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Abstract1

The choice of good distances and similarity measures between objects is important2

for many machine learning methods. Therefore, many metric learning algorithms3

have been developed in recent years, mainly for Euclidean data, in order to improve4

performance of classification or clustering methods. However, due to difficulties in5

establishing computable, efficient and differentiable distances between attributed6

graphs, few metric learning algorithms adapted to graphs have been developed7

despite the strong interest of the community. In this paper, we address this issue8

by proposing a new Simple Graph Metric Learning - SGML - model with few9

trainable parameters based on Simple Graph Convolutional Neural Networks -10

SGCN - and elements of Optimal Transport theory. This model allows us to build11

an appropriate distance from a database of labeled (attributed) graphs to improve12

the performance of simple classification algorithms such as k-NN. This distance13

can be quickly trained while maintaining good performance as illustrated by the14

experimental studies presented in this paper.15

1 Introduction16

Classification of attributed graphs has received much attention in recent years because graphs are17

well suited to represent a broad class of data in fields such as chemistry, biology, computer science,18

etc [1, 2]. Advances were obtained, particularly thanks to the development of graph convolutional19

neural networks (GCN) [3–6] of which many actually graph learning model can rely on [7, 8]. GCN20

has attracted interest in the recent years, due to their low computational cost, their ability to extract21

task-specific information, and their ease of training and integration into various models. Some tackle22

classification problems for attributed graphs by leveraging GCN: they characterize and build Euclidean23

representations for attributed graphs both in a supervised (e.g. [5, 9]) or unsupervised (e.g. [10, 11])24

way. Despite these achievements, classification methods based on direct evaluation of similarity25

measures between graphs remain relevant since they can obtain similar, and in some cases even better,26

performance [12]. Currently, most of these methods work in a task-agnostic way. However, given the27

diversity of graph datasets, we can not expect one similarity measure to be well suited for all of them,28

on all learning tasks.29

Adapting similarity measures to specific datasets and related tasks help to improve their generality30

and their performance. One of such approach is known as Metric Learning (hereafter ML), and has31

already been successful for Euclidean data. Xing et al. [13] were the first to propose a Metric Learning32

method to improve a specific method and task (k-means for clustering of Euclidean data). This first33

work sparked a strong interest in ML which led to the development of many methods [14–17] for34

Euclidean data. In contrast, few of these methods exist for attributed graphs. Existing methods (e.g.,35

[18]) rely on iterative procedures which are hardly differentiable, and this makes also scalability36

an issue. In the state-of-the-art of classification, neural networks tend to currently dominate in the37

literature, yet building simple and learned (hence adapted to data and task) similarity measures38

between attributed graphs remain a relevant issue for at least two reasons: it allows to step up simpler39

graph classification algorithms, and also it allows to rely on graph kernels [1, 19] which are, as of40

today, as efficient on numerous tasks as models relying on graph neural networks.41

Our contribution. To address the issue of scalability in Metric Learning for graphs, we propose here42

a novel graph ML method, called Simple Graph Metric Learning (SGML). In the first step, attributed43
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graphs are coded as distributions by combining the attributes and the topology thanks to GCN. Then,44

relying on Optimal Transport, we define a novel similarity measure between these distributions,45

that we call Restricted Projected Wasserstein, RPW2 for short. RPW2 is differentiable and has a46

quasi-linear complexity on the distribution size (in number of bins; this is also the number of nodes);47

it removes certain limitations of the well known Sliced Wasserstein (noted SW2) [20]. The RPW248

similarity measure is then used to build a parametric distance between attributed graphs which then49

has also a quasi-linear complexity on the graph size (in the number of nodes). The similarity measure50

proposed in SGML has a limited number of parameters, and it helps the model to scale efficiently.51

Next, we focus on the the k-nearest neighbors (k-NN) method for classification. An advantage of52

using k-NN is that, if the learning set grows, one can exploit it at near zero additional cost (since it53

only requires to store these new data) on the contrary of SVMs that would require to retrain the whole54

data (a task quadratic in size). Since many real datasets (e.g., graphs from social networks, or to detect55

anomalies on computer networks) are expected to have a growing size, this property is important56

for continual learning, and from an energetic and environmental stance to avoid costly retraining.57

In order to use k-NN and train the distance, we propose a novel softmax-based loss function over58

class point clouds. It appears to be novel in the context of graph ML and it leads to better results59

in the explored setting than the usual ML losses (i.e., those specifically built to improve k-NN for60

Euclidean data). Our experiments show that SGML learns a metric increasing significantly the k-NN61

performance, compared to state-of-art algorithms for graph similarity measures.62

The article is organized as follows. In Section 2, we discuss related works on graph metric learning63

and on optimal transport theory applied to the construction of attributed graphs similarity measures.64

Section 3 provides useful notations and definitions needed for the present work. The SGML model is65

defined in Section 4. Finally, in Section 5, we present various numerical experiments assessing the66

efficiency of our model. These experiments show that in various conditions, SGML has great ability67

to build accurate distance with competitive performance with the state-of-the-art in classification of68

graphs, both in context of k-NN and kernel-based methods, and that despite its limited number of69

parameters. A main advantage of the proposed SGML method is also its simplicity, hence leading to70

a scalable and efficient method for graph Metric Learning. We conclude in Section 6.71

Societal Impact The contribution is essentially fundamental, and we do not see any direct and72

immediate potential negative societal impact. Conversely, the scalability of the method will help to73

alleviate the energy consumption of ML on graphs.74

2 Related Works75

2.1 Graph Metric Learning76

About ML for graphs, we can notably mention a series of works [21–23] that consist in learning77

a metric through Graph Edit Distance (GED). The major disadvantage of these methods is the78

complexity of the computation of the GED which can be only done for very small graphs.79

Following the introduction of GCN, an approach based on Siamese neural networks has been proposed80

in [24] for the study of brain connectivity signals, represented as graphs signals. In this specific case,81

all graphs are the same and they differ only by the signal they carry. This makes this method not82

applicable to most of datasets. More recently models without neural networks have been proposed:83

[18] present Interpretable Graph Metric Learning which builds a similarity measure by counting the84

most relevant subgraphs to perform a classification task. However, their method cannot handle large85

graphs. [25] proposes to learn a kernel based on graph persistent homology. The resulting model is86

also efficient, but it has the disadvantage of not being able to deal with discrete features in graphs.87

