1 PHOTO DIVERSITY

Location Images Raw Labeled Crops Labeled Raw
Algeria 1714 1714 0 1795 0
Argentina 4153 4153 243 4610 243
Armenia 2135 2135 0 2143 0

Austria 9494 9494 2139 13966 2139
Bangladesh 1996 1996 64 2224 64
Brazil 2102 2102 35 2750 35
Canada 1999 1999 0 2115 0
China 2115 2114 0 2466 0
Columbia 663 663 0 685 0
Cyprus 2077 2077 93 2070 93
Czechia 2183 2183 102 2159 102
Denmark 233 0 78 254 0
Egypt 3873 3855 1500 4436 1496
Germany 4136 4136 861 6083 861
Greece 2045 2045 62 2085 62
India 1943 1934 0 2143 0
Ireland 2057 2057 58 2049 58
Macedonia 2024 2024 79 2050 79
misc 184 0 32 171 0
Morocco 2006 2006 0 2013 0
Philippines 1829 1828 0 2170 0
Poland 4072 4072 20 5851 20
Saudi Arabia 213 213 0 238 0
Tanzania 1597 1597 0 1644 0
Thailand 1009 1009 44 1052 44
Turkey 3027 3025 0 3116 0
UK 5541 481 2015 6760 0
USA 9319 8801 1577 10220 1370
Totals 75,739 69713 9,002 89,318 6,666

Table 1: Breakdown of the number of images by location, along with the number of images with
labels, the number in RAW format, and the number of crops (rectangle around individual windows).
Note that more than one window can be cropped from an image, and only the high-quality windows
which are in-focus and large enough to clearly resolve have been cropped.

2 DATASET EXAMPLES

We provide examples of the photographs, labels, synthetic images, and RAW images in Figures [I}

[2l [and[3] respectively.

Figure 1: A random selection of our 75,739 window photos and their 89,318 crops (red boxes) from
Austria, Egypt, UK, USA, and Other. Each partition contains at least 1,500 photographs. Zoom-in
for easier viewing.

wall () window-frame () window-pane wall-frame misc-object blind
balcony (shutter (@bars (@ open-window

Figure 2: A random selection our 9,002 labeled cropped photos. Zoom-in for easier viewing.

I

mEzeE

m
0

=

L

wall window-frame window-pane wall-frame misc-object blind
balcony shutter @bars @ open-window

Figure 3: Random samples from the 21,290 in the synthetic window dataset showing color and label
channels. Zoom-in for easier viewing.

Figure 4: 6,666 of our photos contain the original RAW data as well as labels. Above: the default
JPG image and labels (column 1), reprocessed RAW files for global brightness (2), reprocessed
RAW files for a given region’s (blue boxes) brightness (column 3), and a crop of the result showing
the full resolution (4).

60

40

mloU

20

2* 4 8* 16* 32 64 128 256 512 1024 2048 4096 8193 16384

training size

Figure 5: Performance with different amounts of synthetic and real data. s/r was trained on synthetic
and tested on real. Models with a sample size below 16 were repeated 5 times with different samples
from the test set. These are marked with an asterisk. All class mloU excluding unlabeled. Test size
was 4.9k.

60

s+nr r+ns

50

40

mloU

30

20
0 1 2* 4 8* 16* 32 64 128 256 512 1024 2048 4096 8192 16384

n

Figure 6: Segmentation mloU with various mixes of real and synthetic data. The blue bars show
the effect of adding n real data to 2,048 synthetic images. The red bar shows the effect of adding n
synthetic data to 2,048 real images. Models with a sample size below 16 were repeated 5 times with
a different selection of n. These are marked with an asterisk. All class mIoU excluding unlabeled.
Test size was 4.9k.

3 DATASET EXPERIMENTS

We performed several experiments to determine the impact on segmentation task mloU of the
amount of data (Figure [5)) and the mixture of real and synthetic data (Figure [6]) on our dataset.
Additionally, we explore the label quality at different mIoUs in Figure

count

miou

Figure 7: Examples of labeling results by mloU. Top row: ground truth labels. Second row: photos.
Third row: labeling results with mloU. Below: Histogram of individual image mIoUs for the base-
line model trained on n = 2, 048 synthetic images. Note the mean of the per-image mloU is higher

that the whole dataset because samples may not contain all labels, in which case that label doesn’t
contribute to the mloU.

