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Abstract

Reinforcement learning (RL) is a general framework for modeling sequential
decision making problems, at the core of which lies the dilemma of exploitation
and exploration. An agent failing to explore systematically will inevitably fail to
learn efficiently. Optimism in the face of uncertainty (OFU) is a conventionally
successful strategy for efficient exploration. An agent following the OFU principle
explores actively and efficiently. However, when applied to model-based RL, it
involves specifying a confidence set of the underlying model and solving a series
of nonlinear constrained optimization, which can be computationally intractable.
This paper proposes an algorithm, Bayesian optimistic optimization (BOO), which
adopts a dynamic weighting technique for enforcing the constraint rather than
explicitly solving a constrained optimization problem. BOO is a general algorithm
proved to be sample-efficient for models in a finite-dimensional reproducing kernel
Hilbert space. We also develop techniques for effective optimization and show
through some simulation experiments that BOO is competitive with the existing
algorithms.

1 Introduction

Reinforcement learning (RL) is a sequential decision-making problem in which an agent acts in an
unknown environment while maximizing the cumulative rewards it receives [1, 2]. In this paper,
we consider the RL in Markov decision processes (MDPs), where the agent observes the state
of the environment at each timestep and makes decisions accordingly. Since the environment is
unknown, maximizing the cumulative rewards naturally involves a trade-off between exploration and
exploitation. Exploitation is to make the best-rewarding decision based on the agent’s information, and
exploration means actively gathering information about the environment so that the agent understands
better about the environment and thus makes better decisions in the future. An algorithm cannot be
sample-efficient without balancing them properly.

Theoretically, the exploration and exploitation dilemma admits a Bayesian optimal solution [3].
That is to consider the RL problem a so-called Bayes-Adaptive MDP (BAMDP), a special case of
partially observable Markov decision processes (POMDPs), where the parameter of the dynamics
is unobservable. Although this formulation provides useful insights, the POMDP formulation is
computationally intractable [4–6]. Therefore, all practical algorithms [7–10] resolve this dilemma by
achieving a delicate balance between seeking rewards and gathering information. Optimism in the
face of uncertainty (OFU) is one of the conventionally successful approaches for this balance and is
established as an efficient learning principle in various cases [11–13].
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The OFU principle makes the agent an optimist who is always optimistic about the uncertainty of
the environment. If it ever stands a chance that a policy is highly profitable, the agent will try it
out. By executing an optimistic policy, the agent either receives high rewards or gains information
after observing unexpected outcomes. OFU involves constructing a confidence set of possible MDPs
and solving for the most optimistic one within the confidence set. Unfortunately, this is typically a
constrained nonlinear non-concave optimization and is impractical to solve [14, 15]. Therefore, a
model-based OFU algorithm is previously deemed an inferior choice [15].

In this paper, we propose a model-based OFU algorithm, Bayesian optimistic optimization (BOO),
which enforces the constraint via a dynamic weighting technique and therefore makes the optimization
more practical. We show that BOO is a general-purpose model-based OFU RL algorithm that is
both provably sample-efficient and comparatively computationally tractable. Our contribution is
three-fold:

• We extend the OFU algorithms to the Bayesian setting by requiring the model to reside
in a Bayesian credible region. BOO is then proposed as the Lagrangian relaxation of this
constrained optimization.

• We prove that BOO is efficient in terms of the frequentist regret for a finite-dimensional
reproducing kernel Hilbert space (RKHS).

• We derive optimization methods for BOO and demonstrate empirical evidence that BOO is
competitive with UCRL2 [16] and PSRL [17].

2 Preliminaries

This section introduces the preliminaries, including RL in MDPs and the principle of optimism in the
face of uncertainty.

2.1 Reinforcement Learning in Markov Decision Processes

We consider the problem where a reward-seeking agent repeatedly interacts with a finite-horizon
MDPs M = (S,A, P,R,H, s1), where S and A are the state and action spaces, respectively. The
algorithm adopted by the agent is denoted as A. At each episode, the agent is spawned at the
initial state s1 ∈ S. It takes an action ah ∈ A at each period h within an episode and receives
a random reward, rh ∼ R(sh, ah). Then, the environmental state transitions to the next state,
sh+1 ∼ P (sh, ah). This process repeats until the episode ends at the H-th period, and another
episode begins. Note that the fixed initial state is not a stringent condition since starting from an
initial distribution ρ0 is equivalent to starting from a special state s1 such that P (s|s1, a) = ρ0(s)
holds for any state s and action a. A finite MDP is an MDP with finite state and action spaces.

A policy π is a function mapping a state and a period to an action distribution. The value function for
the MDP M , policy π, and period h is defined recursively as

V π,M
h (sh) = Eah∼π(sh,h)

[
Qπ,M

h (sh, ah)
]
, ∀h ∈ [H],

Qπ,M
h (sh, ah) = R̄M (sh, ah) + Esh+1∼PM (sh,ah)

[
V π,M
h+1 (sh+1)

]
, ∀h ∈ [H − 1],

(1)

where R̄M (s, a) = Er∼RM (s,a)[r], and Qπ,M
H (sH , aH) = R̄M (sH , aH).

We use Xk,h to represent the variable X at the h-th period of the k-th episode. For notational
convenience, Xk,h is sometimes abbreviated as Xkh. The history prior to k-th episode is defined
as Hk = (s1,1, a1,1, r1,1, s1,2, . . . , sk−1,H , ak−1,H , rk−1,H). The agent is assumed to be capable
of memorizing the entire history. In this paper, we consider model-based RL algorithms which
produce a model Mk per episode in light of the history Hk and derive its corresponding optimal
policy πk ∈ argmaxπ V

π,Mk

1 (s1) for execution. We use the terms model and MDP interchangeably.
For any history H, A(H) defines a distribution over models and policies. Within the k-th episode, the
agent samples an action from πk(skh, h) at each period h.

In the frequentist viewpoint, there exists an unknown true MDP M∗. We abbreviate V π∗,M∗

h as V ∗
h ,

where π∗ is an optimal policy of the true MDP M∗. The frequentist performance metric, regret, is
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defined in terms of the true MDP:

Regret(T,A,M∗) = EHK+1∼A,M∗

[
K∑

k=1

∆k

]
, (2)

where ∆k is defined as Eπk∼A(Hk)

[
V ∗
1 (s1)− V πk,M

∗

1 (s1)
]
, K is the total number of episodes,

T = KH is the number of the total time steps, and HK+1 ∼ A,M∗ means that the history is
sampled by the interaction of the algorithm A and the real MDP M∗. In the Bayesian viewpoint,
the unknown MDP M∗ is treated as a random variable and assigned a prior ρM . All MDPs in the
support of ρM differ only in the transition function P and the reward function R. The Bayesian
objective of the agent is to minimize the Bayesian regret up to time T , BayesRegret(T,A, ρM ) =
EM∗∼ρM

[Regret(T,A,M∗)].

2.2 Optimism in the Face of Uncertainty

Optimism in the face of uncertainty is a strategy for information gathering. When the optimal action
is not clear given the current information, it is preferable to hazard an optimistic guess. If we make
an atrocious guess, we effectively rule that out and pick another next time. Otherwise, we end up
finding a competitive solution that incurs little regrets. This idea is mathematically realized as a
constrained optimistic optimization, maxπk,Mk

V k
1 (s1) s.t. Mk ∈ Mk, where Mk is a confidence

set constructed using empirical data Hk such that M∗ ∈ Mk with high probability. The pseudocode
of the OFU algorithm is shown in Algorithm 1.

Algorithm 1 OFU RL
1: for episode k = 1, 2, . . . do
2: Construct a confidence set Mk with Hk

3: Compute πk ∈ argmaxπ maxMk
V π,Mk

1 (s1) s.t. Mk ∈ Mk

4: Execute πk for an episode

3 Related Work

One line of research resolves the exploration and exploitation dilemma by formalizing the RL problem
as a planning problem in Bayes-Adaptive MDPs (BAMDPs) [3], which treats the unknown MDP
parameter as an additional hidden variable and maintains a belief distribution of the parameter. This
line of work shares the scalability problem, which is caused by the exponential increase of possible
histories w.r.t. the planning horizon. That is, the planning in BAMDPs is PSPACE-complete [4] and
requires exponential time to solve. Intuitively, this is because methods based on BAMDPs deal with
the belief distributions of MDPs (or histories) rather than a single MDP. Efficient planning algorithms
in BAMDPs do exist. Exploiting the root sampling technique, we can implement an algorithm that
gets rid of the posterior distribution and only requires posterior sampling [18]. Nonetheless, the
underlying scalability issue remains prominent.

Methods following the OFU principle construct an optimistic estimate of the unknown MDP and
execute its optimal policy. Since these methods plan on a single MDP estimate, they are computa-
tionally preferable compared to methods based on BAMDPs. The UCRL2 [16] is one such method.
However, unlike tabular and linear MDPs for which constructing an optimistic estimate is analytically
tractable [11, 13], constructing an optimistic estimate for general MDPs involves a constrained joint
optimization of model and policy and is computationally prohibitive. Hence, previous model-based
OFU algorithms [19, 20] for general model classes cannot be implemented and rely on posterior
sampling for exploration.

The posterior sampling for reinforcement learning (PSRL) works by selecting a random MDP from
the posterior distribution and executing its optimal policy [21]. This strategy ensures that a policy is
selected according to the probability that it is the optimal policy of the real model. It is shown that
PSRL is at least as good as any frequentist OFU algorithm in terms of Bayesian regret [22, 15]. PSRL
is argued to be better than optimism since it is more computationally tractable [15]. Nevertheless, as
opposed to OFU algorithms, incremental implementation of PSRL is challenging because it requires
replanning after each sampling. Practical implementation instead tries to directly sample from the
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posterior distribution of the optimal value function [23–25]. However, the theoretical guarantee for
these methods is only established for tabular MDPs [25].

H-UCRL was devoted to resolving the intractability of model-based optimistic exploration for general
models [26]. It proposes to convert the joint optimization of model and policy into a hallucinated
control problem. This approach ignores the correlation between state-action pairs and treats them
separately, causing inefficiency as reflected by the extra dependency on the cumulative posterior
variance in their regret bound. Our method, BOO, also tries to attack the intractability of optimism,
which builds an optimistic model by optimizing both the value and the log-posterior density. It avoids
the defect of H-UCRL since maximizing the log-posterior density naturally enforces the correlation
between state-action pairs.

We note that, when the prior is uniform, this idea is equivalent to balance value versus log-likelihood,
which is first explored in [27] and is named as reward-biased maximum likelihood estimation
(RBMLE). They have applied this approach to multi-armed bandits [28], contextual bandits [29], and
RL where the model belongs to a known finite set [27, 30]. A constrained version of RBMLE is also
successfully applied to RL of linear quadratic control systems [31]. Our algorithm can be considered
generalizing RBMLE to a Bayesian perspective and finite dimensional RKHS. In this regard, BOO
could also be referred to as reward-biased maximum a posteriori.

Concerning the regret analysis, previous regret analysis for general model-based RL [19, 20] relies
on the fact that the constructed model is the most optimistic one in the confidence set. The regret
analysis of BOO differs with them significantly since the model constructed by BOO may not belong
to a confidence set or a credible region. This difference entails a distinct analysis, where we show
that neither the large deviation from the real model nor the possibly pessimistic estimation of the
model causes a large regret.

4 Bayesian Optimistic Optimization

In this section, we derive the learning objective of Bayesian optimistic optimization (BOO) as a
Lagrangian relaxation of a constrained optimization problem and give an intuitive interpretation of
the resulting objective. Assuming the model class resides in a finite-dimensional RKHS, we show
that BOO enjoys Õ(

√
K) regret.

4.1 Constrained BOO

The conventional OFU algorithm, as demonstrated in Algorithm 1, contains a constrained optimistic
optimization, where we look for an optimistic MDP Mk ∈ Mk and its corresponding optimal policy
such that the value is maximized. The constrained BOO is almost the same (see Algorithm 2), except
the frequentist confidence set is now replaced with the Bayesian credible region. A credible region
with a 1− αk level of confidence is a set Mk such that Pr(Mk|Hk) ≥ 1− αk, where Pr(·|Hk) is
the posterior distribution given history Hk, and Pr(Mk|Hk) =

∫
Mk∈Mk

Pr(Mk|Hk) dMk.