As seen, existing work on graph ML are either limited by the assumptions made to build their model,88

or too costly, or not suitable to actually leverage simple (classification) algorithms and increase their89

performance. To obtain a simple graph ML procedure that is not itself too costly, we need to have a90

similarity measure between graphs that can be computed quickly. To construct such a distance, recent91

works suggest that Optimal Transport is an appropriate tool.92

2.2 Optimal Transport for Graphs93

Optimal Transport (OT) has been put forward as a good approach to quickly compute similarity94

measures between graphs, relying on the the fact that it provides tools for computing metric between95

distributions [26]. Recent studies have shown that efficient distances and kernels for graphs can be96
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built from this theory. Fused-Gromov-Wasserstein [27] is such a metric (distance in a mathematical97

sense) using OT to compare graphs through both their structures and attributes. Notably it allows98

one to compute barycenter of a set of graphs, and interpolation between graphs. Experimentally, it99

leads to good results in classification. Its bi-quadratic complexity in the size of graphs is its main100

drawback, even if it can be reduced to cubic cost with entropic regularization.101

In [28] an OT based approach to compare graphs is developed. It uses OT between specific signals on102

the graphs. Thanks to a Gaussian distribution hypothesis, the analytical expression of the OT between103

these signals is derived. While the model provides good results, it is initially limited to graphs having104

the same size, and a task of node alignment (which has a cubic complexity) must be performed. [29]105

relaxes the condition on size, yet the focus remains on graph alignment of non attributed graphs.106

[12] has proposed the Wasserstein Weisfeiler-Lehman (WWL) method which can be seen as an107

evolution of the previous work [28] without the two hypotheses, neither on the size of the graphs nor108

on the specificity of the graph signals. In addition, a non trainable GCN is used to build task-agnostic109

characteristics which are then compared through OT. This pseudo-metric is then used to build an110

efficient kernel for graph classification. Unfortunately this model requires the computation of the111

optimal transport map which has a cubic cost (or quadratic with entropy regularization).112

While these models are efficient on classification tasks, their complexity remains high, and they are113

not fast enough (being quadratic or more) to be incorporated in a framework of Metric Learning.114

A part of our contribution is to provide such an optimal transport-based fast similarity measure for115

attributed graphs, with no restriction on the nature of the graphs (and their attributes) to be compared.116

3 Background on Metric Learning and Optimal Transport117

Notations. Let us consider a finite dataset X = {xi}|X|i=1 whose elements are in Rq . The dataset comes118

with a set of labels E = {ei}|E|i=1 and a labeling function E : X → E. We note P(X) ⊂ P(Rq) the set119

of discrete probability over X ⊂ Rq. δx is the Dirac distribution centered in x. We note d a metric120

on X. It verifies the following properties: Symmetry - ∀(x,y) ∈ X2, d(x,y) = d(y,x); Identity121

of indiscernibles - ∀(x,y) ∈ X2, d(x,y) = 0 ⇔ x = y; Triangle inequality - ∀(x,y, z) ∈122

X3, d(x, z) ≤ d(x,y) + d(y, z). d is referred to as a pseudo-metric when it follows these properties123

except the identity of indiscernibles. In this article, the term “distance" will be used sometimes in an124

informal way as a synonym of discrepancy or measures of similarity.125

3.1 Learning a metric126

For ML, we suppose that a dataset X is given with the knowledge of two sets: S (similar) and D127

(dissimilar), containing pairs of some elements of X. The goal is to build a parametric distance dθ in128

such a way that the pairs of elements in S should be close while the pairs in D should be far away1.129

These sets are often built from the labeling function of X such that {xi,xj} ∈ S if E(xi) = E(xj)130

otherwise {xi,xj} ∈ D. An optimization problem depending on dθ, S and D is then defined with a131

loss function F suitable for the purpose:132

max
θ

F(dθ,S,D) (1)

We denote θ∗ the optimal parameters. The interest for building such a distance dθ∗ with respect to133

information in D and S lies in the fact that X is often included in a larger set, containing elements134

which are not labeled. The goal is that the obtained distance dθ∗ will ease learning algorithm to find135

these missing labels. A part of our work will be to introduce a new and suitable loss function F in136

metric learning literature for the problem of metric learning for graphs.137

3.2 Optimal transport138

Let us consider two finite datasets X, X′, and two distributions µ ∈ P(X) et ν ∈ P(X′) on these sets:139

µ =
∑
xi∈X

aiδxi
and ν =

∑
x′

i∈X′

biδx′
i

(2)

1Some algorithms use a third type of information, which consists of triples indicating that a given element
must be closer to such element than to another element [16].
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with ai ≥ 0, bi ≥ 0, n = |X|, n′ = |X′|, and
∑n

i=1 ai = 1,
∑n′

i=1 bi = 1. Given a continuous cost140

function c : Rq × Rq → R+, one can build from optimal transport a metric between distributions141

with support in Rq , the so-called 2-Wasserstein distance W2 :142

W2(µ, ν) = inf
πi,j∈Πa,b

( n,n′∑
i,j=1

πi,jc(xi,x
′
j)

2
) 1

2

(3)

Πa,b is the set of joint distributions on X × X′, π =
∑n,n′

i,j=1 πi,jδ(xi,x′
j)

whose marginals are the143

distributions µ =
∑

x′
i∈X′ π(·,x′

i) and ν =
∑

xi∈X π(xi, ·). We note π∗ ∈ Πa,b the optimal144

distribution (or coupling, or map) giving the solution of this problem. The cost function c is taken145

as 2-norm: c(xi,x
′
j) = ||xi − x′

j ||2, leading hence to the 2-Wasserstein distance. This defines an146

efficient way to compare distributions. One could use differentiable versions (w.r.t the parameters of147

a distribution) by considering the 1-Wasserstein [30] or the entropic regularization of W2 [26, 31].148

Still, they are not suitable for metric learning because of the (initial) complexity (when n = n′) in149

O(n3 log n), or O(n2 log(n)) with entropic regularization thanks to the Sinkhorn algorithm [26].150

Sliced Wasserstein distance (SW2). In order to drastically reduce the cost for computing the OT,151

[20] has proposed a modified metric SW2 which consists to compare the measures µ and ν via their152

one dimensional projections. Let θ ∈ Sq−1 be a vector of the unit sphere of Rq . Distributions µ and153

ν projected along θ are denoted µθ =
∑

xi∈X aiδxi·θ and νθ =
∑

x′
i∈X′ biδxi·θ . SW2 is defined as154

follows:155

SW2(µ, ν)
2 =

∫
Sq−1

W2(µθ, νθ)
2dθ (4)

