
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

APPENDIX

The appendix is organized as follows:

• Appendix A includes additional detailed algorithms in the Automatic-Dataset-Construction
pipeline.

• Appendix B contains dataset statistics and more exploratory data analysis of Clothing ADC.
• Appendix C includes experiment details of our benchmark on label noise detection, label noise

learning, and class-imbalanced learning.

BROADER IMPACTS

Our paper introduces significant advancements in dataset construction methodologies, particularly
through the development of the Automatic Dataset Construction (ADC) pipeline:

• Reduction in Human Workload: ADC automates the process of dataset creation, significantly
reducing the need for manual annotation and thereby decreasing both the time and costs associated
with data curation.

• Enhanced Data Quality for Research Communities: ADC provides high-quality, tailored
datasets with minimal human intervention. This provides researchers with datasets in the fields of
label noise detection, label noise learning, and class-imbalanced learning, for exploration as well
as fair comparisons.

• Support for Customized LLM Training: The ability to rapidly generate and refine datasets
tailored for specific tasks enhances the training of customized Large Language Models (LLMs),
increasing their effectiveness and applicability in specialized applications.

Furthermore, the complementary software developed alongside ADC enhances these impacts:

• Data Curation and Quality Control: The software aids in curating and cleaning the collected
data, ensuring that the datasets are of high quality that could compromise model training.

• Robust Learning Capabilities: It incorporates methods for robust learning with collected data,
addressing challenges such as label noise and class imbalances. This enhances the reliability and
accuracy of models trained on ADC-constructed datasets.

Together, ADC and its accompanying software significantly advance the capabilities of machine
learning researchers and developers by providing efficient tools for high-quality customized data
collection, and robust training.

LIMITATIONS

While ensuring the legal and ethical use of datasets, including compliance with copyright laws and
privacy concerns, is critical, our initial focus is on legally regulated and license-friendly data sources
available through platforms like Google or Bing. Addressing these ethical considerations is beyond
the current scope but remains an essential aspect of dataset usage.

Besides, similar to Traditional-Dataset-Construction (TDC), Automatic-Dataset-Construction (ADC)
is also unable to guarantee fully accurate annotations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DETAILED ALGORITHMS IN THE GENERATION OF
AUTOMATIC-DATASET-CONSTRUCTION

A.1 THE ALGORITHM OF IMAGE DATA COLLECTION IN ADC

Algorithm 2 Image Data Collection in ADC
1: procedure IMAGEDATACOLLECTION
2: Part A: Get attributes from dataset design
3: attributes Step 1 Dataset Design
4: categories ["sweater", "shirt", "pants", ...] . List of categories
5: target_category "sweater" . Target category (e.g. "sweater")
6: attributes attributes[target_category] . Get attributes for target category
7: colors, patterns,materials attributes["color"],
8: attributes["pattern"],
9: attributes["material"]

10: Part B: Create search queries
11: search_queries { c+ p+m+ target_category |
12: c 2 colors,
13: p 2 patterns,
14: m 2materials} . (e.g. "beige fisherman cotton sweater")
15: Part C: Launch distributed image search
16: image_data distributed_search(search_queries,
17: api = Google_Images | Bing_Images,
18: n_process = 30)
19: end procedure

A.2 THE ALGORITHM OF LEARNING-CENTRIC CURATION METHOD IN ADC

Algorithm 3 Learning-centric curation (early-learning memorization behavior)

1: procedure EARLYSTOPCE(noisyDataset, percentage=25%)
2: Part A: Train classifier over the dataset and apply early stopping
3: D Load training data . (images and labels)
4: model Initialize neural network model . (e.g. ResNet)
5: loss_fn Define loss function . (e.g. cross-entropy)
6: optimizer Choose optimizer . (e.g. SGD, Adam)
7: for epoch = 1 to E 2 {1, 2} do
8: model Trainer(D, loss_fn, optimizer)
9: end for

10: Part B: Record predictions and confidence levels
11: for batch in D do
12: images Get batch of images
13: outputs Forward pass: model(images)
14: confidence Get confidence levels: softmax(outputs)
15: end for
16: Part C: Remove samples with lowest x% confidence level
17: threshold Calculate threshold: percentile(confidence, 100� x)
18: D Filter out samples with confidence below threshold
19: Return D
20: end procedure

B DATASET STATISTICS IN CLOTHING-ADC

B.1 COLLECTED CLOTHING ADC DATASET

Our collected Clothing-ADC dataset can be found here: Google Drive.