4 LABELS

The following labels are used to annotate a subset of the cropped photos:

1.

2.

window-pane: Glass, painted “glass”, opening (missing glass), mesh-screen, or repair
(e.g., wood/brick covering a broken pane)

window-frame: Not part of the wall, part of the window, usually wood, metal, or plastic.
Used infrequently for door frames.

. open-window: The interior of the building.
. wall-frame: Part of the wall which is adapted to the window. Each of the following should

have this label, but be different instances.:

(a) window apron (sill; part of the wall, below the window)

(b) window header (lintel; part of the wall, above the window)

(c) wall frame (part of the wall; decorates/supports the window)

(d) balcony base (support; below balcony, holds up the balcony railings)

. wall: Other parts of the wall

. shutter: These are beside the window and swing sideways to protect and insulate the win-

dow.

. blind: Exterior blinds. these are above the window and move down to protect and insulate

the window.

. bars: Fixtures protecting the window and frame.
. balcony: Guard-rails, railings, balconette.
. misc-object: In front of the glass: people, pot-plants, toys, junk, pipes, wires, trees, plants

on the wall, alarm, unknown objects, misc. foreground.

Other guidance provided to labellers:

Objects seen through or “inside the frame” of the main windows should be ignored. For
example, if you can see another window through the main window then ignore it.

Objects reflected (in the glass) should be ignored.

Fine window structures (leaded glass, “fake” (plastic) leaded glass inside glass, security
chain link fence, chicken wire) should be ignored. Larger structures (cast iron fence) should
be labelled. If uncertain, ignore.

Label other objects in front of the window as misc-object. Other objects (e.g., in front of
the wall) may be left un-labelled or also labelled as misc-object.

Figure 8: Left: A layered approach to window realism. The window is composed of nested layers
of frame and glass (c) and is optionally dressed (b, curtains). Interior (d) and exterior (e) walls
divide the inside from the outside. An interior-box (a) is the geometry onto which we project an
interior panorama, while the exterior is decorated with street clutter (f). Right: Our environment
rig. The building geometry lies on a floor plane (m) under a skybox (h). It is lit by the skybox and
from a directional sun lamp (g), which may cast shadows from the urban canyon (I). The camera
is positioned in front of the building (k), pointing towards the camera target (j) within the primary
window.

5 PROCEDURAL MODEL DETAILS

This section provides additional details about the baseline procedural model used to create the
scenes. Figure [8| provides an overview.

Building mass. The walls, roof, bay windows, and wings are created using the Computer Generated
Architecture (CGA) (Mueller et al] [2006) procedural modeling language. The grammar we use
creates a rectangle on the floor-plane between 3 and 9 meters wide and 3 and 5 meters deep. This
is extruded up to create between 1 and 4 stories. Wings are optionally created from the side faces;
bay-windows are extruded on the front of the mode. Hip, shed, or gable roofs are added to the top
of these masses. The front of the building and bay walls are split to create walls and windows.
Optionally, a timber-frame is created within these wall panels.

Window geometry is created within a rectangle proscribed by a standard CGA building grammar.
Because CGA isn’t able to model curves or extrude profiles, we use a second split grammar to
create a variety of window shapes. The output of the grammar is a grouped hierarchy of Bézier
splines, each assigned a profile. This allows the creation of complex windows for example where
the window casing (around the edge of the window) has a different profile to the static panels, which
have a different profile to the panels which move when the window opens. A single set of profiles
is selected from 14 set available (Figure[T6] right). Each spline is then assigned one profile within
the set and filled with glass. The grammar sequences split rules to convert the input rectangle into
groups within the hierarchy.

We have four classes of shapes (rectangular, trapezoid, circular, arched). Each of these classes
has several sub-variants. For example, circular windows may become semi-circular or window
arches may be straight or curve. Each shapes has a splits appropriate to that geometry (e.g., circular
windows only split into quarters) that are applied with certain probabilities defined by the grammar.
Some shapes split into each other; for example, the bottom of an arched window is a rectangle and
shares the splits available.

To model open windows, parts of the this hierarchy may be translated (for sash or sliding windows)
or rotated (for hinged windows) This is can be identified in Figure 3| by looking for the black open-
window labels.