By the construction of the credible region, we have M∗ ∈ Mk holds with probability 1− αk given
any history Hk. Therefore, the per-episode Bayesian regret is bounded with probability 1− αk,

E[∆k] ≤ E
[
V ∗
1 (s1)− V k

1 (s1)
∣∣M∗ ∈ Mk

]︸ ︷︷ ︸
∆̃opt

k

+E
[
V k
1 (s1)− V πk,M

∗

1 (s1)
∣∣∣M∗ ∈ Mk

]
︸ ︷︷ ︸

∆̃conc
k

≤ ∆̃conc
k ,

(3)
where V k

h = V πk,Mk

h , and the optimism term ∆̃opt
k is less than or equal to 0 by construction. We

define a distance metric d(M1,M2) = maxπ |V π,M1

1 (s1) − V π,M2

1 (s1)|. It is preferable to have a
credible region M such that the set width maxM1,M2∈M d(M1,M2) is minimized since the set width
certifies an upper bound on ∆̃conc

k . However, designing a value concentration credible region could
be intractable for generic model classes. As a reasonable alternative, we propose the highest density
region (HDR) [32] or, in the Bayesian context, the highest posterior density (HPD) region [33], i.e.,
Mk = {Mk|Pr(Mk|Hk) ≥ ϵk}, where ϵk is the largest constant such that Pr(Mk|Hk) ≥ 1− αk.
This kind of region features a desirable property that it occupies the smallest volume in the sample
space among all credible regions of the same confidence level and has a potentially small set width.
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There are two problems preventing the constrained BOO from being a practical algorithm. The first
is that the ϵk in the definition of the HPD region is unknown. Although we may approximate it with
the Monte Carlo approximation [34], an estimator of high/low quantiles has high variance rendering
the approximation difficult. The other difficulty is that the constrained joint optimization of model
and policy is an NP-hard problem even in bandits with linear reward and quadratic constraints [14].

Algorithm 2 Constrained BOO
1: for episode k = 1, 2, . . . do
2: Construct a credible region Mk with Hk

3: Compute πk ∈ argmaxπ maxMk
V π,Mk

1 (s1) s.t. Mk ∈ Mk

4: Execute πk for an episode

4.2 BOO as Lagrangian Relaxation of Constrained BOO

By introducing a Lagrange multiplier λk, we transform the constrained BOO with HPD regions
into an unconstrained optimization problem, maxπ,M

(
V π,M
1 (s1) + λk(log Pr(M |Hk)− log ϵk)

)
,

where Pr(M |Hk) = Pr(Hk|M) Pr(M)
Pr(Hk)

. Once the Lagrange multiplier is determined, the constant
log ϵk and the marginal likelihood log Pr(Hk) are irrelevant, and the optimization is equivalent to
maxπ,M

(
V π,M
1 (s1) + λk(log Pr(Hk|M) + log Pr(M))

)
. This gives rise to the BOO algorithm as

shown in Algorithm 3.

Algorithm 3 BOO
1: for episode k = 1, 2, . . . do
2: Compute πk ∈ argmaxπ maxM

(
V π,M
1 (s1) + λk(log Pr(Hk|M) + log Pr(M))

)
3: Execute πk for an episode

However, the problem is how to determine the value of λk. We note that the following argument by
posterior sampling provides an inexact yet insightful viewpoint. A strict discussion is presented in
Appendix B. The maximization of the BOO objective can be considered the problem of selecting
the best one among multiple posterior samples (see Algorithm 4). When only one sample is taken,
Algorithm 4 reduces to the well-known PSRL [21]. As the number of samples j goes to infinity,
maximizing among all posterior samples gives approximately the solution of the above optimization.

Algorithm 4 BOO via Posterior Sampling
1: for episode k = 1, 2, . . . do
2: Sample M1

k ,M
2
k , . . . ,M

j
k ∼ Pr(·|Hk)

3: Compute πk ∈ argmaxπ maxi∈[j]

(
V

π,Mi
k

1 (s1) + λk(log Pr(Hk|M i
k) + log Pr(M i

k))
)

4: Execute πk for an episode

Notice that we can regard Algorithm 4 as maximizing over several identically distributed random
variables, λk log Pr(M i

k|Hk) + V
πi
k,M

i
k

1 (s1). The magnitude of their mean does not matter since
subtracting a constant will not change the optimum. The thing that matters is their variation. We need
to make sure that the variation is not dominated by either V πi

k,M
i
k

1 (s1) or λk log Pr(M i
k|Hk). If the

value dominates the variation, the algorithm will select an unreliable model, which causes inefficiency.
If the variation is dominated by the probability, it shows a strong preference for high-probability
models and hesitates to explore.

Theorem 4.1 shows that the standard deviation of log probability is at least a constant (proof in
Appendix A).
Theorem 4.1 (Variation of the log-posterior density). Suppose Xn = (X1, X2, . . . , Xn) are obser-
vations from a stochastic process whose distribution Pθ depends on θ ∈ Θ, an open subset of Rm.
Assume that the posterior is asymptotic normal, and the log-posterior density is continuous. The
variance of the log-posterior density satisfies lim infn→∞ Varθ [log Pr(θ|Xn)] ≥ m/2.

5



The process where an algorithm A interacts with a random MDP parameterized by θ is a stochastic
process where the observation Xt is the state-action pair (st, at), and the observation distribution
Pr(Xn|θ,A) is a distribution depending on θ. Thus, by Theorem 4.1, we know that if the posterior
distribution is asymptotic normal, then, for a random sample θ from the posterior distribution, the
variance of the random variable log Pr(θ|Xn) is at least m/2 when n is large enough.

Theorem 4.1 relies on the asymptotic normality of the posterior distribution, which is satisfied under
some regularity conditions specified in [35]. The theorem only certifies a lower bound on the variance
rather than establishing its convergence. Arguably, this is mostly a technical issue arising from the
unboundedness of the log-posterior density. It is possible to strengthen this result and derive the
convergence of the variance. Indeed, it is empirically observed that this quantity converges rapidly to
a constant.

For a proper RL algorithm, it is clear that the standard deviation of V πi
k,M

i
k

1 (s1) should shrink
w.r.t. k. Otherwise, the algorithm fails to find out the optimal value and policy. Suppose that the
standard deviation of V πi

k,M
i
k

1 is Õ(k−1/α), where Õ is a variant of the big O notation that ignores
logarithmic factors. We need to set the scaling parameter λk proportionally such that the variation
of the log-posterior density term log Pr(M i

k|Hk) matches that of the value term V πi
k,M

i
k . Given a

specific model class and noise type, it is possible to derive a worst-case rate for the shrinkage of the
value uncertainty and thus determine the proper value of λk. Nonetheless, the rate of information
revealing could appear in an instance-dependent manner. That is to say, the optimal policy of some
MDPs could be inherently easier to determine than the others. Even in a fixed MDP, the rate of
uncertainty shrinkage could also change abruptly. For example, consider a ReLU bandit problem,
where B = {a ∈ Rd|∥a∥2 ≤ 1}, and the agent at each episode selects an action a ∈ B and receives a
Gaussian reward of mean max(θ⊤a, 0). If it happens that the agent selects an action a in the inactive
region I = {a ∈ B|θ⊤a ≤ 0}, the resulting observation reveals little information about the optimal
action. Suppose the parameter θ is selected such that the positive region B\I is of a maximum
width ϵ > 0. Then, in the worst case, the agent needs to explore Ω(1/ϵd−1) actions in order to find
the positive region, but the uncertainty starts diminishing rapidly whenever the positive region is
identified.

The view of matching the log probability variation with the value uncertainty provides rationales for
the dynamic adjustment of λk. Meanwhile, it points out the potential limitation of decaying λk with a
fixed rate. In this paper, we focus on methods that scale λk with a fixed rate, but as mentioned above,
it would be fascinating to adjust it in an instance-dependent manner.

4.3 BOO Regret

In this section, we introduce the regret of BOO. The regret of BOO relies on both the decay rate of
the scaling parameter and the complexity of model class. We assume that the model class resides in a
d-dimensional RKHS, which roughly means any function in the model class can be represented as a
linear function of a potentially unknown finite-dimensional feature map. This assumption is not very
restrictive because it places no restriction on the choice of feature map except for the finitude of the
dimension.

In Appendix B, we derive the asymptotic regret of the BOO algorithm in Theorem B.1. As suggested
by Theorem B.1, the optimal asymptotic regret of BOO is O

(√
K logK

)
, i.e., Õ

(√
K
)

, achieved

by setting λ∗k = c/
√
k, where λ∗k is the optimal scaling parameter and c is a constant associated with

the model class. More detailed derivations and conclusions can be found in Appendix B.

We can further interpret λ∗k = c/
√
k as λ∗k = ξVk /ξ

M
k , where ξMk stands for the variation of the

log-posterior density for the model Mk, and ξVk represents the value uncertainty. In contrast to the
discussion in Section 4, where we consider samples from the posterior distribution and the variation
of log-posterior density remains constant, the width of the HPD region measured by the variation of
log-posterior density is, in fact, growing at a rate depending on the log covering number. Accroding
to Lemma D.7 in Appendix D.1, ξMk = O (log k). Therefore, we have ξVk = λ∗kξ

M
k = O

(
log k√

k

)
.

Section 5 will highlight the need of manipulating with ξVk and ξMk in optimization.
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5 Optimization

In this section, we introduce optimization methods for BOO based on posterior sampling and gradient
descent, respectively, and discuss in detail the problems of gradient-based optimization and our
proposed solutions.

5.1 Optimization via Posterior Sampling

Algorithm 4 provides a method of optimizing the BOO objective via posterior sampling. As discussed
previously, the optimal scaling parameter λk for this algorithm is proportional to the value uncertainty,
i.e., λk = ξVk = λ∗kξ

M
k . The potential advantage of Algorithm 4 over PSRL is that, unlike PSRL, it

does not require posterior samples to be independent. Even the requirement that samples are from
the posterior can be relaxed. These features are essential either when the posterior distribution is
approximated or when the posterior samples are produced by Markov chain Monte Carlo methods
and are correlated.

5.2 Optimization via Gradient-Based Methods

We can also perform the optimization via gradient-based methods. The objective function of BOO
consists of two parts, V π,Mi

k
1 (s1) and λk(log Pr(Hk|M i

k) + log Pr(M i
k)). The gradients of the log-

likelihood and the log-prior are easily obtained. For the value part, we provide a value model gradient
that admits a similar form as the well-known policy gradient [36, 37] (proof in Appendix E.1). The
value model gradient is amenable to Monte Carlo approximation and can be computed exactly for
finite MDPs.
Theorem 5.1 (Value model gradient). Suppose that the transition function PMθ and reward function
RMθ of model Mθ, the gradient of the value V π,Mθ

1 (s1) w.r.t. the model is

∇θV
π,Mθ

1 (s1) = Eτ∼π,Mθ

[
H∑

h=1

∇θR̄
Mθ (sh, ah) +

H−1∑
h=1

V π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah)

]
,

(4)
where τ = (s1, a1, . . . , sH , aH) is a trajectory, τ ∼ π,Mθ means that the trajectory is formed by
the interaction of the policy π and the model Mθ, and PMθ (sh+1|sh, ah) is the probability of sh+1

under distribution PMθ (sh, ah).

Nevertheless, the value model gradient suffers the same inefficiency just as the policy gradient [38]
since the model gradient for a particular state-action pair is 0 whenever it is not visited under the
current model and policy.

We propose some techniques to improve the optimization efficiency of BOO, and conduct ablation
experiments to verify the effectiveness of our proposed methods in Section G. Two of the most
effective techniques are described below, and the rest of the techniques are detailed in Appendix F.

5.2.1 Mean Reward Bonus

In the gradient-based optimization, the model becomes optimistic on state-action pairs it visits
frequently, which in turn makes these state-action pairs more appealing. This mutual strengthening
phenomenon makes optimization easily stuck at local optima. One way to solve this problem is to
increase the rewards of all state-action pairs, which raises the attractiveness of less visited state-action
pairs. This can be achieved by adding a bonus term ξVk HE(s,a)∼US×A [R(s, a)] to the BOO objective.
Here, US×A is the uniform distribution over the state-action space. The coefficient ξVk ensures that
the bonus decays with the value uncertainty. The unvisited state-action pairs will eventually be
visited by the policy because they have sufficiently high rewards. Our experiments will show that, in
tabular setting, this method is very effective. However, a concern is that it might fail to scale to high
dimensional state-action space.