17

https://drive.google.com/file/d/1U-NXvHfmUUqL1l5_PspBIcJwXrlxHZe4/view?usp=sharing

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 ATTRIBUTES CANDIDATES IN CLOTHING-ADC

Our automated dataset creation pipeline is capable of generating numerous designs per attribute, as
shown in Table 6. This table provides a detailed list of designs generated by our pipeline, from which
we selected a subset to include in our dataset.

Color Material Pattern
Animal print Gold Pastel Acrylic Lace Tulle Abstract Camouflage Fishnet Leather Printed Thongs
Beige Gray Peach Alpaca Leather Tweed Abstract Floral Chalk stripe Floral Logo Quilted Tie-Dye
Black Green Pink Angora Lightweight Twill Animal Print Check Floral print Low rise Reversible Tie-dye
Blue Grey Plum Bamboo Linen Velvet Animal print Checkered Fringe Mesh Ribbed Toile
Blush Pink Heather Purple Breathable Mesh Viscose Aran Chevron G-strings Military Ripples Trench
Bright Red Ivory Red Cashmere Microfiber Water-resistant Argyle Color block Galaxy Mock turtleneck Satin Tribal
Brown Khaki Rich Burgundy Chambray Modal Windproof Aztec Colorblock Garter Stitch Mosaic Scales Tuck stitch
Burgundy Lavender Royal Blue Chiffon Mohair Wool Basket check Cotton Garter stitch Moss stitch Seamless Tweed
Burnt Orange Light Grey Rust Corduroy Neoprene acrylic Basket rib Cropped Geometric Moto Seed stitch Twill
Champagne Maroon Rustic Orange Cotton Nylon bamboo Basket weave Damask Gingham Nailhead Shadow stripe Vintage-inspired
Charcoal Metallic Sage Crochet Organza cotton Basketweave Denim Glen check Nehru Sharkskin Waterproof
Charcoal Grey Mustard Silver Denim PVC hemp Batik Diagonal grid Gradient Nordic Sherpa Windowpane
Cream Mustard Yellow Soft Pink Down Polyester linen Bikini Diamond Graphic Ombre Silk
Cream White Navy Striped Embroidered Rayon lycra Birdseye Ditsy Grid Oversized Slip Stitch
Dark Plum Navy Blue Tan Flannel Reflective modal Blazer Dogtooth Herringbone Oxford Slip stitch
Deep Blue Neon Teal Fleece Ripstop nylon Bomber Embossed High waisted Paisley Solid
Deep Purple Nude Turquoise Fringe Satin polyester Boxer briefs Embroidered Honeycomb Peacoat Striped
Earthy Beige Olive Vibrant Turquoise Fur Silk rayon Briefs Emoji Houndstooth Pin Dot Stripes
Floral Olive Green Warm Brown Gore Tex Softshell silk Brioche Entrelac Ikat Pinstripe Studded
Forest Green Orange White Gore-Tex Spandex spandex Broken rib Eyelet Intarsia Plaid Suede
Fuchsia Pale Yellow Yellow Hemp Suede tencel Broken stripe Fair Isle Jacquard Polka Dot Tartan

lilac Insulated Synthetic viscose Cable Fibonacci Knit and Purl Polka dot Teddy
Jersey Synthetic Blend wool Cable knit Fisherman Lace Prince of Wales Textured
Knit Tencel

Table 6: The union of attributes across all clothing types in Clothing-ADC dataset.

B.3 HUMAN-IN-THE-LOOP CURATION FOR CLOTHINGADC TESTSET

Our automated dataset collection pipeline enabled us to create a large, noisy labeled dataset. We
asked annotators to select the best-fitting options from a range of samples, as shown in Figure 5,
with each task including at least 4 samples and workers completing 10 tasks per HIT at a cost of
$0.15 per task, totaling $150 estimated wage of $2.5-3 per hour, and after further cleaning the label
noise, we ended up with 20,000 samples in our test set. To participate, workers had to meet specific
requirements, including being Master workers, having a HIT Approval Rate above 85%, and having
more than 500 approved HITs, with the distribution of worker behavior shown in Figure 6.