Window surrounds (sills, lintels, complete frames) are constructed from extruded profiles over
splines. These decorate the wall and recessed area around the window. We use sections of the
window-shape to describe the spline shapes; for example, a window lintel is the top section of a
window-shape, which may be arched or circular. The spline is optionally extruded beyond the edge
of the window.

There is a small probability (0.013) of creating blind windows (windows without a frame or glass)
or a window without glass. These features were added after observing them in the dataset.

Interiors. Window-dressing is positioned inside the windows, and allows curtains, Venetian blinds,
and wooden or fabric blinds. The soft dressings use a cloth simulation to create bunches and gather
the material for different positions and window shapes. Behind the dressing we use a “interior-
box” onto which we project an interior panorama randomly selected from a library. At night, this
box emits light, simulating a lit interior room. Window dressing is only applied to the “primary
window” - the one which the camera is pointing at.

Lighting. The scene has three light sources - a panorama providing omni-directional light based
on the selected skydome background image, a sun adding a directionaly strong light-source, and
an (optionally) lit interior material allowing interior lighting at night. The sun-lamp’s light filters
through an “urban canyon” that simulates the light passing around other buildings as shown in
Fig |8} This is a stochastically generated area of cuboids with mixed size and height behind the
camera. The geometry allows indirect light paths and shadows to fall onto the building, adding
image features similar to those to in the ground-truth such as shadows from trees, telegraph poles,
and other buildings. The urban canyon is not directly visible to the camera or in reflections.

The sun is rotated with an azimuth between -90 to 90 degrees, with increased chance of being
near either extreme. This increases the chance the sun direction being parallel to the wall and
creating large “’glancing” shadows. The altitude of the sun is normally distributed with ; = 40,0 =
28 degrees. The size of the sun the also varies - creating the effect of light though different sky
conditions.

With a probability of 0.05, we create a night seen. The light emission from the exterior skydome
and sun is reduced, and the interior-box is lit.

Creating well-exposed images is challenging. The light, material, and geometry must be tuned to
create both realistic and useful exposures. The variety of parameters combined with the physically
based renderer leads to a wide variety of exposure between very dark and very bright images. In
section[6] we explore a variant of the model which adjusts the exposure dynamically.

Exterior. Buildings do not appear in isolation, and their appearance is modulated by the light,
shadows, and camera used to image them. Our geometry is lit by emission from the skybox and
directly with a sun-lamp. The sun-lamp’s light filters through an “urban canyon” that simulates the
light passing around other buildings as shown in Fig[8] The geometry allows indirect light paths and
shadows to fall onto the building but is not directly visible to the camera or in reflections.

To add variety and realism to the exterior of the building, we add street clutter. This clutter includes
objects as varied as trash cans, signs, scooters, and delivery lockers. We collected a set of 278 varied
meshes and textures using a hand-held LiDAR and RGB scanner (see Fig[9) which is augmented
with a set of images of 5,630 street signs (Anon) with the backgrounds removed. A subset of these
were gathered into collections which could be repeated to model such features, including traffic
cones, trees, or bollards. The primary requirements for these meshes are that they belong in the
street scene, have no personal information (e.g., car number plates) and do not contain building
windows (which would degrade labeling accuracy).

Drain pipes and wires are generated by a unified system from a graph of potential edges (PEs). Paths
through this graph are extruded to create drainpipe or electrical wire geometry. Using a modification
to CGA - we a face can be split to its constituent edges - we build the graph during evaluation of the
building grammar. The graph edges include the gutter, and bottom of the walls, as well as vertical
and horizontal edges within each rectangle in the wall. We select sources and sinks (e.g., between
the gutter and floor level or between two random points in the graph) and find the shortest path
between them. These paths are smoothed appropriately (e.g, wires are curved and have much more
variability), offset from the wall, have profiles and textures applied, and are added to the scene.

A panoramic skydome adds a background that is often visible in the reflections from the window’s
glass. This background is selected from a library of street view images. The background may contain
other buildings” windows; to avoid degrading the quality of labeling results, this area is unlabeled.
A simple circular floor supports the building.

