one of three
buttons. Note that we encouraged workers to categorize acceptable samples as "unsure". The resulting
distribution is shown in Table[0. Using a simple majority vote aggregation, we found that the noise
rate in our dataset is 22.15%. However, if a higher level of certainty is required for clean labels,
we can apply a more stringent aggregation method, considering more samples as mislabeled. In
the extreme case where any doubts from any of the three annotators can disqualify a sample, our
automatically collected dataset still retains 61.25% of its samples.

For the label noise evaluation task, we utilized a subset of 20,000 samples from the Clothing-ADC
dataset, collecting three votes from unique workers for each sample. Each Human Intelligence
Task (HIT) included 20 samples and cost $0.05. To participate, workers had to meet the following
requirements: (1) be Master workers, (2) have a HIT Approval Rate above 85%, and (3) have more
than 500 approved HITs. The total cost for this task was $150, estimated wage of $2.5-3 per hour.

We show the distribution of worker behavior during the noise evaluation task in Figure[8] Figure [§[a)
shows the distribution of the amount of HIT completed per worker while neglecting ids with 1-2
submissions. There is a total of 49 unique workers. Figure[8{b) shows the distribution of time spent
per HIT.

[Task 2 / 2] The following image has been labeled as Dress

—‘ escaa
/
" !
PR

PR AN R -
= & R\
_Su

é

o &3

Correct Not_Sure WRONG!!!

If you are not familiar with the any of these key words, feel free to search it on Google. Try your best to find the most relevant images. I am genuinely interested in your opinion and generous in accepting your answers.

Figure 7: Label noise evaluation worker page

20

Under review as a conference paper at ICLR 2025

201 — —
700
o
g1 ooy L
5 T
o 500
= G
S 10 < 400
. 3
2 € 300
E >
5 s = 200
=
100
0 . ! . . . ﬂ "_‘ 01—~ ! = = .
0 50 100 150 200 250 0 100 200 300 400 500
Number of HITs completed Time spent per HIT (seconds)

(a) Distribution of the HITs completed per worker (b) Distribution of work time in seconds per HIT.

Figure 8: The behaviors of workers in the collection of label noise evaluation.

Table 9: Distribution of Human Votes for Label Noise Evaluation: We employed human annotators
to evaluate a subset of 20,000 samples from our collected dataset, with each sample receiving three

votes from distinct annotators.

Human Votes Percentage
Yes, Yes, Yes 61.25%
Yes, Yes, Unsure 6.10%
Yes, Yes, No 10.50%
Else 22.15%

21

Under review as a conference paper at ICLR 2025

C.2 NOISY LEARNING AND CLASS IMBALANCE LEARNING BENCHMARK IMPLEMENTATION
DETAILS

Our code refers to zip file in supplementary material.

I train_set = ClothinglmPP (root, image_size, split="train")
> tiny_set_ids = train_set.get_tiny_ids (seed=0)
3 tiny_train_set = Subset (train_set, tiny_set_ids) # Get the tiny version

of the dataset
4 val_set = ClothinglmPP (
5 root, image_size, split="val", pre_load=train_set.data_package
(3)
7 test_set = ClothinglmPP (
8 root, image_size, split="test", pre_load=train_set.data_package

9)

Il train_loader = DataLoader (
12 train_set, batch_size=batch_size, shuffle=True, num workers=
num_workers
13)
14 tiny_train_loader = DataLoader (
15 tiny_train_set, batch_size=batch_size, shuffle=True, num_workers=
num_workers
16)
17 val_loader = DatalLoader (
18 val_set, batch_size=batch_size, shuffle=False, num_workers=
num_workers
19)
20 test_loader = DatalLoader (
21 test_set, batch_size=batch_size, shuffle=False, num_workers=
num_workers
2)
Listing 1: How to load data. Line 1 loads the full set of our dataset. Line 2 and Line 3 load the tiny
version of our dataset. Line 4 creates the validation set. Line 5 creates the testing set. Line 11 to Line
20 create the data loader.