Figure 5: Collection of Clothing-ADC test set: A filtering task to the worker instead of annotation
from scratch.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Distribution of the HITs completed per worker (b) Distribution of work time in seconds per HIT.

Figure 6: The behaviors of workers in the creation of test set.

B.4 COST ANALYSIS FOR CLOTHINGADC HUMAN-IN-THE-LOOP DATA CURATION

When clean data is required, we recommend combining human involvement with algorithmic ap-
proaches to ensure high accuracy. We collected 20,000 samples for both the test set and evaluation
set, ensuring a robust and reliable dataset.

We evaluate human effort in Table 7. We used the number of mouse clicks required for each label,
excluding overhead costs due to different layout designs across datasets. While other metrics like
time spent or monetary cost could be used within the same dataset, they are not easily comparable
across datasets with different setups and participants.

Dataset Class Count Noise Rate Label Cost per Total Cost ($) Samples Collectedper Sample Label (Click)
ClothingADC Testset 12k Clean 4 0.25 $150 / 150 20k / 20k
Cifar-10 N 10 ⇠18% 1 3 $450 50k
Cifar-100 N 100 ⇠40% 1 1 $700 50k
Cifar-10 H 10 5% 1 50 $3,856.5 20k

Table 7: Human Effort Comparison with Existing Label Noise Datasets.

B.5 "CLEAN SET" FROM TRADITIONAL METHODS IS NOT ALWAYS CLEAN

The noise rate in the manually annotated dataset iNaturalist is close to 0, suggesting that traditional
methods requiring experts are more robust than our proposed ADC pipeline. However, we would like
to cite Northcutt et al. (2021b) that even well-curated and widely-adopted “clean” test datasets, which
have invested significant effort in ensuring data quality, may still contain errors 2. This highlights that
achieving a 0% noise rate is extremely challenging, even with expert annotation. The table below is
the evidence of such observations (from Table 2 in Northcutt et al. (2021b)).

Moreover, a “fully-cleaned” set typically consumes much more time and money. When the budget is
limited, the annotation accuracy is much lower. For example, the collection of CIFAR-10N Wei et al.
(2022b), where each training image of CIFAR-10 (a relatively easy 10-class classification) is assigned
to 3 independent annotators. To collect 3 annotations for each of the 50K images, it takes >2 days
and >1000 dollars on Amazon Mturk. However, the overall annotation error is approximately 18%.
As for CIFAR-100N Wei et al. (2022b), this is a much more challenging task where each annotator
is requested to find out the most relevant label for each image among 100 classes (50K images in
all). It takes >2 days and > 800 dollars on Amazon Mturk. However, the overall annotation error is
approximately 40%.

2https://labelerrors.com/

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dataset (Test Set) Size % Error
MNIST 10000 0.15
CIFAR-10 10000 0.54
CIFAR-100 10000 5.85
Caltech-256 29780 1.84
ImageNet 50000 5.83
QuickDraw 50426266 10.12
20News 7532 1.09
IMDB 25000 2.90
Amazon Reviews 9996437 3.90
AudioSet 20371 1.35

Table 8: Error comparison across datasets (from Table 2 in Northcutt et al. (2021b))

C EXPERIMENT DETAILS

C.1 DISTRIBUTION OF HUMAN VOTES FOR LABEL NOISE EVALUATION

On the annotation page, we presented the image and its original label to the worker and asked if
they believed the label was correct (Figure 7). They input their evaluation by clicking one of three
buttons. Note that we encouraged workers to categorize acceptable samples as "unsure". The resulting
distribution is shown in Table 9. Using a simple majority vote aggregation, we found that the noise
rate in our dataset is 22.15%. However, if a higher level of certainty is required for clean labels,
we can apply a more stringent aggregation method, considering more samples as mislabeled. In
the extreme case where any doubts from any of the three annotators can disqualify a sample, our
automatically collected dataset still retains 61.25% of its samples.