5.2.2 Entropy Regularization

Another intricacy of the optimization is that the optimal solution of the BOO objective could change
dramatically across the parameter space from episode to episode, which renders the optimization
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extremely hard. A revealing fact is that a small change in the model could change the optimal policy
dramatically, making the loss landscape unsmooth. Hence, we introduce an entropy-regularized
optimization procedure, which starts with a high initial entropy regularization and gradually annealing.
The entropy plays a role in smoothing the policy’s loss landscape such that the optimal policy will
not change drastically when the model changes. The smoothing effect of entropy regularization is
also discussed previously in [39].

The entropy-regularized learning objective mimics the maximum entropy RL [40]:

J̃k = V π,M
1 (s1) + λk log Pr(M |Hk)− ξVk ζ Eτ∼π,M

[
H∑

h=1

KL(π(sh, h)∥π̂(sh, h))

]
= Ṽ π,M

1 (s1) + λk log Pr(M |Hk),

(5)

where KL(p∥q) stands for the relative entropy, π̂ is a prior policy ensuring π is absolutely continuous
w.r.t. π̂, the hyperparameter ζ controls the amount of entropy, and Ṽ is the entropy-regularized value.

The entropy term is downscaled in proportion to the value uncertainty such that the influence
of regularization diminishes with time. We denote by Mθ the set of models parameterized by
θ. Let bϵ be the smallest number ensuring that, for any Mθ ∈ Mθ, there exists πϵ ∈ Πϵ =

{π | KL(π(s, h)∥π̂(s, h)) ≤ bϵ,∀s ∈ S, h ∈ [H]} such that supπ∗ V
π∗,M
1 (s1) − V πϵ,M

1 (s1) ≤ ϵ.
Then, the value of the maximum entropy policy π̃∗ = argmaxπ̃ V

π̃,M
1 (s1) satisfies that

V π̃∗,M
1 (s1) ≥ V π̃∗,M

1 (s1)− ξVk ζ Eτ∼π̃∗,M

[
H∑

h=1

KL(π̃∗(sh, h)∥π̂(sh, h))

]

≥ V πϵ,M
1 (s1)− ξVk ζ Eτ∼πϵ,M

[
H∑

h=1

KL(πϵ(sh, h)∥π̂(sh, h))

]
≥ sup

π∗
V π∗,M
1 (s1)− ϵ− ξVk ζbϵ.

(6)

If ϵ is sufficiently small, then the sub-optimality gap caused by entropy regularization will decrease
at the same rate as the decay of value uncertainty, which ensures that the resulting policy covers
multiple uncertain actions without detriment to the performance.

The entropy-regularized value is equivalently defined by the following Bellman backup,

Ṽ π,M
h (sh) = Eah∼π(sh,h)[Q̃

π,M
h (sh, ah)]− ξVk ζKL(π(sh, h)∥π̂(sh, h)), ∀h ∈ [H],

Q̃π,M
h (sh, ah) = R̄M (sh, ah) + Esh+1∼PM (sh,ah)

[
Ṽ π,M
h+1 (sh+1)

]
, ∀h ∈ [H − 1],

(7)

where Q̃π,M
H (sH , aH) = R̄M (sH , aH). The optimization of the policy can be carried out by, for

example, the maximum entropy actor-critic algorithm [40] or the soft actor-critic algorithm [41]. In
finite MDPs, the optimal value is given by soft value iteration,

Ṽ π̃∗,M
h (sh) = ξVk ζ log

∑
ah∈A

π̂(ah|sh, h) exp

(
Q̃π̃∗,M

h (sh, ah)

ξVk ζ

)
, (8)

where π(ah|sh, h) is the probability of ah under the distribution π(sh, h). The maximum entropy
policy π̃∗ is then derived from the optimal value as

π̃∗(ah|sh, h) = π̂(ah|sh, h) exp

(
Q̃π̃∗,M

h (sh, ah)− Ṽ π̃∗,M
h (sh)

ξVk ζ

)
. (9)

The gradient of the entropy-regularized value w.r.t. the model is similar to that specified in Theo-
rem 5.1, with the value replaced by the entropy-regularized value.

6 Experiments

This section compares the performance of BOO with PSRL and UCRL2 in RiverSwim, Chain, and
Random MDPs. RiverSwim and Chain are hard-exploration MDPs requiring the agent to explore
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efficiently, while Random MDPs test the average performance. Two implementations of BOO are
presented, namely, FiniteBOO and BPS. FiniteBOO is the BOO with entropy regularization and
mean reward bonus mentioned in Section 5.2, which is empirically found to be the best variant in
tabular setting according to the ablation study. BPS is an implementation of Algorithm 4 (BOO via
posterior sampling).
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…
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Figure 1: Illustrative diagrams for RiverSwim and Chain. Solid and dotted arrows represent actions,
“left” and “right”, respectively, with the transition probability tagged. The action left never fails,
but the action right often fails. Except for the rewards shown in the figure, the rewards of other
state-action pairs are all zero.

6.1 RiverSwim

The RiverSwim is an MDP where states are organized in chains, and the agent can move left or right,
as shown in Figure 1(a). Although the rightmost state has a huge reward, the action of moving right
fails with a high probability. Only a policy moves right at each time period has a small chance of
success.

We start with the experiment on the RiverSwim to demonstrate the performance of our algorithm in
the face of high transition uncertainty. We perform experiments for ten seeds on RiverSwim with
|S| = H = 5, |A| = 2 and record the cumulative regret over 100,000 time steps. As shown in Figure
2(a), our algorithm is competitive to PSRL and outperforms UCRL2 significantly.

6.2 Chain

The chain MDP is a variant of the RiverSwim, which has Gaussian rewards and relatively deterministic
transitions, as shown in Figure 1(b). Although transitions are relatively certain, the stochastic rewards
make the problem difficult to explore. The horizon H and the number of states |S| are equal to the
length of the chain.

We evaluate our algorithms in Chain of a length L ∈ {10, 20, 40} for 100, 000 episodes and ten
random trials. Figure 2(d∼f) illustrates that our algorithm compares favorably with PSRL and
UCRL2, which certifies the effectiveness of BOO in problems requiring long-term planning.

6.3 Random MDPs

Random MDPs are tabular MDP models randomly generated from a prior distribution and used to
test the general performance of the algorithm.

We randomly generate 100 stochastic MDPs with |S| = |A| = H = 5 and |S| = H = 20, |A| = 5
from the prior and measure the performance of algorithms over 10, 000 timesteps. As shown in
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(d) Chain with length 10
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Figure 2: (a∼f) show the cumulative regrets of different algorithms on RiverSwim (|S| = H =
5, |A| = 2), Random MDPs (|S| = H = 5, |A| = 5), Random MDPs (|S| = H = 20, |A| = 5), and
the chains of different lengths, respectively.

Figure 2(b), the performance of BOO and BPS is close to PSRL, and both algorithms outperform
UCRL2 significantly. However, the performance gap between FiniteBOO and PSRL in Figure 2(c)
indicates that there remains a challenge in the optimization of large-scale MDPs.

7 Conclusion

This paper proposes BOO as a generic model-based RL algorithm. It is provably sample-efficient
and enjoys Õ(

√
K) regret for models in a finite-dimensional RKHS, where K is the number of

episodes. To optimize the BOO objective, we propose the value model gradient and optimization
techniques, such as entropy regularization, to improve its efficiency. Through our experiments, we
have shown that BOO is competitive with PSRL and outperforms UCRL2 greatly. However, to
apply BOO in real-world RL problems, there remains lots of work to be done. Importantly, we need
to develop methods that further facilitate the gradient-based optimization of BOO in large-scale
problems. It is also an appealing direction for future work to adapt the scaling parameter of BOO on
an instance-dependent basis.
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Appendix

A Variation Analysis

Theorem 4.1 (Variation of the log-posterior density). Suppose Xn = (X1, X2, . . . , Xn) are obser-
vations from a stochastic process whose distribution Pθ depends on θ ∈ Θ, an open subset of Rm.
Assume that the posterior is asymptotic normal, and the log-posterior density is continuous. The
variance of the log-posterior density satisfies lim infn→∞ Varθ [log Pr(θ|Xn)] ≥ m/2.

Proof. We first compute the variance of log probability for a m-dimension normal distribution with
mean µ and covariance Σ. Let f be the density of the multivariate normal distribution, and θ ∼ f . It
follows that

Varθ [log f(θ)] = Varθ

[
−1

2

[
log(|Σ|)− (θ − µ)⊤Σ−1(θ − µ) +m log(2π)

]]
=

1

4
Varθ

[
(θ − µ)⊤Σ−1(θ − µ)

]
=

1

4
Varθ′

[
θ′⊤Σ−1θ′

]
,

(10)

where the last equality is derived by setting θ′ = θ − µ. The random variable θ′ follows a normal
distribution with zero mean and covariance Σ. The expectation of a quadratic form θ′⊤Aθ′ is [42]

E
[
θ′⊤Aθ′

]
= Tr(AΣ), (11)

where A ∈ Rm×m, and Tr(·) represents the trace of the matrix. Given matrices A,B ∈ Rm×m, the
expectation of a quartic form θ′⊤Aθ′θ′⊤Bθ′ is [42]

E
[
θ′⊤Aθ′θ′⊤Bθ′

]
= Tr(AΣ(B +B⊤)Σ) + Tr(AΣ)Tr(BΣ). (12)

We then derive its variance as follows,

Varθ′
[
θ′⊤Σ−1θ′

]
= E

[(
θ′⊤Σ−1θ′ − E

[
θ′⊤Σ−1θ′

]) (
θ′⊤Σ−1θ′ − E

[
θ′⊤Σ−1θ′

])⊤]
= E

[
(θ′⊤Σ−1θ′ −m)(θ′⊤Σ−1θ′ −m)⊤

]
= E

[
θ′⊤Σ−1θ′θ′⊤Σ−1θ′

]
− 2mE

[
θ′⊤Σ−1θ′

]
+m2

= Tr
(
2Σ−1ΣΣ−1Σ

)
+ [Tr

(
Σ−1Σ

)
]2 − 2mTr(Σ−1Σ) +m2

= 2Tr(Im) + Tr(Im)2 − 2mTr(Im) +m2

= 2m,

(13)

where Im ∈ Rm×m is the identity matrix, and the third-to-last equality makes use of the quadratic
and quartic expectations. It follows that the variance of log probability of any normal distribution is
m/2.

As the posterior distribution is assumed to be asymptotically normal, we complete the proof by
applying Portmanteau theorem which states that lim infn→∞ E[g(Xn)] ≥ E[g(X)] for any lower
semi-continuous function g bounded from below if Xn converges in distribution to X [43].

B BOO Regret Analysis

This section analyzes the regret of BOO. The regret of BOO relies on both the decay rate of the
scaling parameter and the complexity of the model class. We will first declare our assumptions on the
model class. Based on these assumptions, we can measure the complexity of the model class in terms
of the covering number and the eluder dimension. Then, we establish the regret bound for different
choices of the decay rate of the scaling parameter.

Let the state space S be a subset of Rm. Denote the state-action space S ⊗A as X and state-reward
space S ⊗ R as Y . A model function is a function mapping X to Y . For each y ∈ Y , ϵy is a
σ-sub-Gaussian noise, i.e. logE[ev⊤ϵy ] ≤ ∥v∥22σ2/2 for all v ∈ Rm. We first assume that the real
MDP can be fully characterized by the model function and the sub-Gaussian noise.
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Assumption 1 (Models with additive sub-Gaussian noises). Let F be a class of model functions
f : X → Y . Assume that there exists a function f∗ : X → Y in F such that for any x ∈ X ,
f∗(x) + ϵf∗(x) is identically distributed as in the real MDP M∗.

Assumption 1 requires the output distribution to be determined by its mean. This requirement is
satisfied when the output distribution is modeled as, for example, Gaussian with known variance.
The categorical distribution also satisfies this requirement by representing each category as a one-hot
vector, in which case the mean vector equates the probability vector of the distribution.