The advantage of this formulation stems from the quasi-linearity in n (or n′) of the computation156

cost of W2 distance between one dimensional distributions. The integral can be estimated via a157

Monte-Carlo sampling. The complexity is then (when n′ ≤ n) at most O(M(n log n)) with M158

the number of samples (uniformly) drawn from Sq−1. However, [32] shows that SW2 is a biased159

downwards compared to W2, since the vector θ for projection determines at the same time the OT160

plans and also the cost of transport; this leads to a less effective distance.161

Projected Wasserstein distance (PW2). When n = n′, PW2 is introduced by [32] in answer162

to previous limitations. PW2 is computed similarly as SW2, but for each projection θ, the one163

dimensional optimal transport plan πθ,∗ between µθ and νθ is used with the original distributions µ164

and ν so as to compute the transport cost:165

PW2(µ, ν)
2 =

∫
Sq−1

n,n′∑
i,j=1

πθ,∗
i,j ||xi − x′

j ||22dθ (5)

They show that this formulation gives a metric, has good properties and is more suitable for several166

learning tasks, e.g. generative tasks or reinforcement learning. Unfortunately their result holds only167

for uniform distributions of the same size. We extend the method to distributions of different sizes.168

4 Simple Graph Metric Learning169

Let us consider a dataset G of attributed graphs with labeling set E and labeling function E . For a170

given graph G ∈ G having A as adjacency matrix, we call n the number of node of the graph. Each171

node i of G carry features X(i, :) ∈ Rq; thus X ∈ Rn×q is the matrix of attributes of the graph.172

4.1 From graph to distribution173

Previous works using OT (pseudo-)metric have shown that comparing graphs through the signal they174

carry is a good way to compare them; we follow this path. The first step of our learning method175

consists in the generation of features jointly representative of the structure of each graph G and the176

attributes of their nodes X . We use for this purpose Simple GCN [6], a streamlined version of GCN177

in which all the intermediate non-linearities have been removed. This choice is dictated by the need to178

strongly reduce the number of trainable parameters, and it accelerates the training without degrading179

its performance compared to other GCN. This Simple GCN creates features as:180

Y = ReLU(ÃrXΘ) (6)
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where X ∈ Rn×q are the initial attributes of the nodes, Ã = A+ In (where In is the identity matrix181

of Rn) and Y ∈ Rn×p are the features computed by SGCN. The neighborhood exploration depth r182

of this GCN is one of the hyperparameters of the method, along with the dimension p of the extracted183

features Y . The coefficients of the matrix Θ ∈ Rq×p of this GCN are the (only) trainable weights of184

the method. We will always choose p ≤ q, so the method has at most q2 trainable parameters. From185

the extracted features Y , we define a uniform distribution whose suport is the nodes’ characteristics:186

DΘ(G,X) =

n∑
i=1

1

n
δY (i,:) (7)

This first step is similar to WWL [12], except that we consider a trainable GCN, Θ being the trainable187

parameters. In eq. (7), both the structure G and the attributes X are accounted for. Next, we propose188

a novel way to evaluate the similarity between attributed graphs using these distributions.189

4.2 From distributions to distance190

The distances between graphs are computed as a distance between their representative distributions191

(Eq. (7)) with OT; specifically, we propose a novel one, called Restricted Projected Wasserstein (and192

noted RPW2) extending PW2 previously introduced in [32].193

Restricted Projected Sliced-Wasserstein. In [32], PW2 is only defined for uniform distributions194

when n = n′. We extend this to cases n ̸= n′. While the symmetry and the identity of indiscernibles195

is still verified, there is no guarantee that PW2 remains a metric on uniform distribution space,196

because the triangle inequality cannot be derived as easily as when n = n′.197

In order to compute this quantity, we could rely on Monte-Carlo sampling, and the complexity would198

be O(Mpn log(n)). This can be prohibitive due to the term pM . In order to obtain a scalable model,199

we restrict the projections to be alongside the basis vectors {uk}pk=1 of Rp only. This choice stems200

from a spanning constraint that allows us to define a quantity verifying the identity of indiscernibles201

without increasing significantly the computing time (see Appendix A.1). This property guarantees that202

RPW2 can always distinguish distributions that are different but also (associated with the continuity)203

that, when two distributions are getting closer, then RPW2 tends towards 0; this is important in ML204

context. This choice defines a new distance, called Restricted PW2, or RPW2 for short, reading as:205

RPW2(µ, ν)
2 =

1

p

p∑
k=1

n,n′∑
i,j=1

πuk,∗
i,j ||xi − x′

j ||22 (8)

This distance is defined by a deterministic formula; this avoids the variability introduced by a Monte-206

Carlo sampling. We can notice that for a given uk, many πuk
i,j may be optimal for the projected207

distribution on uk, while they may lead to different values when computing Eq. (8). In order to208

have an unambiguous and deterministic definition, in such cases we can choose among admissible209

optimal transport maps the one which minimizes Eq. (8). However since this case is quite rare, in210

our implementation we simply took the first one returned by our sorting algorithm. The complexity211

of RPW2 is given by O(p2n log(n)) which saves a factor M
p as compared to PW2 and this term212

is often greater than 10. Finally, let us note that we did not find numerically evidences that RPW2213

does not verify the triangle inequality; we only found a few examples of triplets where, numerically,214

the inequality was not satisfied at the level of the numerical precision limit. However further work is215

needed to answer this question.216

The proposed parametric distance dRPW2

Θ between two attributed graphs (G,X) and (G′,X′) is217

defined as:218

dRPW2

Θ (G,G′) = RPW2(DΘ(G,X),DΘ(G′,X′)) (9)

All the metric learning experiments will be conducted using this distance, excepted in an ablative219

study where we report the use of SW2 and PW2.220

4.3 Loss for training distance: the Nearest Class Cloud Metric Learning221

The last element to complete our model is to define the loss function F for Eq. (1). We propose222

here a new loss function for the purpose of improving the k-nearest neighbors method. Actually223
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there are classical losses already efficient for this purpose: one can notably mention Large Margin224

Nearest Neighbor (LMNN) [15] and Neighbourhood Component Analysis (NCA)[14]. However,225

the optimization is done using a gradient descent algorithm. Since computing all pairwise distances226

between graphs at each step of gradient descent would be intractable for large datasets, we have227

to train our loss in a batch way. In this context, LMNN may be not relevant since this method228

works locally and a batch is often not representative of the true neighborhood of an element of the229

dataset. On the contrary NCA loss can be trained in a batch way, as it relies on a probability model230

which tends to attract elements with the same label with each other, wherever they are. However,231

preliminary experiments showed only a slight improvement of the k-NN with NCA. Therefore we232

have constructed a new loss which proposes a different way to ensure the same condition (see233