I python examples/main.py --config configs/ClothinglMPP/default.yaml # Run
Cross Entropy

> python examples/main_peer.py --config configs/ClothinglMPP/default.yaml #
Run Peer Loss

3 python examples/main_jocor.py —-config configs/ClothinglMPP/default_jocor
.yaml # Run Jocor

4 python examples/main_coteaching.py —--config configs/ClothinglMPP/
default_coteaching.yaml # Run Co-teaching

5 python examples/main_drops.py —-config configs/ClothinglMPP/default_drops
.yaml # Run drops

Listing 2: The example of the command we use to run the algorithm in one line

i inherit_from: configs/default.yaml

> data:

3 root: ' /root/clothlm data_ v3’

4 image_size: 256

5 dataset_name: "clothinglmpp"

6 imbalance_factor: 1 # 1 means no imbalance
7 tiny: False

o train:

10 num_workers: 8

1 loss_type: "ce’

12 loop_type: "default’ # ’default’,’peer’,’drops’
13 epochs: 20

14 global _iteration: 999999999

22

Under review as a conference paper at ICLR 2025

batch_size: 64

scheduler T max: 40
scheduler_type: ’'step’
scheduler_gamma: 0.8
scheduler_step_size: 2
print_every: 100
learning_rate: 0.01

general:
save_root: ' ./results/’
whip_existing_files: True # Whip exisitng files
logger:
project_name: 'ClothinglMPP’
frequency: 200

model:
name: "resnet50"
pretrained_model: ' ITMAGENET1K_ V1’
cifar: False

test:
<<: #train
Listing 3: The example of YAML config file

C.3 LABEL NOISE DETECTION BENCHMARK

We run four baselines for label noise detection, including CORES |Cheng et al.|(2020), confident
learning |[Northcutt et al. (2021a), deep k-NN |Papernot & McDaniel (2018) and Simi-Feat|Zhu et al.
(2022). All the experiment is run for one time following |Cheng et al.| (2020); |Zhu et al.| (2022).

The experiment platform we run is a 128-core AMD EPYC 7742 Processor CPU and the memory is
128GB. The GPU we use is a single NVIDIA A100 (80GB) GPU. For the dataset, we used human
annotators to evaluate whether the sample has clean or noisy label as mentioned in Appendix [C.T]
We aggressively eliminates human uncertainty factors and only consider the case with unanimous
agreement as a clean sample, and everything else as noisy samples. The backbone model we use is
ResNet-50 He et al.|(2016). For all the baselines, the parameters we use are the same as the original
paper except the data loader. We skip the label corruption and use the default value from the original
repository. For CORES, the cores loss whose value is smaller than 0 is regarded as the noisy sample.
For confidence learning, we use the reposito from the clean lab and the default hyper-parameter.
For deep k-NN, the k we set is 100. For SimiFeat, we set k as 10 and the feature extractor is CLIP.

C.4 LABEL NOISE LEARNING BENCHMARK

The platform we use is the same as label noise detection. The backbone model we use is ResNet-50
He et al.|(2016). For the full dataset, we run the experiment for 1 time. For the tiny dataset, we run
the experiments for 3 times. The tiny dataset is sampled from the full set whose size is 50. The
base learning rate we use is 0.01. The base number of epochs is 20. The hyper-parameters for each
baseline method are as follows. For backward and forward correction, we train the model using
cross-entropy (CE) loss for the first 10 epochs. We estimate the transition matrix every epoch from
the 10th to the 20th epoch. For the positive and negative label smoothing, the smoothed labels are
used at the 10th epoch. The smooth rates of the positive and negative are 0.6 and -0.2. Similarly, for
peer loss, we train the model using CE loss for the first 10 epochs. Then, we apply peer loss for the
rest 10 epochs and the learning rate we use for these 10 epochs is 1e-6. The hyper-parameters for
f-div is the same as those of peer loss. For divide-mix, we use the default hyper-parameters in the
original paper. For Jocor, the hyper-parameters we use is as follows. The learning rate is 0.0001. A
is 0.3. The epoch when the decay starts is 5. The hyper-parameters of co-teaching is similar to Jocor.
For logitclip, 7 is 1.5. For taylorCE, the hyper-parameter is the same as the original paper.