Since the noise is assumed sub-Gaussian, we adopt the independent Gaussian likelihood as a surrogate
for the actual likelihood function [29], i.e.,

log Pr(y|x, f) = −n
2
log(2πσ2)− 1

2σ2
∥y − f(x)∥22. (14)

A linear space H of functions f : X → Y on a set X is said to RKHS if for any x ∈ X and y ∈ Y the
linear functional mapping f ∈ H to f(x)⊤y is continuous [44]. We define a d-dimensional RKHS H
via a feature map ϕ : X → Rd as {f : X → Y | W ∈ R(m+1)×d, f(x) = Wϕ(x),∀x ∈ X}. It is
easily seen that H is indeed an RKHS. We assume that the model function class F is a subset of the
d-dimensional RKHS H.
Assumption 2 (Model functions in d-dimensional RKHS). Assume that F ⊆ {f | W ∈
R(m+1)×d, ∥W∥F ≤ rw, f(x) = Wϕ(x), ∥ϕ(x)∥ ≤ rϕ,∀x ∈ X}, where rw and rϕ are constants,
and ∥ · ∥F is the Frobenius norm.

In Appendix C, we prove that the log covering number and the distributional eluder dimension for
the function class F are O(md log(rϕrw/α)) and O(d log(rϕrW /ϵ)), respectively. Here, the upper
bound of the distributional eluder dimension is established for any set of probability measures on X .

The third assumption is the Lipschitz continuity of the one-step value function, which connects
the model difference to the value difference. Let Ux,V (M) be the one-step value function with
the state-action pair x and the value function VM , i.e., Ux,V (M) = R̄M (x) + PM

x (V ), where
PM
x (V ) =

∫
VM (s′)PM (s′|x) ds′. We define the Lipschitz constant with respect to the 2-norm as

|Ux,V (M)− Ux,V (M
′)| ≤ Lx,V ∥fM (x)− fM

′
(x)∥2, (15)

where fM is the model function of M .
Assumption 3 (One-step value Lipschitz continuity). Let M be the set of MDPs defined by the class
F of model functions. Assume that the Lipschitz constant Lx,V π,M for any x ∈ X , M ∈ M, and π is
bounded by L, i.e., L ≥ maxx∈X ,M∈M,π Lx,V π,M .

Finally, the asymptotic regret of BOO is derived in Theorem B.1 based on the assumptions and
conclusions we introduced above, see Appendix D.4 for more details of the derivation.
Theorem B.1 (Bayesian optimistic optimization regret). Let F be the function class defined in
Assumption 2, i.e., F ⊆ {f | W ∈ R(m+1)×d, ∥W∥F ≤ rw, f(x) = Wϕ(x), ∥ϕ(x)∥ ≤ rϕ,∀x ∈
X}. The log-prior probability is assumed to be uniformly bounded by some constant. Setting
λk = ck−v1(log k)−v2 for c > 0 and 0 < v1 < 1 or v1 = 0, v2 ≥ 0, the asymptotic regret of BOO is

O
(
HLdrwrϕσ

√
m(rc + 1)K logK

)
if v1 = 1

2 , v2 = 0

O
(
HL2d/(cσ2)Kv1(logK)v2+1

)
if v1 > 1

2 or v1 = 1
2 , v2 > 0

O
(
Hmdr2wr

2
ϕσ

4K1−v1(logK)1−v2
)

if v1 < 1
2 or v1 = 1

2 , v2 < 0,

(16)

where m is the dimension of the state space and rc is a constant determined by c =√
(rc+1)

rc
2
√
2L

rwrϕσ3
√
m

.

As suggested by Theorem B.1, the best performance of BOO is achieved by setting λ∗k = c√
k

.

C Complexity Measurement for the Model Function Class

In this section, we first introduce the definition of the covering number and the eluder dimension and
then measure the complexity of the function class F based on them.
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C.1 Definition of the Covering Number and the Eluder Dimension

Our regret analysis uses the notions of the covering number and the eluder dimension [45, 22]. They
measure different aspects of function classes.

The covering number is introduced for measuring the size of the function class.
Definition 1 (Covering number). Let (G, ∥ · ∥) be a metric space and F ⊆ G. The covering number
N(F , α, ∥ · ∥) for α > 0 is the minimum cardinality of C ⊆ F such that for all f ∈ F , there exists
c ∈ C satisfying ∥f − c∥ ≤ α.

The eluder dimension is a complexity measure for the exploration difficulty. Similar to [46], we
generalize the original eluder dimension [45] to the distributional eluder dimension by measuring the
difference on distributions.
Definition 2 (ϵ-dependence between distributions [22, 46]). Let F be a function class defined on a set
X , and ν, µ1, . . . , µn be probability measures, over X . We say ν is ϵ-dependent on {µ1, µ2, . . . , µn}
w.r.t. F if any f1, f2 ∈ F satisfying

√∑n
i=1 µi(∥f1 − f2∥22) ≤ ϵ also satisfies

√
ν(∥f1 − f2∥22) ≤ ϵ

for ϵ. Here, µ(g) =
∫
g dµ. If ν is not ϵ-dependent on {µ1, µ2, . . . , µn}, then it is said to be ϵ-

independent of {µ1, µ2, . . . , µn} w.r.t. F .

Let f∗ be the real function where observations are generated. Intuitively, a distribution ν is ϵ-
independent of {µ1, µ2, . . . , µn} means that a function f ϵ -indistinguishable from the real function
f∗ on historical distributions could still be significantly different on the distribution ν.
Definition 3 (Distributional eluder (DE) dimension [22, 46]). Let F be a function class defined
on a set X , and Π be a class of probability measures over X . The distributional eluder dimension
DEdim(F ,Π, ϵ) is the length of the longest sequence in Π such that every element in the sequence
is ϵ′-independent of its predecessors for some ϵ′ ≥ ϵ.

The distributional eluder dimension states that the bad event that a historically indistinguishable
function f fails to match the real function on future data cannot happen indefinitely. In the worst
case, after DEdim(F ,Π, ϵ) such events, all historically indistinguishable function matches the real
function with ϵ-precision. Let ∆X = {δx|δx(y) = δ(x − y), x, y ∈ X} be the set of Dirac delta
distribution centered around each x ∈ X . The distributional eluder dimension equals the original
eluder dimension when Π = ∆X . In RL, the distribution set we are concerned with is the distributions
induced by the models.
Definition 4 (Probability measures induced by models). Let M be a set of models and M∗

be the real MDP.The probability measures induced by M and M∗ are ΠM∗

M = {ρM,M∗
=

1
H

∑H
h=1 ρ

M,M∗

h |M ∈ M}, where ρM,M∗

h denotes the state-action distribution at period h induced
by executing an optimal policy π of M in the MDP M∗.

Although ΠM∗

M is enough for measuring the complexity of the function class, it is not amenable to
analytical analysis. Instead, we will establish an upper bound for the distributional eluder dimension
which holds for any class of probability measures.

C.2 Derivation of the Covering Number

Let F be the function class defined in Assumption 2. For all W1,W2 ∈ W = {W ∈ R(m+1)×d |
∥W∥F ≤ rw}, we have

∥fW1 − fW2∥∞ = ∥(W1 −W2)ϕ∥∞
= ess sup

x∈X
∥(W1 −W2)ϕ(x)∥2

≤ ess sup
x∈X

∥W1 −W2∥2∥ϕ(x)∥2

≤ ∥W1 −W2∥2rϕ
≤ ∥W1 −W2∥F rϕ.

(17)

Therefore, an α/rϕ-covering of W w.r.t. the Frobenius norm is a α-covering of F . Since the
Frobenius norm of a matrix equals the 2-norm of the corresponding flatten vector, and the α/rϕ-
covering number of (m + 1)d-dimensional ball {w ∈ R(m+1)×d | ∥w∥2 ≤ rw} w.r.t. 2-norm is
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O((rϕrw/α)
(m+1)d), we have

logN(F , α, ∥ · ∥∞) = O(md log(rϕrw/α)). (18)

C.3 Derivation of Distributional Eluder Dimension

Let Π be a set of probability measures on the measurable space (X ,Σ). Define W = {W ∈
R(m+1)×d | ∥W∥F ≤ rw}.

For any fW1 , fW2 ∈ F and µ ∈ Π, we have

µ(∥fW1
− fW2

∥22) =
∫

∥(W1 −W2)ϕ(x)∥22 dµ(x)

=

∫
Tr
(
(W1 −W2)ϕ(x)ϕ(x)

⊤(W1 −W2)
⊤) dµ(x)

= Tr
(
(W1 −W2)µ(ϕϕ

⊤)(W1 −W2)
⊤) ,

(19)

where the third equality follows from the linearity of trace. Then, by definition, the distributional
eluder dimension DEdim(F ,Π, ϵ) is the longest sequence µ1, . . . , µn ∈ Π such that

wk = sup
{
Tr
(
Wµk(ϕϕ

⊤)W⊤)∣∣∣Tr (WΦk−1W
⊤) ≤ ϵ′2,W ∈ W̃

}
> ϵ′2 (20)

holds for some ϵ′ ≥ ϵ and all k ∈ [n], where Φk =
∑k

i=1 µi(ϕϕ
⊤), and W̃ = W − W =

{W1 − W2|W1,W2 ∈ W}. For any W1,W2 ∈ W , it follows by the triangle inequality that
∥W1 −W2∥F ≤ ∥W1∥F + ∥W2∥F ≤ 2rW . Let Bk = Φk + λI . Notice that

ϵ′2 < wk ≤ sup
{
Tr
(
Wµk(ϕϕ

⊤)W⊤)∣∣Tr(WΦk−1W
⊤) ≤ ϵ′2,Tr(WIW⊤) ≤ 4r2W

}
≤ sup

{
Tr
(
Wµk(ϕϕ

⊤)W⊤)∣∣Tr(WBk−1W
⊤) ≤ ϵ′2 + 4λr2W

}
,

(21)

where the second inequality follows because W⊤BkW =W⊤Φk−1W + λW⊤IW ≤ ϵ2 + 4λr2W .
The solution of this constrained optimization problem is given by the following lemma.

Lemma C.1 (Maximizing trace under trace constraints). Let H be a Hilbert space. Suppose that W :
H → Rm is a linear operator, A : H → H is a positive semidefinite linear operator, and B : H → H
is a positive definite linear operator. Let w = maxW Tr(WAW⊤) s.t. Tr(WBW⊤) ≤ ϵ2. Then,
w ≤ ϵ2 Tr

(
B−1A

)
.

Proof. The Lagrangian function of the constrained optimization is L(W,λ) = −Tr(WAW⊤) +
λ(Tr(WBW⊤)− ϵ2). The KKT condition gives

λ ≥ 0

λ(Tr(WBW⊤)− ϵ2) = 0

λBW⊤ = AW⊤.

(22)

If λ = 0, then we have AW⊤ = 0 and, therefore, Tr(WAW⊤) = 0. When λ > 0, Tr(WAW⊤) =
λTr(WBW⊤) = λϵ2. Since λBW⊤ = AW⊤, we conclude that λ is the eigenvalue of B−1A and
is at most ∥B−1A∥2 ≥ 0.

In conclusion, we have

w ≤ ϵ2∥B−1A∥2

≤ ϵ2∥B−1A∥HS = ϵ2
√
Tr (B−1A(B−1A)⊤) = ϵ2

√
Tr ((B−1A)2)

≤ ϵ2 Tr
(
B−1A

)
,

(23)

where the second inequality holds because the Hilbert-Schmidt norm of a linear operator is greater
than its operator norm, and the third inequality holds for positive semidefinite operators by the
definition of trace.
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According to Lemma C.1, ϵ′2 < wk ≤ (ϵ′2 + 4λr2W ) Tr
(
B−1

k−1µk(ϕϕ
⊤)
)
. This implies that

Tr(B−1
k−1µk(ϕϕ

⊤)) >
ϵ′2

ϵ′2 + 4λr2W
. (24)

Since µk(ϕϕ
⊤) is positive semidefinite, we can rewrite it by Cholesky decomposition as µk(ϕϕ

⊤) =
ϕkϕ

⊤
k . Consider the case where the feature map ϕ is d-dimensional. By the generalized matrix

determinant lemma,
detBn = det(I + ϕ⊤nB

−1
n−1ϕn) detBn−1

= . . . = det(λI)

n∏
i=1

det(I + ϕ⊤i B
−1
i−1ϕi)

= λd
n∏

i=1

det(I + ϕ⊤i B
−1
i−1ϕi).