For the label noise evaluation task, we utilized a subset of 20,000 samples from the Clothing-ADC
dataset, collecting three votes from unique workers for each sample. Each Human Intelligence
Task (HIT) included 20 samples and cost $0.05. To participate, workers had to meet the following
requirements: (1) be Master workers, (2) have a HIT Approval Rate above 85%, and (3) have more
than 500 approved HITs. The total cost for this task was $150, estimated wage of $2.5-3 per hour.

We show the distribution of worker behavior during the noise evaluation task in Figure 8. Figure 8(a)
shows the distribution of the amount of HIT completed per worker while neglecting ids with 1-2
submissions. There is a total of 49 unique workers. Figure 8(b) shows the distribution of time spent
per HIT.

Figure 7: Label noise evaluation worker page

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Distribution of the HITs completed per worker (b) Distribution of work time in seconds per HIT.

Figure 8: The behaviors of workers in the collection of label noise evaluation.

Table 9: Distribution of Human Votes for Label Noise Evaluation: We employed human annotators
to evaluate a subset of 20,000 samples from our collected dataset, with each sample receiving three
votes from distinct annotators.

Human Votes Percentage
Yes, Yes, Yes 61.25%
Yes, Yes, Unsure 6.10%
Yes, Yes, No 10.50%

Else 22.15%

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 NOISY LEARNING AND CLASS IMBALANCE LEARNING BENCHMARK IMPLEMENTATION
DETAILS

Our code refers to zip file in supplementary material.
1 train_set = Clothing1mPP(root, image_size, split="train")
2 tiny_set_ids = train_set.get_tiny_ids(seed=0)
3 tiny_train_set = Subset(train_set, tiny_set_ids) # Get the tiny version

of the dataset
4 val_set = Clothing1mPP(
5 root, image_size, split="val", pre_load=train_set.data_package
6)
7 test_set = Clothing1mPP(
8 root, image_size, split="test", pre_load=train_set.data_package
9)

10

11 train_loader = DataLoader(
12 train_set, batch_size=batch_size, shuffle=True, num_workers=

num_workers
13)
14 tiny_train_loader = DataLoader(
15 tiny_train_set, batch_size=batch_size, shuffle=True, num_workers=

num_workers
16)
17 val_loader = DataLoader(
18 val_set, batch_size=batch_size, shuffle=False, num_workers=

num_workers
19)
20 test_loader = DataLoader(
21 test_set, batch_size=batch_size, shuffle=False, num_workers=

num_workers
22)

Listing 1: How to load data. Line 1 loads the full set of our dataset. Line 2 and Line 3 load the tiny
version of our dataset. Line 4 creates the validation set. Line 5 creates the testing set. Line 11 to Line
20 create the data loader.

1 python examples/main.py --config configs/Clothing1MPP/default.yaml # Run
Cross Entropy

2 python examples/main_peer.py --config configs/Clothing1MPP/default.yaml #
Run Peer Loss

3 python examples/main_jocor.py --config configs/Clothing1MPP/default_jocor
.yaml # Run Jocor

4 python examples/main_coteaching.py --config configs/Clothing1MPP/
default_coteaching.yaml # Run Co-teaching

5 python examples/main_drops.py --config configs/Clothing1MPP/default_drops
.yaml # Run drops

Listing 2: The example of the command we use to run the algorithm in one line

1 i n h e r i t _ f r o m : c o n f i g s / d e f a u l t . yaml
2 data : &d a t a _ d e f a u l t
3 roo t : ’/root/cloth1m_data_v3’
4 i m a g e _ s i z e : 256
5 dataset_name : "clothing1mpp"
6 i m b a l a n c e _ f a c t o r : 1 # 1 means no imbalance
7 t i n y : F a l s e
8

9 t r a i n : &t r a i n
10 num_workers: 8
11 l o s s _ t y p e : ’ce’
12 l oop_type : ’default’ # ’default’,’peer’,’drops’
13 epochs : 20
14 g l o b a l _ i t e r a t i o n : 999999999