Appendix A.2) and which experimentally works better in our setting (see Ablative study, Sec. 5.4).234

The model is called Nearest Cloud Class Metric Learning (NCCML); the probability of being labeled235

by e ∈ E for a graph G depends on the distance to the point clouds of a class (hence the name of the236

method):237

pΘ(e|G) =
exp

(
−
∑

Gi∈G
E(Gi)=e

dRPW2

Θ (G,Gi)
2
)

∑
e′∈E exp

(
−
∑

Gi∈G
E(Gi)=e′

dRPW2

Θ (G,Gi)2
) . (10)

Given this probability, we want to construct the distance dRPW2

Θ maximizing the probability that the238

labeled graphs in the dataset have the correct labels, which leads to solve the following problem:239

max
Θ

FG
Θ = max

Θ

∑
Gi∈G,E(Gi) ̸=∅

log pΘ(E(Gi)|Gi). (11)

By maximizing this loss, we construct a distance which, for each element, favors its relative distance240

to elements of the same labels compared to those of different labels. This should favor k-NN,241

especially when k > 1. We will show in the experiments that, in this specific context, NCCML242

exhibits better performance than NCA. More details on NCCML can be found in Appendix A.2.243

4.4 Computational aspects244

We test, in the next Section, the proposed metric learning method with RPW2 (and SW2 or PW2245

in ablative studies).246

Optimization. In terms of optimization, we can differentiate directly with respect to one dimensional247

distribution parameters of Wasserstein distance, thus we can also differentiate through approximation248

of RPW2 (Eq. (5)) (and also of SW2 (Eq. (4)) or PW2). Self-differentiation techniques can be used249

on these expressions (see [26]). We implemented our algorithm in tensorflow2. The minimization250

of the loss is performed by batch and stochastic gradient descent (in particular with the optimizer251

Adam [33]).252

Parameters. The following default parameters are used (unless otherwise indicated in the text):253

learning rate lr = 0.999 ∗ 10−2, number of epochs E = 10, batch size B = 8, and the GCN output254

features size p = min(5, q). For experiments involving SW2 and PW2, the sampling number is set255

to M = 50 which is a common value used in the literature.256

Time complexity. Theoretically, the training time is negligible compared to the computation of257

all pairwise distances; therefore we focus on this last step for the time complexity analysis (see258

Appendix A.5 for runtimes per dataset). If we denote ñ the number of average nodes of a graph,259

the total complexity of this computation with RPW2 (resp. SW2) is given by O(|G|ñ(p2 + ñrp) +260

|G|2p2ñ log ñ) (resp. O(|G|ñ(p2 + ñrp) + |G|2pMñ log ñ)). The first terms occur for application261

of GCN and the latest for computing distances. In practice, for not too large ñ values, a quadratic262

implementation exploiting vectorization can be faster (see section 5.2). Furthermore, one can see that263

the GCN becomes the limiting element for scaling (on graph sizes); in practice, the sparsity of the264

adjacency matrix and the optimizations on GPUs limit this problem. However, it is still an active265

research topic to determine the less expensive ways to characterize the nodes [34, 35].266

2The implementation can be found in the supplementary material.
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Spatial Complexity. Our quadratic implementation mentioned above requires to store in memory a267

tensor of size O(ñ2p) for RPW2 and O(ñ2M) for SW2 or PW2. The sequential implementation268

has a O(ñ) spatial complexity (more details on these implementations are in Appendix A.3). Anyway269

for both implementations, for the dataset of graphs considered, SGML is very cheap in terms of270

memory consumption in regards of actual GPU capability.271

5 Experiments272

5.1 Datasets273

Figure 1: Run time comparisons.

For the experiments, we use a large274

panel of data sets from the litera-275

ture [2]3: ENZYMES, PROTEINS,276

IMDB-B, IMDB-M, MUTAG, BZER,277

COX2 and NCI1. More informa-278

tion on these datasets can be found279

in Appendix A.4. Additional details280

about the following experiments can281

be found in Appendix A.7 for repro-282

ducibility. When a dataset has discrete283

features, they are one-hot encoded.284

5.2 RPW2 Running times285

We have generated uniform random286

(normal) distributions with support in287

R5 of size ranging from 101 to 106.288

These sizes of the distributions correspond to graph sizes n (number of nodes). The choice of289

R5 is motivated by the usual good performance of ML when performed in small dimension. We290

compare the running time to compute the distance between these distributions with W2, We
2 , (W2291

with entropic regularization parameter γ = 100), SW2 using POT [36] library and RPW2. For292

RPW2 we compare both the quadratic and the sequential (numpy) implementations we developed.293

The results can be found on Figure 1. Additional details and results are given in Appendix A.6.294

As expected SW2 and RPW2 are the methods scaling the best: we obtain the expected (quasi) linear295

slope for both methods O(n log n). As soon as n > 104, SW2 and RPW2 allows us to compute296

distances between distributions of several orders of magnitude larger for the same time as W2 and We
2 .297

Although SW2 and RPW2 scale mostly the same, SW2 seems a bit faster than RPW2. However,298

we will show in the next experiment (Sec. 5.4) that RPW2 builds better metrics than SW2. Finally,299

we can note that the quadratic implementation is the fastest for samples with less than 200 instances,300

which is the case for the datasets considered in the following experiments.301

5.3 Supervised classification302

We evaluate the method in two ways: by using k-NN directly on the computed distances, and by using303

a SVM with a custom kernel built from the model proposed. We eventually compare the method to304

several (pseudo-) metric and distances from literature such as NetLSD [37], WWL [12], FGW [27].305

k-Nearest Neighbors. Datasets are split in a training (90%) and test set (10%). For each of306

them we train RPW2 following Algorithm 1 (in the appendix) on the training set with only one307

hyperparameter to adjust: the depth of SGCN taken as r = {1, 2, 3, 4} for all datasets, except for308

MUTAG for which we go up to 7. The training is done for each parameter r during 10 epochs. A309

5-fold cross validation of the number of neighbors k = {1, 2, 3, 5, 7} to be considered is performed310

on the training set using the considered distance. Then for the best k∗, we keep the associated311

validation accuracy, and we finally train a k-NN on the whole training set and evaluate its accuracy on312

test set. This experiment is averaged on 10 runs. The final test accuracy retained is the one associated313

to the largest validation accuracy. In this procedure, test set labels were never seen during neither314

training nor validation. Results are given in the first lines of Table 1 for graphs having labeled nodes315

and of Table 2 for graphs with continuous attributes.316

3http://graphkernels.cs.tu-dortmund.de
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Table 1: Results of the main experiments for datasets of graphs with discrete attributes. Features
are node labels for NCI1, PROTEINS and ENZYMES; and degrees for others. Accuracy is in bold
green when it is the best of its block. For FGW-WL (resp. PSCN), depth is set to 4 (resp. 10).