(25)

For a positive semidefinite matrix A, the characteristic polynomial is det(tI −A) =
∏d

i=1(t− λi),
where λ1, . . . , λd are the eigenvalues of A. Selecting t = −1, it follows that

(−1)d det(I +A) = (−1)d
d∏

i=1

(1 + λi)

⇒ det(I +A) ≥ 1 + Tr(A).

(26)

Equations (24), (25), and (26) imply that

detBn > λd
(
1 +

ϵ′2

ϵ′2 + 4λr2W

)n

. (27)

The determinant detBn is upper bounded by the AM-GM inequality,

detBn ≤
(
Tr(Bn)

d

)d

=

(
Tr(λI) +

∑n
i=1 Tr(ϕiϕ

⊤
i )

d

)d

≤

(
λd+ nr2ϕ

d

)d

.

(28)

Combining Equations (27) and (28) and setting λ = ϵ′2/(4r2W ), we get(
1 +

ϵ′2

ϵ′2 + 4λr2W

)n
d

≤ 1 +
r2ϕ
λ

n

d

⇒
(
1 +

1

2

)n
d

≤ 1 +
4r2W r2ϕ
ϵ′2

n

d
.

(29)

For any α > 0, β ≥ 0, we show that if (1 + α)k ≤ 1 + βk, then k ≤ β+1
β

2 log(β+1)−log log(α+1)
log(α+1) .

Note that
k log(1 + α) ≤ log(1 + βk) = log k + log(1/k + β). (30)

If k ≥ 1, we have
k log(1 + α) ≤ log k + log(1/k + β) ≤ log k + log(1 + β). (31)

Since log x ≤ x
e for any x > 0, we have

k log(1 + α) ≤ log(k/y) + log(y) + log(1 + β) ≤ k/(ey) + log y + log(1 + β). (32)

holds for any y > 0. Selecting y = 1
log(1+α) yields

k ≤ log(1 + β)− log log(1 + α)

log(1 + α)− log(1+α)
e

=
e

e− 1

log(1 + β)− log log(1 + α)

log(1 + α)

≤ e

e− 1

1 + α

α
log

(1 + β)(1 + α)

α
,

(33)
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where the last inequality holds because log(1 + x) ≥ x
x+1 .

If k < 1, the above inequality also holds since according to Equation (30),

k ≤ log(1 + β)

log(1 + α)
≤ 1 + α

α
log(1 + β) ≤ e

e− 1

1 + α

α
log

(1 + β)(1 + α)

α
. (34)

By setting α = 1
2 and β =

4r2W r2ϕ
ϵ′2 , it follows that

DEdim(F ,Π, ϵ) = n ≤ d
3e

e− 1
log

12r2W r2ϕ
ϵ′2

= d
6e

e− 1
log

2
√
3rW rϕ
ϵ′

≤ d
6e

e− 1
log

2
√
3rW rϕ
ϵ

.

(35)

D Bounding the BOO Regret

In this section, we denote the squared error of K episodes as L2,K(f) =
∑K

k=1

∑H
h=1 ∥f(xkh)−

ykh∥22 and empirical 2-norm as ∥g∥2,EK
=
√∑K

k=1

∑H
h=1 ∥g(xkh)∥22. Our analysis is based on the

following regret decomposition:

∆k = Eπk∼A(Hk)

[
V ∗
1 (s1)− V k

1 (s1)
∣∣M∗]︸ ︷︷ ︸

∆opt
k

+Eπk∼A(Hk)

[
V k
1 (s1)− V πk,M

∗

1 (s1)
∣∣∣M∗

]
︸ ︷︷ ︸

∆conc
k

. (36)

The expectation can be eliminated assuming the algorithm deterministically settles on a solution
πk. We will bound the sum of optimism regret

∑K
k=1 ∆

opt
k and concentration regret

∑K
k=1 ∆

conc
k

separately.

D.1 Concentration of Squared Error

This subsection establishes the concentration of the model squared error around the expected model
difference based on the martingale concentration inequalities in [22].
Lemma D.1 (Martingale concentration [22]). Consider random variables Zk adapted to the filtration
(Hk : k ∈ Z+). Assume E[exp(λZk)] is finite for all λ. For all x ≥ 0 and λ ≥ 0, we have

Pr

((
K∑

k=1

λZk ≤
K∑

k=1

(λµk + ψk(λ)) + x

)
∀K ∈ Z+

)
≥ 1− e−x, (37)

where µk = E[Zk|Hk] is the conditional mean, and ψk(λ) = logE[exp(λ(Zk − µk))|Hk] is the
conditional cumulant generating function of Zk − µk.

Based on Lemma D.1, it is already proved as an intermediate result in [22, 47] that the difference
of squared error between the true model function and any other model function will not deviate too
much from the squared difference of them.
Lemma D.2 (Concentration of the model squared error around the empirical model difference
[22, 47]). Let F be a set of functions such that ∥f(x)∥2 ≤ rF for all x ∈ X and f ∈ F . Given a
set of data {(x11, y11), . . . , (xKH , yKH)} from K episodes generated by ykh = f∗(xkh) + ϵkh, k ∈
[K], h ∈ [H], where ϵkh is a σ-sub-Gaussian noise, then

Pr

((
L2,K(f)− L2,K(f∗) ≥ 1

2
∥f − f∗∥22,EK

− β∗∗
K (F , δ, α)

)
∀K ∈ Z+, f ∈ F

)
≥ 1− 2δ,

(38)
where δ > 0, α > 0, and β∗∗

K (F , δ, α) = 4σ2 log(N(F , α, ∥ · ∥∞)/δ) + αKH(8rF +√
8σ2 log(4K2H2/δ)).

We will further show that the empirical model difference ∥f − f∗∥2,EK
is concentrated around the

expected model difference. The following lemma is particularly useful for bounding the cumulant
generating function of non-negative random variables with bounded second moments.
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Lemma D.3 (Cumulant generating function for non-negative random variable [48]). For a random
variable X ≥ 0 with E[X2] <∞, we have

logE
[
e−λX

]
≤ −λE[X] +

λ2

2
E[X2], (39)

where λ ≥ 0.

We now establish the concentration result for a single function.
Lemma D.4 (Concentration of the empirical model difference around the expected model difference
for a single function). Let f be a function satisfying ∥f(x)∥2 ≤ r for all x ∈ X . For any δ > 0, with
probability at least 1− δ,

−∥f − f∗∥22,EK
≤ 1

2

K∑
k=1

µk + 4Hr2 log
1

δ
(40)

simultaneously for all K ∈ Z+, where µk = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
.

Proof. Define Zk = −
∑H

h=1 ∥f∗(xkh) − f(xkh)∥22. The conditional mean of Zk is µk =

E[Zk|Hk] = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
. The conditional cumulant generating function

of the centered random variable Zi − µi is

ψk(λ) = logE[exp(λ[Zk − µk])|Hk]

= logE[exp(λZk)|Hk]− λµk

≤ λE[Zk|Hk] +
λ2

2
E[Z2

k |Hk]− λµk =
λ2

2
E[Z2

k |Hk],

(41)

where the inequality holds according to Lemma D.3. Since
∑H

h=1 ∥f∗(xkh) − f(xkh)∥22 ≤∑H
h=1 (∥f∗(xkh)∥2 + ∥f(xkh)∥2)2 ≤

∑H
h=1(2r)

2 = 4Hr2, we can bound the conditional sec-
ond moment of Zk with its conditional mean:

E[Z2
k |Hk] = E

( H∑
h=1

∥f∗(xkh)− f(xkh)∥22

)2
∣∣∣∣∣∣Hk


≤ 4Hr2 E

[
H∑

h=1

∥f∗(xkh)− f(xkh)∥22

∣∣∣∣∣Hk

]
= −4Hr2µk.

(42)

Selecting λ = 1
4Hr2 and x = log 1

δ in Lemma D.1 implies that

K∑
k=1

Zk ≤
K∑

k=1

(
1− 2λHr2

)
µk +

x

λ

≤
K∑

k=1

1

2
µk + 4Hr2 log

1

δ
,

(43)

which completes the proof.

Lemma D.5 (Concentration of the empirical model difference around the expected model difference).
Let F be a set of functions such that ∥f(x)∥2 ≤ rF for all x ∈ X and f ∈ F . For δ > 0 and α > 0,

Pr

((
−1

2
∥f − f∗∥22,EK

≤ 1

4

K∑
k=1

µk + β†
K(F , δ, α)

)
∀K ∈ Z+, f ∈ F

)
≥ 1− δ, (44)

where µk = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
, and β†

K(F , δ, α) = 2Hr2F log(N(F , α, ∥ ·
∥∞)/δ) + 3

4KH(α2 + 4αrF ).
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Proof. Let Fα ⊂ F be an α-cover of F w.r.t. the ℓ2 norm in the sense that for any f ∈ F there is
an fα ∈ Fα such that ∥f − fα∥∞ = supx∈X ∥fα(x)− f(x)∥2 ≤ α. Applying Lemma D.4 for all
fα ∈ Fα, it follows by a union bound that

−∥fα − f∗∥22,EK
≤ −1

2

K∑
k=1

E

[
H∑

h=1

∥f∗(xkh)− fα(xkh)∥22

∣∣∣∣∣Hk

]
+ 4Hr2F log

|Fα|
δ

(45)

for all fα ∈ Fα and t ∈ Z+ with probability 1− δ. Then, for any f ∈ F ,

−∥f − f∗∥22,EK
≤ −1

2

K∑
k=1

E

[
H∑

h=1

∥f∗(xkh)− f(xkh)∥22

∣∣∣∣∣Hk

]
+ 4Hr2F log

|Fα|
δ

+DiscErr(α),

(46)

where the discretization error is

DiscErr(α) = min
fα∈Fα

{
∥fα − f∗∥22,EK

+
1

2

K∑
k=1

E

[
H∑

h=1

∥f∗(xkh)− f(xkh)∥22

∣∣∣∣∣Hk

]

−∥f − f∗∥22,EK
− 1

2

K∑
k=1

E

[
H∑

h=1

∥f∗(xkh)− fα(xkh)∥22

∣∣∣∣∣Hk

]}
.

(47)

For an fα satisfying ∥fα − f∥∞ ≤ α,∣∣∥fα(x)− f∗(x)∥22 − ∥f(x)− f∗(x)∥22
∣∣

=
∣∣∥fα(x)− f(x)∥22 + 2⟨fα(x)− f(x), f(x)⟩+ 2⟨f(x)− fα(x), f∗(x)⟩

∣∣
≤ α2 + 4αrF ,

(48)

via the Cauchy–Schwarz inequality. Summing over all time steps, we have∣∣∥f − f∗∥22,EK
− ∥fα − f∗∥22,EK

∣∣ ≤ KH(α2 + 4αrF ), (49)

and∣∣∣∣∣
K∑

k=1

E

[
H∑

h=1

∥f∗(xkh)− fα(xkh)∥22 − ∥f∗(xkh)− f(xkh)∥22

∣∣∣∣∣Hk

]∣∣∣∣∣ ≤ KH(α2 + 4αrF ). (50)

Therefore, the dicretization error is bounded by

|DiscErr(α)| ≤ 3

2
KH(α2 + 4αrF ). (51)

The proof is completed by combining Equations (46) and (51).

Theorem D.1 (Concentration of the model squared error around the expected model difference).
Let F be a set of functions such that ∥f(x)∥2 ≤ rF for all x ∈ X and f ∈ F . Given a set of data
{(x11, y11), . . . , (xKH , yKH)} from K episodes generated by ykh = f∗(xkh) + ϵkh, k ∈ [K], h ∈
[H], where ϵkh is a σ-sub-Gaussian noise, then

Pr

((
L2,K(f∗)− L2,K(f) ≤ 1

4

K∑
k=1

µk + β‡
K(F , δ, α)

)
∀K ∈ Z+, f ∈ F

)
≥ 1− 3δ, (52)

where δ > 0, α > 0, µk = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
, and β‡

K(F , δ, α) = (4σ2 +

2Hr2F ) log(N(F , α, ∥ · ∥∞)/δ) + αKH( 34α+ 11rF +
√

8σ2 log(4K2H2/δ)).

Proof. The proof is carried out by combining Lemmas D.2 and D.5.