10

Camera Position. The baseline camera positioning switches between two modes: one third of
samples position the camera randomly inside a box the width of the house, between 0.5 and 1m
from the ground, and 2 to 8m from the facade. The other third are sampled from a position in front
of the window - sampled from a 4 x 2 meter box parallel to the wall positioned directly in front of
the window. This combination was motivated to approximate a held camera, and occasional use of
a a higher camera (on a hill or from a second building).

The camera’s field of view is computed from the angle between the corners of the window and the
camera position. It is perturbed from the largest apparent angle between window diagonals by a
normally distributed factor with ¢ = 1.10 = 0.1. The camera’s direction is computed with z-
up, pointing towards a target uniformly sampled from a 20 x 20cm rectangle in the center of the
window.

Occasionally a camera positioned in this way will be behind a large object of street clutter. If 2 out
of 5 key points (corners and center) on the window are occluded, the offending clutter object(s) are
removed.

Parameters The design of the parameter system in a synthetic model has a number of goals. Pri-
marily, it should create distributions of parameters with a good evaluated task accuracy and visual
realism.

To achieve these goals within a complex realistic model, it necessary to start with an estimated
distribution, which can be iteratively refined with a generate-inspect-update process. While some
progress has been made on automated parameter selection (Kar et al.| [2019), our large number of
parameters (up to 21,735 observed) and non-differentiable renderer makes this challenging; these
constraints consequences of our decision to focus on variety (a large number of parameters are
required to drive and coordinate a large number of features) and realism (we use a physically based
path-tracing render). Therefore, an initial parameter distribution is usually estimated by the engineer
or artist who creates the synthetic model. Often these parameters will be estimated on a prototype
or incomplete model. A parameter system must therefore support iterative development should
track parameter and code changes together their impact on task performance, and be able to explore
sequences of changes in the distributions.

The parameter system should be reproducible, in that we must be able to run the same software
code-path multiple times when debugging or rendering different variations of the same geometry on
a cluster of computers. It should also be robust — small changes in the model’s code should have
small changes in the output. These requirements together imply that the parameter system has to
run in a hybrid mode, with some parameters specified, and others drawn from the distribution. The
parameter sampling from any distribution should also be accurate (i.e., as random as possible) over
a wide variety of hardware and timings.

The system must support both continuous (e.g., window width, wall texture color) and discrete (e.g.,
shape of windows, type of window dressing) parameters. The distributions WinSyn uses are typ-
ically uniform or Gaussian for continuous parameters and Bernoulli for discrete parameters. But
combinations of these quickly become complex when repeated parameter selection moves control
to different code branches; these branches may be a function of both parameters and geometry.
An example is window-pane splitting - we may continue to split windows until we hit a geometry
constraint (they become small) or a parameter decides we should stop (e.g., maximum split depth
or stopping early to create more large windows). Another example is that our building modeling
language, CGA (Mueller et al.| 2006) uses repeated “relative” splits in which a parameter (for ex-
ample a uniform continuous window panel width parameter) is adjusted to fit an integer number of
windows into a wall (a geometric constraint).

We found that apparent realism was enhanced when it was possible to share parameters between
disparate parts of the model. For example, to use the same material on a wall as window-frame,
balcony base, or drain pipe.

To implement these requirements WinSyn uses several mechanisms in concert to build a parameter
system.

 The distributions are defined in the code by their type and parameters (for example mean
and deviation for a Gaussian). At runtime, these are are sampled keyed from a unique
name.

11

Figure 9: A sample of 27 laser-scanned clutter meshes from our collection of 278, of which 38 are
suitable for placement on the wall.

* To ensure the names remain unique between code branches (e.g, for each window inde-
pendently), we compartmentalize the name spaces into nodes. These are stored in a tree
parallel to the code branches.

* the sampled parameters are stored in a tree of nodes. This is serialized to disk (as a json
file) named for random seed of the root node.

* With some probability distribution, a certain node may differ a sample to its parent. This
mechanism support shared parameters across the model.

¢ If the same model is rerun, we we load the node-tree. As the model is executed we look up
values in the tree: found parameters are returned (this provides reproducibility) otherwise
they are sampled. We may have to perform mixed lookup and sampling if the code has
changed, causing different values to be sampled (this provides robustness).