Method MUTAG NCI1 PROTEINS ENZYMES IMDB-M IMDB-B

k-NN

RPW2 90.00± 7.60 72.12± 1.65 70.18± 4.01 49.00± 8.17 45.00± 5.46 68.90± 5.45
Net-LSD-h 84.90 65.89 64.89 31.99 40.51 68.04
FGSD 86.47 75.77 65.30 41.58 41.14 69.54
NetSimile 84.09 66.56 62.45 33.23 40.97 69.20

SVM & GCN

RPW2 88.95± 7.61 74.84± 1.81 74.55± 4.19 54.00± 7.07 51.00± 5.44 72.00± 3.16
WWL 87.27± 1.50 85.75± 0.25 74.28± 0.56 59.13± 0.80 ✗ ✗
FGW 83.26± 10.30 72.82± 1.46 ✗ ✗ 48.00± 3.22 63.80± 3.49
FGW-WL 88.42± 5.67 86.42± 1.63 ✗ ✗ ✗ ✗
WL-OA 87.15± 1.82 86.08± 0.27 76.37± 0.30 58.97± 0.82 ✗ ✗
PSCN 83.47± 10.26 70.65± 2.58 58.34± 7.71 ✗ ✗ ✗

Table 2: Results of the main experiments for datasets of graphs with continuous attributes
graphs datasets. The best accuracy are in bold green. Note that for PROTEINS, ENZYMES and
CUNEIFORM we concatenate continuous attributes with discrete attributes to build an extended
continuous attributes (see Appendix A.7 for more details).

Method BZR COX2 PROTEINS ENZYMES CUNEIFORM

RPW2 (kNN) 85.61± 2.98 79.79± 2.18 71.79± 4.47 51.66± 5.16 54.81± 12.26

SVM & GCN

RPW2 84.39± 3.81 78.51± 0.01 74.29± 4.11 48.83± 4.78 64.44± 10.50
WWL 84.42± 2.03 78.29± 0.47 77.91± 0.80 73.25± 0.87 ✗
FGW 85.12± 4.15 77.23± 4.86 74.55± 2.74 71.00± 6.76 76.67± 7.04
PROPAK 79.51± 5.02 77.66± 3.95 61.34± 4.38 71.67± 5.63 12.59± 6.67
HGK-SP 76.42± 0.72 72.57± 1.18 75.78± 0.17 66.36± 0.37 ✗
PSCN [K = 10] (GCN) 80.00± 4.47 71.70± 3.57 67.95± 11.28 26.67± 4.77 25.19± 7.73

The learning metric framework combined with k-NN allows us to obtain good performance in317

classification tasks, in particular for datasets of graphs with continuous attributes. The exception318

is ENZYMES where we can see a lower net performance. For discrete attributes, SGML performs319

slightly below the state-of-the-art, yet it outperforms the existing distances classically combined with320

k-NN. Experiments show that our graph ML distance framework is efficient.321

Note: This procedure is very similar to the one used by WWL, except that the parameter k is replaced322

by the corresponding parameters of their kernel (see next section).323

SVM. To compare to graph kernel methods, the experiment described in the previous section is324

reproduced using a SVM for classification. The kernel KRPW2 = exp(−λdRPW2

Θ∗ ) is built from325

the constructed distance. In this experiment, kernel hyperparameter λ and SVM hyperparameter C326

are tuned similarly as the parameter k above. The set of possible λ (resp. C) values are 6 (resp. 12)327

regularly spaced values between 10−4 and 101 (resp. 10−4 and 105 including 1). The results are328

provided in Table 1 (bottom part).329

In this part of the table, one can see that the distance learned with our model performs as well as other330

OT distances when used as a kernel, on the majority of the datasets. We reach or are slightly above331

state of the art results on 5 datasets over 6 but are still below on NCI1. We recall that our method is332

specifically designed for the k-nearest neighbors method and that its computational complexity is333

much lower than many of the best methods on these datasets (notably WWL and FGW).334
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Table 3: Ablative study results. Acc. is the accuracy. ∆ is the difference in accuracy between the
model of the column and the proposed one SGML whose results are on Table. 1. Red negative (resp.
Green positive) number means that our model performs better (resp. worse).

Dataset WWL SGML - SW2 SGML - NCA SGML - PW2

Method Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

BZR 78.05 - 7.56 82.93 - 2.68 83.41 - 2.20 84.39 - 1.22
COX2 78.51 -1.26 78.30 - 1.49 77.66 - 2.13 78.94 - 0.85
MUTAG 83.68 - 6.32 86.84 - 3.16 87.37 - 2.63 90.00 0.00
NCI1 80.43 5.31 69.03 - 3.09 69.66 - 2.46 72.90 0.78
PROTEINS 71.60 1.42 71.34 1.16 71.70 1.52 70.18 0.00
IMDB-B 68.20 - 0.7 68.20 -0.70 67.40 -1.5 68.80 - 0.10
IMDB-M 48.73 3.73 42.33 -2.67 42.73 -2.27 44.13 - 0.87
ENZYMES 56.00 7.00 44.33 - 4.67 55.33 6.33 44.83 -4.17

5.4 Ablative study335

We perform experiments to justify the design choice of our model. Specifically we show that these336

choices effectively help to improve k-NN performance by reproducing the experiments above (with337

k-NN) on different versions of the method without some (or all) of our propositions.338

Raw model. Without any of our novel propositions, the method would be equivalent to WWL, which339

corresponds to use the Wasserstein distance between distributions of Eq. (7), where Y is generated340

with GIN [5], a non trainable GCN. This specific case corresponds to the first column denoted WWL341

of Table 3. We see that even if there are datasets where there is a loss of performance, others benefit342

from the learned metrics. Moreover we remind that our distance is much less expensive to use than343

W2 on which WWL is based.344

SGML with SW2. This second ablative study is in the second column, denoted SGML-SW2, of345