The optimal asymptotic scaling of the confidence set is specified in Lemma D.6.
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Lemma D.6 (The asymptotic analysis of confidence set). For any fixed class of func-
tions F satisfying logN(F , α, ∥ · ∥∞) ≤ C(1/α)c1(log(1/α))c2 , setting αk = (Cσ

H +
Cr2F
2σ )1/(c1+1)k−1/(c1+1)(log k)(2c2−1)/(2c1+2),

β‡
k(F , δ, αk) = O

(
4σH

(
Cσ

H
+
Cr2F
2σ

)1/(c1+1)

kc1/(c1+1)(log k)(c1+2c2)/(2c1+2)

)
. (53)

Proof. Setting α = αk in β‡, it is easily checked that

β‡
k(F , δ, αk) ≤ (4σ2 + 2Hr2F )C(1/αk)

c1 log(1/αk)
c2 + (4σ2 + 2Hr2F ) log

1

δ

+ αkkH(
3

4
αk + 11rF +

√
8σ2 log(4k2H2/δ))

= O
(
(4σ2 + 2Hr2F )C(1/αk)

c1 log(1/αk)
c2 + αkkH

√
8σ2 log(4k2H2/δ)

)
= O

(
4σH

(
Cσ

H
+
Cr2F
2σ

)1/(c1+1)

kc1/(c1+1)(log k)(c1+2c2)/(2c1+2)

)
,

(54)

when k → ∞.

Lemma D.7 (The confidence set of linear function classes). Let F be the function class defined in

Assumption 2.By setting αk = md( σ
H +

r2wr2ϕ
2σ )k−1(log k)

1
2 , we have

β‡
k(F , δ, αk) = O

((
σ2md+

Hmdr2wr
2
ϕ

2

)
log k

)
. (55)

Proof. According to Assumption 2 and the definition of operator norm, we have
∥f(x)∥2 = ∥Wϕ(x)∥2 ≤ ∥W∥2∥ϕ(x)∥2 = rwrϕ (56)

for all x ∈ X and f ∈ F .

According to Theorem D.1, we have the concentration of the squared error around the expected model
difference with probability 1− 3δ for all f ∈ F , K ∈ Z+,

L2,K(f∗)− L2,K(f) ≤ 1

4

K∑
k=1

µk + β‡
K(F , δ, α), (57)

where µk = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
.

According to the Equation (18), the optimal scaling of β‡
K is specified in Lemma D.6 by setting

αk = md( σ
H +

r2wr2ϕ
2σ )k−1(log k)1/2 as follows:

β‡
k(F , δ, αk) = O

((
σ2md+

Hmdr2wr
2
ϕ

2

)
log k

)
. (58)

D.2 Concentration Regret

The following Lemma establishes the connection between the value difference and expected model
differences by the one-step value Lipschitz continuity.
Lemma D.8 (Connection between value differences and model differences). Given a set of models
M expressed by a set of model functions F with additive σ-sub-Gaussian noises, the value difference
of the policy π1 on two models M1,M2 ∈ M is upper bounded by the expected difference of model
functions,∣∣∣V π1,M1

1 (s1)− V π1,M2

1 (s1)
∣∣∣ ≤ LEτ∼π1,M2

[
H∑

h=1

∥fM1(xkh)− fM2(xkh)∥2

]
, (59)

where π1 is the optimal policy of M1, and fM is the model function of M .
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Proof. The value difference can be rewritten as the expected model difference [17],∣∣∣V π1,M1

1 (s1)− V π1,M2

1 (s1)
∣∣∣

=
∣∣∣R̄1(x1) + P 1

x1
(V π1,M1

2 )− R̄2(x1)− P 2
x1
(V π1,M2

2 )
∣∣∣

=
∣∣∣R̄1(x1)− R̄2(x1) + (P 1

x1
− P 2

x1
)(V π1,M1

2 ) + P 2
x1
(V π1,M1

2 − V π1,M2

2 )
∣∣∣

=
∣∣∣R̄1(x1)− R̄2(x1) + (P 1

x1
− P 2

x1
)(V π1,M1

2 ) + Es2∼π,M2

[
V π1,M1

2 (s2)− V π1,M2

2 (s2)
]∣∣∣

= . . .

=

∣∣∣∣∣Eτ∼π1,M2

[
H∑

h=1

(
R̄1(xh)− R̄2(xh)

)
+

H−1∑
h=1

(P 1
xh

− P 2
xh
)(V π1,M1

h+1 )

]∣∣∣∣∣ ,

(60)

where xh = (sh, π1(sh, h)), R̄i(xh) = R̄Mi(xh), and P i
xh

= PMi(·|xh).
The model difference is then upper bounded by one-step value Lipschitz continuity,∣∣∣V π1,M1

1 (s1)− V π1,M2

1 (s1)
∣∣∣ ≤ Eτ∼π1,M2

[
H∑

h=1

L
xkh,V

π1,M1
h+1

∥fM1(xkh)− fM2(xkh)∥2

]

≤ LEτ∼π1,M2

[
H∑

h=1

∥fM1(xkh)− fM2(xkh)∥2

]
.

(61)

The proof is completed.

Lemma D.9 (Bound on the number of large concentration regret). Consider the set of models
M corresponding to model functions F . Let (βK > 0|K ∈ Z+) be a nondecreasing sequence
such that L2,K(f∗) − L2,K(f) ≤ 1

4

∑K
k=1 µk + βK for all f ∈ F and K ∈ Z+, where µk =

−E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
. The log-prior probability is uniformly bounded by Z. For

the BOO algorithm, the number of episodes where a large concentration regret is incurred is limited,
K∑

k=1

I(∆conc
k ≥ η) ≤ N(K, η/(HL))dimDE(F ,ΠM∗

M , η/(HL)), (62)

where

N(K, ϵ) =
16Z + 8HL

λK
ϵ+ 4σ2βK−1

Hϵ2σ2
. (63)

Proof. Notice that a model function is selected only when it optimizes the BOO objective, which
implies that
1

λk
V k
1 (s1) + log Pr(Mk) + log Pr(Hk|Mk) ≥

1

λk
V ∗
1 (s1) + log Pr(M∗) + log Pr(Hk|M∗), (64)

for any k ∈ [K]. It follows that

0 ≤ 1

λk
(V k

1 (s1)− V ∗
1 (s1)) + log Pr(Mk)− log Pr(M∗) + log Pr(Hk|Mk)− log Pr(Hk|M∗)

=
1

λk
(V k

1 (s1)− V ∗
1 (s1)) + log Pr(Mk)− log Pr(M∗) +

σ2

2
(L2,k−1(f

∗)− L2,k−1(f
Mk))

≤ 1

λk
(V k

1 (s1)− V ∗
1 (s1)) + 2Z +

σ2

2
(L2,k−1(f

∗)− L2,k−1(f
Mk))

≤ 1

λk
(V k

1 (s1)− V πk,M∗

1 (s1)) + 2Z +
σ2

2
(L2,k−1(f

∗)− L2,k−1(f
Mk))

=
1

λk
∆conc

k + 2Z +
σ2

2
(L2,k−1(f

∗)− L2,k−1(f
Mk))

≤ 1

λk
∆conc

k + 2Z +
σ2

8

k−1∑
i=1

µi +
σ2

2
βk−1,

(65)
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where the first equality is obtained by substituting in the Equation (14), and the second equality
follows .

Suppose that ρMk is (∆conc
k /(HL))-dependent on nk disjoint subsequences of (ρM1 , . . . , ρMk−1).

Notice that

Ex∼ρMk

[
∥f(x)− f∗(x)∥22

]
≥
(
Ex∼ρMk [∥f(x)− f∗(x)∥2]

)2 ≥
(
∆conc

k

HL

)2

, (66)

where the first inequality follows from the Jensen’s inequality, and the second inequality is derived by
Lemma D.8.

It follows by the definition of ϵ-dependence that

−
k−1∑
i=1

µi =

k−1∑
i=1

H Ex∼ρMi

[
∥f(x)− f∗(x)∥22

]
> nkH

(
∆conc

k

HL

)2

. (67)

Equations (65) and (67) collectively suggest that

2Z +
1

λk
∆conc

k +
σ2

2
βk−1 >

σ2nkH

8

(
∆conc

k

HL

)2

⇒ nk < N(k,∆conc
k /(HL)),

(68)

where N(k, ϵ) is defined as N(k, ϵ) =
16Z+ 8HL

λk
ϵ+4σ2βk−1

Hϵ2σ2 .

The ϵ-errored subsequence of (1, . . . ,K) is denoted as (a1, . . . , amϵ), where ∆conc
ai

/(HL) ≥ ϵ for
i ∈ [mϵ]. Let (ρ1, . . . , ρmϵ) be the corresponding sequence of probability measures. It follows
that each probability measure in the sequence is ϵ-dependent on less than N(K, ϵ) disjoint sub-
sequences among its predecessors. We show that the length of ϵ-errored subsequence is at most
N(K, ϵ)dimDE(F ,ΠM∗

M , ϵ). To show this, consider a growing sequence (ρ1, ρ2, . . .) where each
element is ϵ-dependent on less than n disjoint subsequences of its predecessors. Let Bi = (ρi) for
i ∈ [n]. By definition, the (n + 1)-th element ρn+1 should be ϵ-independent of some Bj . Add
ρn+1 to Bj , and repeat this process for i > n+ 1. It follows by construction that each element in
Bi, i ∈ [n] is ϵ-independent of all its predecessors. Therefore, such a sequence can contain at most
dimDE(F ,ΠM∗

M , ϵ) elements according to the definition of the eluder dimension. Besides, after each
sequence is filled, any x ∈ X must be ϵ-dependent on all Bi, i ∈ [n] implying that the sequence
(ρ1, ρ2, . . .) cannot grow any more. This completes our argument that

K∑
k=1

I(∆conc
k ≥ HLϵ) = mϵ ≤ N(K, ϵ)dimDE(F ,ΠM∗

M , ϵ). (69)

Theorem D.2 (Sum of the concentration regret). Let F be the function class defined in Assumption 2.
The log-prior probability is uniformly bounded by Z. Let λk = ck−v1(log k)−v2 for 0 < v1 < 1 or
v1 = 0, v2 > 0, and some c > 0. We have

K∑
k=1

∆conc
k =


O
(
HLdrwrϕσ

√
m(rc + 1)K logK

)
if v1 = 1

2 , v2 = 0

O
(
HL2d/(cσ2))Kv1(logK)v2+1

)
if v1 > v∗1 or v1 = 1

2 , v2 > 0

O
(
HLdrwrϕσ

√
mK(logK)

)
if v1 < 1

2 or v1 = 1
2 , v2 < 0,

(70)

where rc is a constant determined by c =
√

(rc+1)

rc
2
√
2L

rwrϕσ3
√
m

.

Proof. The sum of regret can be expressed as a Riemann-Stieltjes integral,
K∑

k=1

∆conc
k = lim

b→∞
lim

n→∞

n∑
i=1

(
g

(
(i− 1)

n
b

)
− g

(
i

n
b

))
η

= −
∫ ∞

0

η dg(η),

(71)
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where g(η) =
∑K

k=1 I(∆conc
k ≥ η).

The optimal scaling of β‡
K is specified in Lemma D.7, i.e.,

β‡
k(F , δ, αk) = O

((
σ2md+

Hmdr2wr
2
ϕ

2

)
log k

)
. (72)

According to Lemma D.9, Equation (35), and Equation (72), we can get
K∑

k=1

I(∆conc
k ≥ η) ≤ N(K, η/(HL))dimDE(F ,ΠM∗

M , η/(HL))

≤ 4HL2
4Z + 2η

λK
+ σ4Hmdr2wr

2
ϕ logK

η2σ2
d log(HL/η).

(73)

Along with the fact that
∑K

k=1 I(∆conc
k ≥ η) ≤ K, we have, for all η, g(η) ≤ h(η) =

min

(
K, 4HL2

4Z+ 2η
λK

+σ4Hmdr2wr2ϕ logK

η2σ2 d log(HL/η)

)
.