* As each node is created, a pseudo-random generator is created and initialized by a param-
eter sampled from the parent node’s generator. This compartmentalized random increases
robustness, as subsequent samples from the parent generator will not impact the children.
The seed for the root node describes the whole scene and is computed as a hash of the
current time and compute node.

* We track changes to our distributions through development using version control software
and a continuous integration system. This allows us to track accuracy as changes are made.

During the development of WinSyn, we iterated the parameter distributions based on assessed
mloUs [7] on real training data, synthetic data, as well as label integrals Careful examination
of these results often reveals features which are under-performing. We found that evaluating label-
ing accuracy on synthetic hold-outs was useful to validating synthetic labeling and find bugs.

Rendering. We use the Cycles renderer 2023), with 256 samples per pixel and the default
Open Image Denoiser 2023) with a 512 x 512 pixel resolution to create our color images.
The average time to generate a synthetic datum (color image and label map) was 49.8 seconds. The
dominant aspect of the rendering was the geometry generation (mean 38.1 seconds), followed by the
rendering of the color image (9.2 seconds), and finally the rendering of the labels (2.4 seconds). Asin
Figure [T1]there was considerable variation in these values; we observe the time to generate an image

12

synthetic
baseline

Om
6m

24m

48m

no_rectangles
wide_windows

only_squares

Figure 10: Label integrals for different datasets. For each label (columns) in each dataset (rows) we
sum the label masks and normalize per-image. The top row is our ground truth labeled photographs
(n = 9,002). The second row shows our baseline procedural model (n = 21,290). The following
rows show various variations (n = 2, 048) - the camera location variations (Om..48m), and window
geometry experiments (no_rectangles, wide_windows, only_squares).

was dominated by the geometry generation. The hardware used for these timings was a NVIDIA
Tesla P100 with a shared Intel(R) Xeon(R) CPUs E5-2699 v3 @ 2.30GHz. This was a single GPU
from a multi-GPU machine, so timings may have been affected by other users’ workloads. However,
it allowed us to distribute work in parallel over 12 nodes, and generate the entire dataset of 21,290
images within a day.

System. This synthetic image generation system is implemented in Python 3.10 within the
Blender (Community}, 2023) 3.3 modeling package. We make use of a number of Blender’s fea-
tures including:

* Screen-space subdivision allows our procedural textures (e.g., brick) to generate geometry
as a separate depth channel. This allows the textures to self-shadow (e.g., one brick casting
on to a brick below), but can be very GPU memory intensive.

* Geometry-nodes are utilised to features that is are repeated and benefit from shared geom-
etry instances. We use them to create roof tiles, dirt (leaves and litter) on the floor, blinds,
and slats. The node-based “language” to describe these is somewhat limiting, but allows
faster development and lower memory use.

* Publicly available shaders and geometry nodes-trees. There are a wide number of mar-
ketplaces with content available for Blender for free or relatively low cost. However, the
licenses may limit the downstream applications and distribution of the model.

13

geometry generation color render time label render time
1000

100

count

10

5 10 50 100 500

time (seconds)

Figure 11: Generation time histogram for the synthetic dataset. Note the log-scale axes as the

process was dominated by the geometry generation. Mean total time per sample was 49.8 seconds.
The physics simulator ran within the geometry generator for timing purposes.

14

6 VARIATIONS

To demonstrate the applicability of WinSyn on real to synthetic we investigate the impact of a variety
of variations on labeling performance. We create 59 datasets, each of size n = 2,048, as variations
of our synthetic data with different sizes and mixes of real or synthetic data, geometry, textures,
lighting, labels, and camera positions; these are tested on our standard labeled data split n = 4.9k.
We provide analysis of these results to provide guidance to others creating synthetic procedural
models. In this section we describe how each experiment varied from the baseline.

6.1 MATERIALS

Four of the the material variations use no lighting model (labels, albedo, normals, and lines). The
remainder use a simple diffuse lighting model, with no direct sun. See Figure[I2] The geometry is
identical for each render. The material variations studied are:

* labels: The labels rendered from the synthetic dataset. These were included as a baseline
for a “bad” variation with label cohesion, but very low realism and little in common to the
real data.

* albedo: The albedo pass from the renderer.
* normals: The screen-space normal map.

* vornoi_chaos: Each object has the same 3D vornoi-cell texture, but with different scale and
offset parameters. Each cell has a random color.