Table 3, and is related to replacing RPW2 by SW2. The result clearly validates our choice to use346

RPW2 instead of SW2. Our model is the best one except on one dataset.347

SGML with NCA. For this experiment we replaced the loss NCCML by the NCA loss. The result348

is in the third column, SGML - NCA of Table 3. It appears that NCCML is often more appropriate349

than NCA in our specific ML framework.350

SGML with PW2. For this final experiment we used PW2 instead of RPW2. This experiments351

show that PW2 and RPW2 have equivalent results. This suggests that projecting only on the352

canonical basis is sufficiently informative while still being less costly.353

Globally, the ablative study is in favor of the choices proposed for SGML. Note that the driving idea354

of choosing simple and scalable methods over more complex ones, leads to competitive performance355

while allowing scalability.356

6 Conclusion357

In this article, we proposed a metric learning method for attributed graphs, specifically to increase the358

performance of k-NN. We have shown experimentally that it can indeed achieve performance similar359

or even superior to the state of the art. However, a theoretical work on the properties of RPW2 will360

be useful to allow us to better understand when it does not perform well. Appendix A.9 presents some361

additional elements on the limits of the work. In addition, further work may easily adapt SGML to362

perform other tasks like graph clustering or regression, with an appropriate (and probably different)363

ML loss.364
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A Appendix463

A.1 Motivation of RPW2464

We give here, additional information to justify the form that RPW2 (Eq. (8)) takes. In particular,465

the choice of using canonical vector basis {ui}pi=1 of Rp to project distributions. We will show that466

this choice ensures that RPW2 verifies at least two properties of metrics: symmetry and the identity467

of indiscernibles, just like PW2 from which it is derived. Then we will show that for any choice of468

vector family which does not span Rp, ensuring the identity of indiscernibles may require the same469

amount of computation as to calculate W2.470

In order to facilitate the reading we recall below the definition of RPW2 :471

RPW2(µ, ν)
2 =

1

p

p∑
k=1

n,n′∑
i,j=1

πuk,∗
i,j ||xi − x′

j ||22 (12)

Where µ =
∑

xi∈X
1
nδxi and ν =

∑
x′

i∈X′
1
n′ δx′

i
are uniform distributions of Rp; πuk,∗ are 1-d472

optimal transport plans of projected distributions µuk
=

∑
xi∈X

1
nδxi(k) and νuk

=
∑

x′
i∈X′

1
n′ δx′

i(k)
.473

Since µuk
and νuk

are projected distribution they may have non unique bins which lead to potentially474

several optimal transport plans, in such cases the chosen transport πuk,∗
i,j is one of those which475

minimize Eq. (12).476

A.1.1 RPW2 properties477

Symmetry. The symmetry is straightforward to derive. Since the cost ||xi − x′
j ||22 and the transport478

plans πuk,∗ (which depend exclusively on the sorting of
(
xi(k)

)
i∈{1,...,n} and

(
x′
j(k)

)
j∈{1,...,n′})479

are symmetric, RPW2 is thus symmetric.480

Identity of indiscernibles. We have to show that RPW2(µ, ν) = 0 if and only if µ = ν.481

First, let’s assume that µ ̸= ν, then :482

RPW2(µ, ν)
2 =

1

p

p∑
k=1

n,n′∑
i,j=1

πuk,∗
i,j ||xi − x′

j ||22 (13)

By definition of W2 (Eq. (3)) ≥ 1

p

p∑
k=1

W2(µ, ν)
2 (14)

Because W2 is a metric and µ ̸= ν > 0 (15)

Hence RPW2 = 0 =⇒ µ = ν.483

Secondly, let’s assume that µ = ν. Therefore n = n′ and µuk
= νuk

for k ∈ {1, . . . , p}. Additionally484

the optimal transport πuk,∗ can be associated to a unique permutation. By introducing the notation485

σk such that ∀i, j ∈ {1, . . . , n}, σk(j) = i iff πuk,∗
i,j = 1/n, we can write :486

RPW2(µ, ν)
2 =

1

p

p∑
k=1

1

n

n∑
j=1

||xσk(j) − x′
j ||22 (16)

In addition, since µ = ν, there is a permutation τ such that :487

n∑
j=1

||xτ(j) − x′
j ||22 = 0 (17)

Thus:488
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∀k ∈ {1, . . . , p},
n∑

j=1

||xτ(j)(k)− x′
j(k)||22 = 0 (18)

Since, ∀k ∈ {1, . . . , p}:489

0 = W2(µk, νk) =
1

n

n∑
j=1

, ||xτ(j)(k)− x′
j(k)||22 (19)

It is clear that τ is a permutation associated to an optimal transport between νk and µk. Therefore by490

definition of σk (i.e. the permutation associated with the optimal transport between νk and µk which491

minimizes Eq. (12)):492

RPW2(µ, ν)
2 =

1

p

p∑
k=1

1

n

n∑
j=1

||xσk(j) − x′
j ||22 ≤ 1

p

p∑
k=1

1

n

n∑
j=1

||xτ(j) − x′
j ||22 = 0 (20)

Hence µ = ν =⇒ RPW2 = 0. This concludes the proof.493

A.1.2 Projection on canonical basis vector494

Projecting onto the family of canonical vector basis is a choice that stems from a spanning constraint,495

and also a choice of simplicity. As we stated, for a given k, there may be several optimal transport496

plans between µk and νk. This happens when, for a given k, there are bins where :497

xi(k) = xj(k) and xi ̸= xj (21)

For continuous data (such as those that are the outputs of a GCN) this condition is particularly unlikely498

to happen. However, if we were projecting onto a non spanning vector family, that we call
{
vu

}
,499

every bins lying in an orthogonal space of span
{
vu

}
would be projected on 0. This would lead on500

several couple of bins where the above condition (21) would be verified. In an extreme case where501

all bins of µ and ν would be in the orthogonal space, any transport plan would be optimal between502

projected distribution. Therefore, finding the OT plan which minimizes (12) would be equivalent to503

finding the optimal transport plan of Wasserstein distance. This is the reason why it is mandatory to504

find a family of vectors which spans Rp.505

A natural choice is then to use the canonical basis from which it is easy to derive the identity of506

indiscernibles property (proven above) and from which the projection is costless on a numerical507

point of view. Anyway, in a different context from this work, where the distribution bins are not508

only continuous but also fit categorical data, some other spanning family may be more suitable. We509

hope that future works will take this idea to use specific family of vector to build specific distance510