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

15 b a t c h _ s i z e : 64
16 # scheduler_T_max: 40
17 s c h e d u l e r _ t y p e : ’step’
18 scheduler_gamma: 0 . 8
19 s c h e d u l e r _ s t e p _ s i z e : 2
20 p r i n t _ e v e r y : 100
21 l e a r n i n g _ r a t e : 0 . 0 1
22

23 g e n e r a l :
24 s a v e _ r o o t : ’./results/’
25 w h i p _ e x i s t i n g _ f i l e s : True # Whip exisitng files
26 l o g g e r :
27 project_name : ’Clothing1MPP’
28 frequency : 200
29

30 model: &m o d e l _ d e f a u l t
31 name: "resnet50"
32 pretra ined_model : ’IMAGENET1K_V1’
33 c i f a r : F a l s e
34

35 t e s t : &t e s t _ d e f a u l t s
36 <<: * t r a i n

Listing 3: The example of YAML config file

C.3 LABEL NOISE DETECTION BENCHMARK

We run four baselines for label noise detection, including CORES Cheng et al. (2020), confident
learning Northcutt et al. (2021a), deep k-NN Papernot & McDaniel (2018) and Simi-Feat Zhu et al.
(2022). All the experiment is run for one time following Cheng et al. (2020); Zhu et al. (2022).

The experiment platform we run is a 128-core AMD EPYC 7742 Processor CPU and the memory is
128GB. The GPU we use is a single NVIDIA A100 (80GB) GPU. For the dataset, we used human
annotators to evaluate whether the sample has clean or noisy label as mentioned in Appendix C.1.
We aggressively eliminates human uncertainty factors and only consider the case with unanimous
agreement as a clean sample, and everything else as noisy samples. The backbone model we use is
ResNet-50 He et al. (2016). For all the baselines, the parameters we use are the same as the original
paper except the data loader. We skip the label corruption and use the default value from the original
repository. For CORES, the cores loss whose value is smaller than 0 is regarded as the noisy sample.
For confidence learning, we use the repository3 from the clean lab and the default hyper-parameter.
For deep k-NN, the k we set is 100. For SimiFeat, we set k as 10 and the feature extractor is CLIP.

C.4 LABEL NOISE LEARNING BENCHMARK

The platform we use is the same as label noise detection. The backbone model we use is ResNet-50
He et al. (2016). For the full dataset, we run the experiment for 1 time. For the tiny dataset, we run
the experiments for 3 times. The tiny dataset is sampled from the full set whose size is 50. The
base learning rate we use is 0.01. The base number of epochs is 20. The hyper-parameters for each
baseline method are as follows. For backward and forward correction, we train the model using
cross-entropy (CE) loss for the first 10 epochs. We estimate the transition matrix every epoch from
the 10th to the 20th epoch. For the positive and negative label smoothing, the smoothed labels are
used at the 10th epoch. The smooth rates of the positive and negative are 0.6 and -0.2. Similarly, for
peer loss, we train the model using CE loss for the first 10 epochs. Then, we apply peer loss for the
rest 10 epochs and the learning rate we use for these 10 epochs is 1e-6. The hyper-parameters for
f -div is the same as those of peer loss. For divide-mix, we use the default hyper-parameters in the
original paper. For Jocor, the hyper-parameters we use is as follows. The learning rate is 0.0001. �
is 0.3. The epoch when the decay starts is 5. The hyper-parameters of co-teaching is similar to Jocor.
For logitclip, ⌧ is 1.5. For taylorCE, the hyper-parameter is the same as the original paper.

3https://github.com/cleanlab/cleanlab

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.5 CLASS-IMBALANCED LEARNING BENCHMARK

The platform we use is the same as label noise detection. The backbone model we use is ResNet-50
He et al. (2016). For different imbalance ratio (⇢ = 10, 50, 100). The class distribution is shown in
Table 10. For all the methods, the base learning rate is 0.0001 and the batch size is 448. The dataset
we use is not full dataset because we want to disentangle the noisy label and class imbalance learning.
We use Docta and a pre-trained model trained with cross-entropy to filter the data whose prediction
confidence is low. Due to the memorization effect, we fine-tune the model for 2 epochs to filter the
data. We remove 45.15% data in total where Docta removes 26.36% while CE removes 25.00% with
a overlap of 6.20%. Thus, the datset we use for class-imbalance learning is 54.85% of the full dataset.