* monomat: For each object type in the scene, we apply the same material across the whole
dataset. The parameters for the procedural materials are fixed.

* col_per_object: Each object in the scene is a random color.
* diffuse: The entire scene has a single mat material with gray color.
* edges: An edge renderer is used to create a sketch-like image of the scene.

* texture_rot: For each object we select one from collection of 50 geometric textures, and
apply a random lighting and scale.

15

mloU

30

20

10

labels albedo normals voronoi_chaos monomat col_per_obj diffuse edges texture_rot

Figure 12: The impact of a variety of different materials on labeling task performance.

16

6.2 LIGHTING MODELS

The results from the lighting variations are shown in Figure Each variation explores a different
aspect of the lighting model. The variations modeled are:

* albedo: (as the Material variation) The albedo pass from the renderer. No other lighting
model.

» phong_diffuse: The diffuse term from the Phong lighting model with a gray material. No
other lighting model.

* diffuse: (as the Material variation) The entire scene has a single matt material with gray
color.

* night_only: Only the night (less light from the sun, brighter internal lighting) mode is used.
Dark images.

* no_sun: No directional light source in the scene.
* no_bounce: The path tracer terminates the trace after the first bounce.
* fixed_sun: The sun is always in the same location and size.

* day_only: Only use the day lighting model (no night).

The usual whitening across a dataset is performed on all variations before training and testing; but
this post-process reduces useful color depth and is dataset-wide. For these lighting experiments,
we use also a per-image exposure pass within the render pipeline to preserve color depth and per-
form brightness equalization. This is similar to histogram equalization in that it adjusts the image
brightness based on the central areas of the image, simulating the auto-exposure mechanism in a
digital camera. We can see that for poorly exposed dataset (such as nigh_only) this significantly im-
proves the performance. However for well balanced datasets (day_only) there is a slight performance
degradation (Figure [T3).

Generally, it is important to have realistically exposed images. The synthetic model has a night-time
mode under the assumption that windows would look very different when lit from within; however
the night-time lighting setup was counter-productive, and the task effectiveness is improved without
it. However, having a sun with multiple positions creating shadows was somewhat useful to the task.

17

35

I basic exposed

mioU
e = N N
S 5] S]

o

N o ® o«

0~ 4 °
& « «© b W Rl

0

Figure 13: The impact of different lighting models on the labeling task mIoU.

18

40

30

20

10

om 3m 6m 12m 24m 48m

circle radius

Figure 14: Left: the mIoU and average accuracies for different camera-sampling-circles. Right, top:
The position of the circles’ centers is 5m (black line) front of the top right window. For scale, the
green circle has » = 12m. Bottom left: samples from the different distances.

6.3 CAMERA POSITION

Windows are a useful domain for studying camera position distribution as they have an obvious
unambiguous canonical orientation. In this variation we experimented with the distribution of cam-
era positions. We used a simple model which sampled a camera position over a circle, of radius
r meters, truncated at the floor plane. The circle is positioned 5 meters from the wall, directly in
front of the window. See Figure[I4] As r increases, the majority of the circle area moves away from
the window, and so the camera angle to the wall becomes very shallow in many samples. Larger
circles have lots of area higher up, so create unusual camera angles not present in the photographic
dataset. However we observe that high r does not significantly strongly impact the segmentation
task accuracy; even at extreme camera angles. This contradicts our assumption when building the
model that camera location distributions should be guided by the label integrals, which clearly show
a large divergence for wide camera angles as illustrated in Figure [I0} 48m.

The baseline models removes clutter from the scene which occludes the camera view of the primary
windows. These variations do not perform this occlusion check. At more extreme camera positions,
there is a greater chance of objects (clutter, bay windows, or balconies) block the view.

6.4 LABELS MODELED.

Real-world diversity of even simple man-made objects such as windows is huge (as Figure[T). When
developing a procedural model as a synthetic data generator, we must prioritize where to spend
software development effort. Our model was developed approximately in order of label sizes: largest
first (Figure[3). In this variation, we take the completed model, and perform ablations by removing
each class in turn to study the impact of each class in a systematic manner. From the results Figure[I3]
we observe the diminishing returns in mloU for the later labels, as the features get smaller and the
larger choice of labels makes labeling harder.