(independently of the question of approximation of an existing OT distance) a step further.511

A.2 Motivation and Interpretation of NCCML512

We detail here some of the insights that led us to propose NCCML for ML.513

Since we want to maintain a low complexity to train our model, a batch training is desirable. As a514

consequence and as said in section 4.3, the Large Margin Nearest Neighbor (LMNN) [15] loss was515

not appropriate because it works very locally and is not optimal with batch training. Indeed, LMNN516

tries to attract and repel points with elements of the datasets which are neighbours, according to their517

labels. On a batch training, this could lead to some overfitting where we try to attract points which518

should not be close even if they share the same label. This is even true the smaller the batch size we519

use.520

An alternative is to use Neighborhood Component Analysis (NCA) [14] which provided a slightly521

better but limited performance. In reality, NCA is also a very locally method. Indeed it considers the522

probability p(Gi,Gj) for two elements to have the same labels:523
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pΘ(Gi,Gj) =
exp

(
−dRPW2

Θ (Gj ,Gi)
2
)

∑
k,k′ exp

(
−dRPW2

Θ (Gk,Gk′)2
) (22)

Given this form of probability, it tries to maximize them for all elements which have effectively the524

same labels:525

max
Θ

∑
Gi∈G

∑
Gj∈G

E(Gi)=E(Gj)

pΘ(Gi,Gj) (23)

However, as one can see from Eq. (23), the probability of having the same labels is a softmax, so526

distant elements do not contribute a lot to these probability. It contains mostly local information. We527

believe that one could obtain better results by considering a more global criterion. Moreover, using a528

batch would be now advantageous since it will help the model to build good metric, even for k-NN529

(which requires a local fine metric) since the batch training will act as a regularization and will help530

to generalize.531

An inspiration for that comes from NCMML [38] which proposes a loss function specifically built532

to increase performance of nearest mean classifier. This model also relies on a probabilistic model533

where the probability to belong on a class is given by a softmax which considers the distance to the534

mean of different classes. Obviously NCMML is not well suited for our tasks using kNN. Plus, it535

would require an additional layer of computation for computing barycenter with OT.536

We took a compromise between NCA and the NCMML loss. The probability to be part of a class is537

given by a softmax which depends on the relative distance to different same label element (Eq. (11)).538

It has the advantage that the loss on a batch will be representative of the loss over the whole dataset,539

because the relative distance to different labels should remain the same also on subsamples of the540

dataset. Moreover it benefits from the batch training which acts as a regularizer. That finally leads541

to a better metric learned compared to NCA for k-NN as proven on our ablative study (Table. 3).542

Anyway, in a regular setting where we could use all datasets to build and train theses losses, NCCML543

would certainly shows worse results than LMNN and NCA.544

The specific settings that is studied here, due to the requirement of scalability, forces to propose a545

loss different from the literature, that indeed brongs some improvement when compared to NCA.546

Algorithm 1 SGML: High-level algorithm to build dRPW2

Θ∗ .

Require: A dataset of attributed graphs G and their labeling function E .
for each epoch e ∈ {1, . . . , E} do

Build a partition: ∪kBk = G such that Bk ∩Bk′ = ∅.
for each batch Bk do

for each graph pair (G,G′) ∈ Bk ×Bk do
Compute distance dRPW2

Θ (G,G′) (Eq. (9))
Compute −FBk

Θ (Eq. (11)) and apply an iteration of Adam descent algorithm.
return all pairwise distance dRPW2

Θ∗ in G.

A.3 Implementation details547

Sequential implementation. A priori, it is necessary to compute all the transport costs between two548

distributions so as to calculate the optimal transport and this operation has a quadratic complexity. For549

most OT distance such as W2, since the complexity is dominated by the computation of the optimal550

transport plan, this was of no consequence. However for RPW2 (as well as for SW2) it becomes551

a critical aspect. Hopefully, there is no need to compute all the costs to find the optimal transport552

and the transport cost has no more than n+m (given that the distributions have sizes n and m) non553

zero coefficients. This is why their complexity remains quasi-linear in O(n log n). The algorithm554

of the implementation referred to as "sequential implementation" in the core text can be found on555

Algorithm 2. The experiment on Section 5.2 assessed the quasi-linear complexity of this algorithm.556
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Table 4: Graph datasets used in our experiments. #Graphs: number of graphs. #Nodes: average
number of nodes. cont.: attributes have continuous values; lab.: attributes are labels. deg.: the
featurattributes are degrees of nodes. q is the feature dimension.

Datasets BZR COX2 PROTEINS ENZYMES MUTAG NCI1 IMDB-B IMDB-M CUNEIFORM

#Graphs 405 467 1113 600 188 4110 1000 1500 267
#Nodes 35.75 41.22 39.06 32.63 17.93 29.97 19.77 13 21.27

Node attributes cont. cont. cont. / lab. cont. / lab. deg. lab. deg. deg. cont. / lab.
q 3 3 1 / 3 18 /3 4 38 135 88 3 / 3

Quadratic implementation. In this second implementation, we compute all possible transport557

costs using a library of matrix multiplication, and then we multiply these costs by the optimal558

transport matrix. These operations allow us to benefit from the advantages of vectorization and to559

gain time compared to the sequential implementation, when n is not too large. This result is assessed560

experimentally in Section 5.2.561

Both implementation can be found with this supplementary material.562

Note: In the reported experiments, we have seen that for n < 1000, it’s better to use the quadratic563

implementation. Anyway this result strongly depends on the hardware used, and also on the dimension564

of the distribution support p. The scaling behavior of the two implementations is an interesting565

characteristic, showing than the proposed method can be implemented in a quasi-linear way. The566

second comment is also that the method can be made rapid enough (and very competitive) with567

optimizations.568

Algorithm 2 RPW2 - Sequential

Ensure: Build the distance between two discrete distributions µ and ν in P(Rp).
Require: µ =

∑n
i=1 aiδxi

and ν =
∑m

j=1 biδyj
.

Set c = 0.
for each epoch k ∈ {1, . . . , p} do

Get σk
µ, σk

ν sort permutation of supports vectors k-th components.
i.e xσk

µ(0)
(k) ≤ · · · ≤ xσk

µ(n−1)(k) and yσk
ν (0)

(k) ≤ · · · ≤ yσk
ν (m−1)(k).