Since ∫ ∞

0

η d(h(η)− g(η)) = η(h(η)− g(η))|∞0 −
∫ ∞

0

(h(η)− g(η)) dη ≤ 0, (74)

we have
K∑

k=1

∆conc
k ≤ −

∫ ∞

0

η dh(η)

= −
∫ ∞

0

η dmin

(
K, 4HL2

4Z + 2η
λK

+ σ4Hmdr2wr
2
ϕ logK

η2σ2
d log(HL/η)

)

= −
∫ ∞

aK

η d

(
4HL2

4Z + 2η
λK

+ σ4Hmdr2wr
2
ϕ logK

η2σ2
d log(HL/η)

)
,

(75)

where aK > 0 is the constant satisfying

4HL2
4Z + 2aK

λK
+ σ4Hmdr2wr

2
ϕ logK

a2Kσ
2

d log(HL/aK) = K. (76)

This is equivalent to

Ka2K =
4HL2

σ2
(4Z + 2aKK

v1(logK)v2/c+ σ4Hmdr2wr
2
ϕ logK)d log(HL/aK). (77)

Since Kv1(logK)v2 increases at a sublinear rate w.r.t. K, it must be the case that aK decreases at a
sublinear rate w.r.t. K such that the l.h.s. could match the r.h.s..

If limK→∞
2aKKv1 (logK)v2/c
σ4Hmdr2wr2ϕ logK)

→ ∞, we have for large enough K,

Ka2K ≥ 8HdL2

cσ2
aKK

v1(logK)v2 log(HL)

⇒ aK ≥ H

(
8dL2 log(HL)

cσ2

)
Kv1−1(logK)v2

⇒ HL/aK ≤
(
8dL log(HL)

cσ2

)−1

Kv1−1(logK)−v2

⇒ log(HL/aK) ≤ log

(
cσ2

8dL log(HL)

)
+ (1− v1) logK − v2 log logK.

(78)

According to the Equation (78), we have for large enough K,

log(HL/aK) ≤ 3(1− v1) logK. (79)
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It follows from Equations (77) and (79) that for large enough K,

Ka2K ≤ 4HL2

σ2
(6aKK

v1 (logK)
v2 /c) d log(HL/aK)

≤ 24HdL2

cσ2
aKK

v1(logK)v2 (3(1− v1) logK)

⇒ aK ≤ H

(
72dL2

cσ2

)
(1− v1)K

(v1−1)(logK)(v2+1).

(80)

If limK→∞
2aKKv1 (logK)v2/c
σ4Hmdr2wr2ϕ logK

→ 0, we have for large enough K,

Ka2K ≥ 4(HdLσ2
√
mrwrϕ)

2 logK log(HL)

⇒ aK ≥ 2HdLσ2
√
mrwrϕ

√
log (HL)

√
logK

K

⇒ HL/aK ≤ (2dσ2rwrϕ
√
m log (HL))−1

√
K

logK

⇒ log(HL/aK) ≤ log

(
1

2dσ2rwrϕ
√
m log (HL)

)
+

1

2
logK − 1

2
log logK.

(81)

It follows from Equations (77) and (81) that for large enough K,

Ka2K ≤ 4HL2

σ2

(
3σ4Hmdr2wr

2
ϕ logK

)
d log(HL/aK)

≤ 12(HdLσrwrϕ
√
m)2 logK

(
3

2
logK

)
⇒ aK ≤ (HdLσrwrϕ

√
18m)

logK√
K

.

(82)

If limK→∞
2aKKv1 (logK)v2/c
σ4Hmdr2wr2ϕ logK

→ r for 0 < r < ∞, then
crσ4Hmdr2wr2ϕ

2 K−v1(logK)1−v2 is an
equivalent infinitesimal of aK . Taking the limit in Equation (77),

1 =
4HdL2

σ2
lim

K→∞

(4Z + 2aKK
v1(logK)v2/c+ σ4Hmdr2wr

2
ϕ logK) log(HL/aK)

Ka2K

⇒ 1 =
4HdL2

σ2

(
lim

K→∞

2Kv1(logK)v2 log(HL/aK)

cKaK
+ lim

K→∞

σ4Hmdr2wr
2
ϕ logK log (HL/aK)

Ka2K

)

⇒ 1 =
8L2

σ6mr2wr
2
ϕc

2r/2

(
lim

K→∞

log (HL/aK)

K1−2v1(logK)1−2v2
+

1

r
lim

K→∞

log (HL/aK)

K1−2v1(logK)1−2v2

)
⇒ 1 =

16L2(r + 1)

σ6mr2wr
2
ϕc

2r2
lim

K→∞

log (HL/aK)

K1−2v1(logK)1−2v2
.

(83)
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Notice that

lim
K→∞

log (HL/aK)

K1−2v1(logK)1−2v2

= lim
K→∞

−a′K
aK((1− 2v1)K−2v1(logK)1−2v2 + (1− 2v2)K−2v1(logK)−2v2)

= lim
K→∞

−2a′K/σ
2

−crσ2Hmdr2wr
2
ϕ(−v1)K−v1−1(logK)1−v2 − crσ2Hmdr2wr

2
ϕ(1− v2)K−v1−1(logK)−v2

·

lim
K→∞

−crσ2Hmdr2wr
2
ϕ(−v1)K−v1−1(logK)1−v2 − crσ2Hmdr2wr

2
ϕ(1− v2)K

−v1−1(logK)−v2

(1− 2v1)crσ2Hmdr2wr
2
ϕK

−3v1(logK)2−3v2 + (1− 2v2)crσ2Hmdr2wr
2
ϕK

−3v1(logK)2−3v2

= lim
K→∞

2aK
crσ4Hmdr2wr

2
ϕK

−v1(logK)1−v2
·

lim
K→∞

−(−v1)− (1− v2)(logK)−1

(1− 2v1)K1−2v1(logK)1−2v2 + (1− 2v2)K1−2v1(logK)−2v2

= lim
K→∞

−(−v1)− (1− v2)(logK)−1

(1− 2v1)K1−2v1(logK)1−2v2 + (1− 2v2)K1−2v1(logK)−2v2
,

(84)
where the first and third equalities follow from the l’Hôpital’s rule, and the second equality is obtained
by substituting in aK and the multiplication rule for limits. Therefore, we have

lim
K→∞

log (HL/aK)

K1−2v1(logK)1−2v2
=

{
0 if 1− 2v1 > 0 or 1− 2v1 = 0,−2v2 > 0
1
2 if 1− 2v1 = 0, 2v2 = 0.

(85)

Combining Equations (83) and (85), we deduce that v1 = 1
2 , v2 = 0, and 8L2(r+1)

σ6mr2wr2ϕc
2r2

= 1. Denote
the solution of the system of equations as v∗1 , v

∗
2 , c

∗. We have for some 0 < r <∞,


v∗1 = 1

2

v∗2 = 0

c∗ =

√
(r+1)

r
2
√
2L

rwrϕσ3
√
m
.

(86)

It follows from the above discussion that for any l > 1 and K → ∞,

aK ≤


lHLdrwrϕσ

√
(2m(r + 1)K− 1

2 logK if v1 = v∗1 , v2 = v∗2 , c = c∗

72HL2
(

d
cσ2

)
(1− v1)K

(v1−1)(logK)(v2+1) if v1 > v∗1 or v1 = v∗1 , v2 > v∗2
3HLdrwrϕσ

√
2mK− 1

2 logK if v1 < v∗1 or v1 = v∗1 , v2 < v∗2 .

(87)

It follows from Equation (75) that

K∑
k=1

∆conc
k

−
∫ ∞

aK

η d

(
4HL2

4Z + 2η
λK

+ σ4Hmdr2wr
2
ϕ logK

η2σ2
d log(HL/η)

)

=
4HdL2

σ2

(∫ ∞

aK

4Z + 2η/λK + σ4Hmdr2wr
2
ϕ logK

η2
dη

+

∫ ∞

aK

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η2
+

2Kv1(logK)v2

cη

)(
log

(
HL

η

))
dη

)
.

(88)
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Integration by parts for the second term gives∫ ∞

aK

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η2
+

2Kv1(logK)v2

cη

)
(log (HL/η)) dη

= −
∫ ∞

aK

(log(HL/η)) d

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η
+

2Kv1(logK)v2 log η

c

)

= (log(HL/aK))

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

ak
+

2Kv1(logK)v2 log ak
c

)

+

∫ ∞

aK

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η2
+

2Kv1(logK)v2 log η

cη

)
dη.

(89)

Combining Equations (88) and (89), we obtain
K∑

k=1

∆conc
k

≤ 4HdL2

σ2

(∫ ∞

aK

4Z + 2η/λK + σ4Hmdr2wr
2
ϕ logK

η2
dη

+ (log(HL/aK))

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

ak
+

2Kv1(logK)v2 log ak
c

)

+

∫ ∞

aK

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η2
+

2Kv1(logK)v2 log η

cη

)
dη

)

≤ 2aKK +
4HdL2

σ2

(∫ ∞

aK

4Z + 2η/λK + σ4Hmdr2wr
2
ϕ logK

η2
dη

+

∫ ∞

aK

(
2(4Z + σ4Hmdr2wr

2
ϕ logK)

η2
+

2Kv1(logK)v2 log η

cη

)
dη

)
≤ 2aKK + o(akK),

(90)

where the second inequality is derived from Equation (77) and the third inequality can be verified by
l’Hôpital’s rule.

By plugging in the discussion of aK in Equation (87), we have

K∑
k=1

∆conc
k =


O
(
HLdrwrϕσ

√
m(rc + 1)K logK

)
if v1 = 1

2 , v2 = 0

O
(
HL2d/(cσ2))Kv1(logK)v2+1

)
if v1 > 1

2 or v1 = 1
2 , v2 > 0

O
(
HLdrwrϕσ

√
mK(logK)

)
if v1 < 1

2 or v1 = 1
2 , v2 < 0,

(91)

where rc is a constant determined by c =
√

(rc+1)

rc
2
√
2L

rwrϕσ3
√
m

. The proof is completed.

D.3 Optimistic Regret

Theorem D.3. Let F be the function class defined in Assumption 2. The log-prior probability is
uniformly bounded by Z. Setting λk = ck−v1(log k)−v2 for some 0 < v1 < 1 or v1 = 0, v2 > 1,
then

K∑
k=1

∆opt
k = O

(
σ4cHmdr2wr

2
ϕK

−v1(logK)1−v2
)
. (92)

Proof. According to Theorem D.1, we have the concentration of the squared error around the expected
model difference with probability 1− 3δ for all f ∈ F , K ∈ Z+,

L2,K(f∗)− L2,K(f) ≤ 1

4

K∑
k=1

µk + β‡
K(F , δ, α), (93)
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where µk = −E
[∑H

h=1 ∥f∗(xkh)− f(xkh)∥22
∣∣∣Hk

]
.

The optimal scaling of β‡
K is specified in Lemma D.7,

β‡
k(F , δ, αk) = O

((
σ2md+

Hmdr2wr
2
ϕ

2

)
log k

)
. (94)

Notice that a model function is selected only when it optimizes the BOO objective, which implies that
1

λk
V k
1 (s1) + log Pr(Mk) + log Pr(Hk|Mk) ≥

1

λk
V ∗
1 (s1) + log Pr(M∗) + log Pr(Hk|M∗), (95)

for any k ∈ [K]. It follows that
1

λk
∆opt

k ≤ log Pr(Mk)− log Pr(M∗) + log Pr(Hk|Mk)− log Pr(Hk|M∗)

≤ 2Z +
σ2

2
(L2,k−1(f

∗)− L2,k−1(f
Mk))

≤ 2Z +
σ2

8

k−1∑
i=1

µi +
σ2

2
β‡
k−1(F , δ, α) ≤ 2Z +

σ2

2
β‡
k−1(F , δ, α),

(96)

where the second inequality holds because the log-prior probability is assumed to be uniformly
bounded by Z, and the likelihood is defined by Equation (14). The third inequality follows from
Equation (93).

For the first episode, we have

∆opt
1 ≤ V ∗

1 (s1)− V π∗,M1

1 (s1) ≤ LH Ex∼ρM1,M∗

[∥∥∥fM∗
(x)− fM1(x)

∥∥∥
2

]
≤ 2LHrwrϕ. (97)

Therefore, the sum of optimistic regret is at most
K∑

k=1

∆opt
k ≤ 2LHrwrϕ + c

K∑
k=2

4Z + σ2β‡
K(F , δ, α)

2kv1(log k)v2

≤ 2LHrwrϕ + 2cZ

∫ K

1

k−v1(log k)−v2 dk +
σ4Hmdcr2wr

2
ϕ

2

∫ K

1

k−v1(log k)1−v2 dk

≤ 2LHrwrϕ +
2cZ

1− v1

(
K1−v1(logK)−v2 + v2

∫ K

1

k−v1(log k)−v2−1 dk

)

+
σ4Hmdcrwrϕ
2(1− v1)

(
K1−v1(logK)1−v2 + (v2 − 1)

∫ K

1

k−v1(log k)−v2 dk

)
= O

(
σ4Hmdcr2wr

2
ϕK

−v1(logK)1−v2
)
.