3https://github.com/cleanlab/cleanlab

23

Under review as a conference paper at ICLR 2025

C.5 CLASS-IMBALANCED LEARNING BENCHMARK

The platform we use is the same as label noise detection. The backbone model we use is ResNet-50
He et al.|(2016). For different imbalance ratio (p = 10, 50, 100). The class distribution is shown in
Table For all the methods, the base learning rate is 0.0001 and the batch size is 448. The dataset
we use is not full dataset because we want to disentangle the noisy label and class imbalance learning.
We use Docta and a pre-trained model trained with cross-entropy to filter the data whose prediction
confidence is low. Due to the memorization effect, we fine-tune the model for 2 epochs to filter the
data. We remove 45.15% data in total where Docta removes 26.36% while CE removes 25.00% with
a overlap of 6.20%. Thus, the datset we use for class-imbalance learning is 54.85% of the full dataset.

imbalance ratio (p) | Class Distribution Total Number
10 [39297, 31875, 25854, 20971, 17010, 13797, 11191, 9078, 7363, 5972, 4844, 3929] 191181
20 [39297, 27536, 19295, 13520, 9474, 6638, 4652, 3259, 2284, 1600, 1121, 785] 129461
100 [39297, 25854, 17010, 11191, 7363, 4844, 3187, 2097, 1379, 907, 597, 392] 114118

Table 10: The class distribution for different imbalance ratio

D DEMO APPLICATION OF ADC IN OTHER FIELDS

Our Automated Dataset Construction (ADC) pipeline is best suited for image classification tasks
where the relevant knowledge can be easily searched and retrieved from the internet. Example
applications include, but are not limited to:

* Food classification

* Hairstyle classification

* Vehicle classification

¢ Home decor classification

* Plant classification

* Sport equipment classification

 Jewelry classification

Food Classification To illustrate the effectiveness of our ADC pipeline, let’s consider a more detailed
example of food classification. We used the prompt "Food Classification: Create a dataset with
various types of cuisine, and sub-classes for specific dishes, ingredients, or cooking methods. Help me
to find 10 different attributes to describe food." LLM generated a range of subcategories to describe
different types of food, including, but are not limited to:

* Cuisine type (Italian, Chinese, Indian, etc.)

* Dish Type (Appetizer, main course, dessert, etc.)

* Protein source (Beef, Chicken, Tofu, etc.)

¢ Cooking method (Grilled, Baked, Fried, etc.)

* Spice level (Mild, Medium, Spicy, etc)

* Allergen warning (Gluten-free, Nut-free, Dairy-free, etc.)

 Texture (Crunchy, Chewy, Smooth, etc)
Please feel free to use the prompt on your favorite LLMs, or modify it slightly for other tasks that
interest you more. We tried various LLM versions from OpenAl, Meta, Google, and Claude, and all

of them are competent to solve this task, albeit with different preferences for suggesting labels and
descriptions.

24

Under review as a conference paper at ICLR 2025

E COPYRIGHT ISSUE

One possible approach to mitigate the potential copyright issues is to rely on the advanced features in
search engines provided by the leading industry companies. For example, we can use the "Advanced
Image Search => usage rights" function in Google Image Search, which allows users to filter search
results by usage rights.

However, We must clarify that our pipeline is provided "as-is" and that users are responsible for using
the collected data at their own risk. We cannot guarantee that the data is free from copyright issues,
and users must take their own steps to ensure compliance with applicable laws and regulations. This
approach is similar to that taken by the LAION-5B dataset|Schuhmann et al. (2022), which states
that "The images are under their copyright."”

25

	Introduction
	Automatic-Dataset-Construction (ADC)
	The ADC pipeline
	Clothing-ADC

	Challenge one: dealing with imperfect data annotations
	The challenge of label noise detection
	Existing approaches to detect label noise
	Clothing-ADC in label noise detection

	The challenge of learning with noisy labels
	Existing approaches to learn with label noise
	Clothing-ADC in label noise learning

	Challenge two: dealing with imbalanced data distribution
	Existing approaches for class imbalance learning
	Clothing-ADC in class-imbalanced learning

	Limitation
	Conclusion
	Appendix
	Detailed algorithms in the generation of Automatic-Dataset-Construction
	The algorithm of image data collection in ADC
	The algorithm of learning-centric curation method in ADC

	Dataset statistics in Clothing-ADC
	Collected Clothing ADC dataset
	Attributes candidates in Clothing-ADC
	Human-in-the-Loop curation for ClothingADC testset
	Cost analysis for ClothingADC Human-in-the-Loop data curation
	"Clean set" from Traditional methods is not always clean

	Experiment details
	Distribution of Human Votes for Label Noise Evaluation
	Noisy learning and class imbalance learning benchmark implementation details
	Label noise detection benchmark
	Label noise learning benchmark
	Class-imbalanced learning benchmark

	Demo application of ADC in other fields
	Copyright issue