The label levels variations are:

* [vl]: Only the wall geometry is present.
e vl2: Add a window panes. It is not recessed.
* [vi3: Add a wall-frame and recess the window pane.

19

lvl4: Add a window-frame and any splits to the window panes.
Ivl5: Add window shutters.

Ivl6: The balconies are added. These use the balcony for their guard rails and wall-frame
labels on their lower parts.

Ivl7: Wall and floor clutter is added to the scene.
Ivl8: Add window blinds.
Iv19: We finally add the smallest label, bars, to the dataset.

20

40

30

20

mloU

10

Ivil vI2 i3 4 5 vi6 w7 Ivig vI9

= window pane

= window frame
open-window

= wall frame

- wall

= shutter

= blind

= bars

mioU

balcony
= misc object

Y i N

[ML i3 i w5 i 7 g w9 baseline

Figure 15: Top: The cumulative impact of modeling a different labels. Beginning with only walls
(label level 1 - Ivll), adding window panes (2), wall-frames (3), window-frames (4), shutters(5),
balconies (6), misc (7), blinds (8), and bars (9). The difference between 1vl9 and the complete
baseline model is the addition of interior dressing (curtains), open windows, and windows without
glass. Middle: examples from the different levels. Bottom: the impact on the per-class IoU of each
label. We note that sometimes adding more labels will harm segmentation quality.

21

34

32

no_rectangles only_squares no_splits. only_rectangles single_window wide_windows mono_profile

mloU
w
o

)
@

N
-3

Figure 16: Top: The impact of changing the window shape and geometry on the mloUs of the
labeling task. Bottom left: examples of the n = 2, 048 training examples in each variation. Bottom
right: the full set of window-frame profiles for the baseline model; an asterisk marks the single
profile used in the mono_profile variation. Note vertical axis starts at non-zero.

Window Geometry

Here we study the impact of changing the distribution of parameters which impact the window
geometry, as Fig [T6] Note we do not have a uniform base geometry in this experiment as the
distribution changes required a set of window parameters together. The label integrals for some of
parameter distributions are shown in Figure[I0] The window geometry distributions variations are:

* no_rectangles: Only non-rectangular windows (circular, arched, and angled)
* only_squares: Only square windows.

* no_splits: No window-pane subdivision took place.

* only_rectangles: Only rectangular windows.

* single_window: Only a single window created.

* wide_windows: The width/height parameters are adjusted to create more wider, shorter
windows.

* mono_profile: We reduce the number of all the extruded profiles in the system. These are
used on window frame, sill, lintels, roof gutters. The set of profiles used for windows is
reduced from the baseline (Fig[I6] right) to a single profile.

22

Figure 17: Example outputs from our label adaptation (Wood et al.) label-to-label network. We
note that the network is able to identify likely mislabeling (such as an open window without the
open-window label) and correct the output appropriately.

7 LABEL ADAPTION

As Figure we observe that improving labeling by just learning from the labels provides a pow-
erful supervised prior to improve the accuracy between dataset. This semi-supervised technique is
able to identify common problems with the synthetic-trained labeling network and correct them.

REFERENCES

Cycles: Open Source Production Rendering, 2023. URL https://www.cycles—renderer.
orqg/l

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2023. URL http://www.blender.org.

Intel. Intel® Open Image Denoise. Intel, 2023. URL https://www.openimagedenoise.
org/.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4551-4560,
2019.

Pascal Mueller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural mod-
eling of buildings. ACM Transactions on Graphics, 25(3):614-623, 2006.

Erroll Wood, Tadas Baltrusaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J. Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3661-3671. IEEE. ISBN
978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.00366. URL https://ieeexplore.
ieee.org/document/9710332/.

23

https://www.cycles-renderer.org/
https://www.cycles-renderer.org/
http://www.blender.org
https://www.openimagedenoise.org/
https://www.openimagedenoise.org/
https://ieeexplore.ieee.org/document/9710332/
https://ieeexplore.ieee.org/document/9710332/

	Photo Diversity
	Dataset examples
	Dataset Experiments
	Labels
	Procedural Model Details
	Variations
	Materials
	Lighting Models
	Camera Position
	Labels modeled.

	Label Adaption