(98)
The proof is completed.

D.4 Proof of BOO Regret

Theorem B.1 (Bayesian optimistic optimization regret). Let F be the function class defined in
Assumption 2, i.e., F ⊆ {f | W ∈ R(m+1)×d, ∥W∥F ≤ rw, f(x) = Wϕ(x), ∥ϕ(x)∥ ≤ rϕ,∀x ∈
X}. The log-prior probability is assumed to be uniformly bounded by some constant. Setting
λk = ck−v1(log k)−v2 for c > 0 and 0 < v1 < 1 or v1 = 0, v2 ≥ 0, the asymptotic regret of BOO is

O
(
HLdrwrϕσ

√
m(rc + 1)K logK

)
if v1 = 1

2 , v2 = 0

O
(
HL2d/(cσ2)Kv1(logK)v2+1

)
if v1 > 1

2 or v1 = 1
2 , v2 > 0

O
(
Hmdr2wr

2
ϕσ

4K1−v1(logK)1−v2
)

if v1 < 1
2 or v1 = 1

2 , v2 < 0,

(16)

where m is the dimension of the state space and rc is a constant determined by c =√
(rc+1)

rc
2
√
2L

rwrϕσ3
√
m

.

Proof. Theorem B.1 can be obtained by combining Theorem D.2 and Theorem D.3.
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E Optimization

E.1 Model Gradient of Value Function

Proof. (of Theorem 5.1) We first show that the model gradient satisfies the following recursion,∑
sh∈S

Pr(Sh = sh|π,Mθ)∇θV
π,Mθ

h (sh)

=
∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)
∑

sh+1∈S
PMθ (sh+1|sh, ah)∇θV

π,Mθ

h+1 (sh+1)

+
∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)

(
∇θR̄θ(sh, ah)

+
∑

sh+1∈S
V π,Mθ

h+1 (sh+1)∇θP
Mθ (sh+1|sh, ah)

)
=
∑
sh∈S

∑
ah∈A

∑
sh+1∈S

Pr(Sh+1 = sh+1, Ah = ah|π,Mθ)P
Mθ (sh+1|sh, ah)∇θV

π,Mθ

h+1 (sh+1)

+
∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)

(
∇θR̄θ(sh, ah)

+
∑

sh+1∈S
V π,Mθ

h+1 (sh+1)∇θP
Mθ (sh+1|sh, ah)

)
,

(99)

where Pr(Sh = sh, Ah = ah|π,Mθ) is the marginal probability of sh and ah at the period h
following policy the π and MDP Mθ. Expanding the recursion, we obtain

∇θV
π,Mθ

1 (s1) =
∑
s∈S

Pr(S1 = s)∇θV
π,Mθ

h (s)

=

H∑
h=1

∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)∇θR̄θ(sh, ah)

+

H−1∑
h=1

∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)
∑

sh+1∈S
V π,Mθ

h+1 (sh+1)∇θP
Mθ (sh+1|sh, ah).

(100)
It follows from the REINFORCE trick [36] that∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)
∑

sh+1∈S
V π,Mθ

h+1 (sh+1)∇θP
Mθ (sh+1|sh, ah)

=
∑

sh,ah,sh+1

Pr(Sh = sh, Ah = ah|π,Mθ)P
Mθ (sh+1|sh, ah)V π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah)

=
∑

sh,ah,sh+1

Pr(Sh = sh, Ah = ah, Sh+1 = sh+1|π,Mθ)V
π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah).

(101)
Here,

∑
sh,ah,sh+1

abbreviates
∑

sh∈S
∑

ah∈A
∑

sh+1∈S . Combining Equations (100) and (101),
we have

∇θV
π,Mθ

1 (s1) =
H∑

h=1

∑
sh∈S

∑
ah∈A

Pr(Sh = sh, Ah = ah|π,Mθ)∇θR̄θ(sh, ah)

+
H−1∑
h=1

∑
sh,ah,sh+1

Pr(Sh = sh, Ah = ah, Sh+1 = sh+1|π,Mθ)V
π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah).

(102)
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By replacing the marginal distribution with the joint distribution,

∇θV
π,Mθ

1 (s1) =
∑
τ

Pr(τ |π,Mθ)

H∑
h=1

∇θR̄θ(sh, ah)

+
∑
τ

Pr(τ |π,Mθ)

H−1∑
h=1

V π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah)

= Eτ∼π,Mθ

[
H∑

h=1

∇θR̄
Mθ (sh, ah) +

H−1∑
h=1

V π,Mθ

h+1 (sh+1)∇θ logP
Mθ (sh+1|sh, ah)

]
.

(103)
The proof is completed.

F Implementation Details

In this section, we explain the implementation of BOO in tabular MDPs and detail various tricks for
improving the efficiency of optimization.

F.1 Optimization Reformulation

Focusing on the optimization of the model, we directly compute the optimal policy of a given model
via dynamic programming according to Equation (9) and differentiate through the Bellman optimality
equation to find the model gradient. In other words, we reformulate the joint optimization of policy
and model into

max
M

(
V

π∗(M),M
1 (s1) + λk(log Pr(Hk|M) + log Pr(M))

)
, (104)

where π∗(M) is the optimal maximum entropy policy of the model M .

F.2 Natural Model Gradient

The natural policy gradient proposed by [49] improves the efficiency of the policy gradient [50] by
preconditioning the gradient with the inverse Fisher information matrix. We formalize the natural
model gradient in a similar fashion.

Let DR
k and DP

k be normalized empirical state-action distribution for rewards and transition:

DR
k (s, a) ∝

k−1∑
i=1

H∑
h=1

I(sih = s, aih = a) DP
k (s, a) ∝

k−1∑
i=1

H−1∑
h=1

I(sih = s, aih = a). (105)

Denoting the BOO objective in the k-th episode as Jk = λk log Pr(Mθ|Hk)+V
π,Mθ

1 (s1), the natural
model gradient is ∇̄θJk = F−1

k ∇θJk, where:

Fk = Eτ∼π,Mθ

[
− 1

H

H∑
h=1

GR̄
sh,ah

+
1

H − 1

H−1∑
h=1

FP
sh,ah

]
+ E(s,a)∼DR

k
[FR

s,a] + E(s,a)∼DP
k
[FP

s,a],

(106)
Here, FP

s,a and FR
s,a are the Fisher information matrices of transition and reward distributions, as

follows:
FR
s,a = Er∼RMθ (sh,ah)

[(∇θ logR
Mθ (r|sh, ah))2],

FP
s,a = Es′∼PMθ (sh,ah)

[(∇θ logP
Mθ (s′|sh, ah))2].

(107)

The matrix GR̄
s,a is the generalized Gauss-Newton matrix [51]:

GR̄
s,a = ∇θz

⊤
R∇2

zRR̄
Mθ (s, a)∇θzR, (108)

where the reward distribution is parameterized by zR ⊆ z, and z = fθ(s, a) is the output of the
model function fθ.
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Note that we have GR̄
s,a = 0 when the mean reward R̄Mθ (s, a) is linear in z. This is satisfied for most

model classes, for example, those specified by Assumption 1. Therefore, commonly, Fk contains
only the Fisher information matrix, and the natural gradient can be interpreted geometrically as the
steepest descent direction in the information geometry induced by Fk instead of in the Euclidean
geometry. Loosely speaking, the distance in the information geometry is measured by the square root
of KL divergence between distributions rather than the ℓ2 distance of parameters [52]. The natural
gradient characterizes some global characteristics of the loss surface and therefore facilitates global
convergence. We refer interested readers to [52] for a thorough discussion on the interpretation and
implementation of the natural gradient.

F.3 Initial State-Action Distribution

It is well-known that the policy gradient suffers from slow convergence since the value gradient of
unvisited states are 0. [38] proposes to alleviate this problem by changing the initial state distribution
to a distribution with broader coverage. In BOO, this problem is aggravated since the model tends to
be optimistic on state-action pairs within its current occupancy measure, causing the model stuck at
local optima. Seeing the similarity between the transition function and the policy, we could apply a
similar technique to speed up convergence and help escape local optima.

Specifically, we use the state-action distribution induced by the learned policy and model in the past
as the initial state-action distribution. Let 0 < γ < 1 be a smoothing factor. We incrementally update
the initial state-action distribution φk+1 by φk+1 = φk ∗ γ + ρk ∗ (1− γ). Here, ρk represents the
state-action distribution induced by the model and policy in the k-th episode starting from the real
initial state s0. The initial distribution φ1 is set to be the uniform distribution over S ×A.

F.4 Posterior Sampling

In tabular MDPs, the transition distribution is multinomial distribution whose conjugate prior is the
Dirichlet distribution. We assume the reward is distributed according to a normal distribution with
standard deviation 1 and unknown mean. The conjugate prior of Gaussian reward is Gaussian. For
distributions with a conjugate prior, we calculate the posterior distribution analytically and easily
sample from the posterior.

F.5 Gradient Ascent

The optimization of BOO is conducted by gradient ascent with line search. One gradient step is
performed at each episode. The line search algorithm is implemented in SciPy [53], which enforces
the strong Wolfe conditions. For natural gradient, we additionally use the Tikhonov regularization to
limit the condition number of the inverse Fisher information matrix.

F.5.1 Entropy Regularization

As discussed in Section 5, the entropy plays a role in smoothing the policy’s loss landscape such that
the optimal policy will not change drastically when the model changes. However, the randomness of
policy would increase the cumulative regret by selecting sub-optimal actions. Therefore, we derive a
policy with reduced entropy for execution in the environment. Specifically, we multiply a coefficient
wζ to ζ during the derivation of policy according to Equations (8) and (9). In all experiments, wζ is
set to 0.1.

G Ablation Study

To demonstrate the effectiveness of our proposed method for optimization, we conduct some ablation
studies and demonstrate the performance of different algorithm implementations on 100 randomly
generated MDPs with |S| = |A| = H = 5. Hyperparameters used are revealed at the end.

As we can see from Figure 3, when ζ is very small, the optimization failure rate of BOO-E (ζ =
0.0001) is very high, which indicates that the optimization of the BOO algorithm without entropy
regularization is very inefficient due to the unsmooth objective and the poor coverage of the policy.
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Figure 3: The left and right figures show respectively the cumulative regret and success rate of
BOO variants on Random MDPs. An optimization is marked as success when the difference
between model value V k

1 (s0) and the real value V πk,M
∗

1 (s0) is within 0.01. E, D, N, and R denote
enropy regularization, changing initial distribution, natural gradient and adding mean reward bonus,
respectively. For example, BOO-E stands for BOO with entropy regularization.

By using a starting distribution with broader coverage and natural gradients, the optimization success
rate increases, and the cumulative regret decreases. It is observed that all proposed techniques could
help optimization. Among all variants, BOO-ER achieves the best performance and is used for
performance comparison experiments in Section 6.

G.1 Hyperparameters

In this section, we provide the hyperparameters of the algorithms used in Sections 6 and G, as shown
in Tables 1 and 2, respectively.

Table 1: Hyperparameters in Section 6

RiverSwim Random MDPs Random MDPs Chain10 Chain20 Chain40

|S| 5 5 20 10 20 40

|A| 2 5 5 2 2 2

H 5 5 20 10 20 40

FiniteBOO

λk
1√
k

1√
k

1√
k

1√
k

1√
k

1√
k

ζ 0.1 1 1 1 1 2

wζ 0.1 0.1 0.1 0.1 0.1 0.1

γ - - - - - -

BPS

λk
log(k+1)√

k

log(k+1)√
k

log(k+1)√
k

log(k+1)√
k

log(k+1)√
k

log(k+1)√
k

nSamp 10 10 10 10 10 10
‘nSamp’ is a hyperparameter that determines the number of posterior samples.
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Table 2: Hyperparameters in Section G

λk ζ wζ γ

BOO-E(ζ = 0.0001) 1√
k

0.0001 0.1 -

BOO-E(ζ = 1) 1√
k

1 0.1 -

BOO-ED 1√
k

1 0.1 0.998

BOO-ER 1√
k

1 0.1 -

BOO-EDN 1√
k

1 0.1 0.998
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