imbalance ratio (⇢) Class Distribution Total Number

10 [39297, 31875, 25854, 20971, 17010, 13797, 11191, 9078, 7363, 5972, 4844, 3929] 191181
20 [39297, 27536, 19295, 13520, 9474, 6638, 4652, 3259, 2284, 1600, 1121, 785] 129461

100 [39297, 25854, 17010, 11191, 7363, 4844, 3187, 2097, 1379, 907, 597, 392] 114118

Table 10: The class distribution for different imbalance ratio

D DEMO APPLICATION OF ADC IN OTHER FIELDS

Our Automated Dataset Construction (ADC) pipeline is best suited for image classification tasks
where the relevant knowledge can be easily searched and retrieved from the internet. Example
applications include, but are not limited to:

• Food classification

• Hairstyle classification

• Vehicle classification

• Home decor classification

• Plant classification

• Sport equipment classification

• Jewelry classification

Food Classification To illustrate the effectiveness of our ADC pipeline, let’s consider a more detailed
example of food classification. We used the prompt "Food Classification: Create a dataset with
various types of cuisine, and sub-classes for specific dishes, ingredients, or cooking methods. Help me
to find 10 different attributes to describe food." LLM generated a range of subcategories to describe
different types of food, including, but are not limited to:

• Cuisine type (Italian, Chinese, Indian, etc.)

• Dish Type (Appetizer, main course, dessert, etc.)

• Protein source (Beef, Chicken, Tofu, etc.)

• Cooking method (Grilled, Baked, Fried, etc.)

• Spice level (Mild, Medium, Spicy, etc)

• Allergen warning (Gluten-free, Nut-free, Dairy-free, etc.)

• Texture (Crunchy, Chewy, Smooth, etc)

Please feel free to use the prompt on your favorite LLMs, or modify it slightly for other tasks that
interest you more. We tried various LLM versions from OpenAI, Meta, Google, and Claude, and all
of them are competent to solve this task, albeit with different preferences for suggesting labels and
descriptions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E COPYRIGHT ISSUE

One possible approach to mitigate the potential copyright issues is to rely on the advanced features in
search engines provided by the leading industry companies. For example, we can use the "Advanced
Image Search => usage rights" function in Google Image Search, which allows users to filter search
results by usage rights.

However, We must clarify that our pipeline is provided "as-is" and that users are responsible for using
the collected data at their own risk. We cannot guarantee that the data is free from copyright issues,
and users must take their own steps to ensure compliance with applicable laws and regulations. This
approach is similar to that taken by the LAION-5B dataset Schuhmann et al. (2022), which states
that "The images are under their copyright."

25

	Introduction
	Automatic-Dataset-Construction (ADC)
	The ADC pipeline
	Clothing-ADC

	Challenge one: dealing with imperfect data annotations
	The challenge of label noise detection
	Existing approaches to detect label noise
	Clothing-ADC in label noise detection

	The challenge of learning with noisy labels
	Existing approaches to learn with label noise
	Clothing-ADC in label noise learning

	Challenge two: dealing with imbalanced data distribution
	Existing approaches for class imbalance learning
	Clothing-ADC in class-imbalanced learning

	Limitation
	Conclusion
	Appendix
	Detailed algorithms in the generation of Automatic-Dataset-Construction
	The algorithm of image data collection in ADC
	The algorithm of learning-centric curation method in ADC

	Dataset statistics in Clothing-ADC
	Collected Clothing ADC dataset
	Attributes candidates in Clothing-ADC
	Human-in-the-Loop curation for ClothingADC testset
	Cost analysis for ClothingADC Human-in-the-Loop data curation
	"Clean set" from Traditional methods is not always clean

	Experiment details
	Distribution of Human Votes for Label Noise Evaluation
	Noisy learning and class imbalance learning benchmark implementation details
	Label noise detection benchmark
	Label noise learning benchmark
	Class-imbalanced learning benchmark

	Demo application of ADC in other fields
	Copyright issue

