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1 Reviewer RaW6S

1.1 W3: "tight" bound

Thanks for your raising the question which allows us to further clarify our work. Our claim of being tighter
is based on a comparison with SCR. Directly comparing GMD with SCR is challenging due to their distinct
optimization objectives and forms. Therefore, we considered conducting an indirect comparison between the
SCR and SD.

For indirect comparison, we illustrate that our GMD is equivalent to a lower bound (lowest value) of SCR
term. As a result, using our GMD to upper bound the robust generation error will results in a more tighter
upper bound than using SCR. In specific, the lower bound of SCR term is expressed as:
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When f(Xadv) → f(X) and f(Xadv
D ) → f(XD), the resulting term,
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provides a more constrained optimization compared to SCR. This optimization encourages not only intra-
class consistency, as is the case with SCR, but also improves inter-class separation, which is essential for
better generalization and robustness against adversarial attacks.

For our GMD term, min
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D ) → f(XD) and f(Xadv) →
f(X). Based on the above analysis, the optimization of GMD is a tighter and more constrained approach
compared to SCR.

Moreover, as demonstrated in the experimental results, our proposed SD achieves better robust accuracy
than SCR in most experiments, which validates the superiority resulting from the proposed bound given
by SD. Meanwhile, as observed in Section 6.6 of the main paper for generalization analysis, the robust
models trained by our SD present smaller robust accuracy gaps than other methods, which further verifies
the achieved better robust generalization.

Finally, to clarify this point, we have added the above discussion in the appendix of the revised version.
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2 Reviewer GQUJ

2.1 Ld and Lu

Thank you for pointing out the error on p.24, and the issues with Ld and Lu. We have carefully considered
your suggestion and have decided not to use the constants Ld and Lu. The main reason is that these constants
are difficult to express in a concrete analytical form, which might confuse the theoretical derivation. To
avoid this issue, we revised the proof and introduced a new proof approach that simplifies and clarifies the
derivation. Under the revised proof, we believe the above two weaknesses can be solved.

Specifically, we made improvements to the original proof on p.25 and derived the following new form through
derivation:
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In the further derivation, we obtained the following form:
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Finally, a further refinement of the upper bound can be achieved through the L-Lipschitz constant of fθ(·) :
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where H = max
x

||fθ(x)||2. This new derivation is clearer and avoids the use of constants that are difficult to
express. We believe this improvement not only enhances the theoretical interpretability but also strengthens
the rigor of the analysis.

2.2 tr(G) = N

Regarding your question on why tr(G) = N , we express the forms of D and D∗ to better illustrate this
relationship. Specifically, we present the following expressions to provide a clearer understanding of the
structure and behavior of these matrices in the context of our proof.

The matrix D ∈ RN×N can be written as:
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D = I +
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 .

Furthermore, we define D∗ ∈ RN×N as:
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Thus, G ∈ RN×N is given by:
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where ∅ represents the irrelevant numbers for the trace calculation. Therefore, tr(G) = N .
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