Set T = true. Set i, j = 0, 0.
Set wµ, wν = aσk

µ(0)
, bσk

ν (0)
.

while T == True do
if wµ < wν then
c = c+ wµ ∗ ||xσk

µ(i)
− yσk

ν (j)
||22

i = i+ 1
if i == n then
T = false

wν = wν − wµ

wµ = aσk
µ(i)

else
c = c+ wν ∗ ||xσk

µ(i)
− yσk

ν (j)
||22

j = j + 1
if j == m then
T = false

wµ = wµ − wν

wν = bσk
ν (j)

return
√

c
q

A.4 Datasets569

The characteristics of the datasets used are summarized in Table 4.570
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Table 5: Typical runtimes in our experiments. The running time of WWL (r = 2) and FGW
(α = 0.5 except for IMDB datasets where it is set to 1) to calculate distances are also provided.

Datasets BZR COX2 PROTEINS [lab.] ENZYMES [lab.] MUTAG NCI1 IMDB-B/M) IMDB-M

Training time (s) 35 40 240 220 15 480 80/120 120
Distances comp. (s) 5 7 40 40 1 480 10/55 55

Dist. comp. (s) - WWL 16 25 200 30 2 1500 80/140 140
Dist. comp. (s) FGW 240 270 1h 540 30 6h30min 1000/1400 1400

A.5 SGML - Datasets runtimes571

The following Table 5 provides the typical runtimes for both training part and distance computation572

phases for the different datasets considered in this paper. We used the proposed quadratic implementa-573

tion for all datasets. A tensorflow implementation is used during the training phase (to leverage the574

build-in functions for optimization and training) while the numpy implementation is used during the575

final distance computation. All running time experiments were conducted with a computer equipped576

with an Intel CORE i9900ks processor (62 GB of RAM) and GeForce RTX 3090 (24 GB of RAM).577

The parameters are the same as in the experiments described in the paper. We fixed the depth of our578

GCN to r = 4.579

As we can see despite lower theoretical complexity, the training time is bigger than distance compu-580

tation. This is because the numpy implementation is much more efficient (especially in computing581

the sort operation) and these datasets are not large enough (in terms of the number of graphs) for582

tensorflow implementation catches up to numpy implementation. One clearly sees that the bigger583

the dataset (e.g., the NCI1 dataset), the lower the numpy implementation saves time.584

A.6 RPW2 runtimes according to graph size585

In section 5.2, we have not been able to extend the comparison of computation times between RPW2586

and SW2 up to 108 size distributions in the same experimental conditions. The reason is that, beyond587

approximately 6 million points, we encountered a memory issue with SW2 on our Intel CORE588

i9900ks processor × 62 GB of RAM computer. It appears to be an implementation issue from POT589

toolboxes. Anyway, we have redone all the experiment with a computer with more RAM but a less590

powerful processor, an Intel Xeon Gold 5218 × 2 To of RAM. This amount of RAM is obviously591

overkill but it allows us to avoid any issue on the SW2 implementation. The results can be found in592

Figure 2. It confirms the calculated complexity on Section 4.4, asymptotically RPW2 scale better593

than SW2 since in our settings p(= 5) < M(= 50).594

A.7 Additional details595

ENZYMES. (discrete) The learning rate 0.999 10−2 was too heavy for NCA loss on ENZYMES,596

so we used 0.999 10−3 for this dataset. Accordingly we set the number of epochs to 20. However,597

we let the possibility to early stop at 10 epochs, meaning that the epochs number E becomes an598

hyper-parameter. E = {10, 20}.599

PROTEINS. The above remark applies to PROTEINS (with continuous attributes). The learning rate600

was set to 0.999 10−4 and the epochs number E becomes an hyper-parameter E = {10, 20}.601

CUNEIFORM. Since it has 30 different labels, the batch size has been set to 64.602

ENZYMES. (continuous) It was trained in the same way as ENZYMES (discrete).603

Extended vector attributes. We used a concatenation of continuous attributes and one-hot encoding604

of discrete attributes to build an extended vectors attributes. Since our method is a ML method it is605

pertinent to give all information we have and let the method to select the most relevant information.606

In case of PROTEINS, this choice was motivated because its node features are scalars which is not607

suitable for the adaptation procedure while in case of ENZYMES (continuous) and Cuneiform using608

only continuous attributes lead to poor results. This choice help to have more flexibility for SGCN to609

build the metric while avoiding to use more powerful but also more costly GCN.610
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Figure 2: Run time comparisons 2.

Table 6: Ablative experiment with FGW . Acc. is the accuracy. ∆ is the difference in accuracy
between the model of the column and the proposed one SGML whose results are on Table. 1. Red
negative (resp. Green positive) number means that our model perform better (resp. worse). ✗ symbol
means that we had infinite distance values with the default settings of FGW solver.

Dataset FGW
Method Acc. ∆

BZR 81.70 - 3.91
COX2 78.51 - 1.28
MUTAG 83.16 - 6.84
NCI1 ✗ ✗
PROTEINS ✗ ✗
IMDB-B 80.80 11.9
IMDB-M ✗ ✗
ENZYMES 70.83 19.33

A.8 FGW with k-NN611

In the ablative study, we evaluated WWL with a k-NN to justify the design choice. Here, as a612

complement, we reproduced this experiment with FGW . FGW has a parameter denoted α ∈ [0, 1]613

which sets the trade-off between the structure and the characteristics of the nodes in the distance614

computation. We performed a small grid search over this parameter α = [0.25, 0.5, 0.75]. Except615

for IMDB datsaets where α = 1 as in original paper. The results can be found in Table 6. One can616

see that the results are mitigated, FGW performs very well on some datasets and much less well on617

others. Moreover one could probably get even better results by doing a much larger hyperparameters618

tuning, as in the FGW original paper. Still, the present comparison is fair since, first, the grid search619

on the proposed method was also relatively small. Second, these results must be analyzed keeping620

in mind the significant difference in calculation time between the two methods (see Table 5). This621

illustrates also that doing a fine hyperparameter tuning with such expensive methods is not often622

feasible on very large data sets.623

A.9 Limitations of this work624

We discuss some of the limitations of the model and give some suggestions for improvements.625
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GCNs. To generate the distributions associated with the graphs, the model relies on a Graph626

Convolutionnal Neural network (GCN).627

Because of this we can expect some sub-optimal behavior of the model in terms of expressiveness.628

Indeed, while they are very efficient to characterize graphs locally, GCNs tend to lose efficiency629

when their depths increase. Although variations on their architectures have been proposed to solve630

this issue [39], it appears that most neural networks show similar results [6] and this defect seems631

to be intrinsic of their low-pass message passing scheme [40]. Therefore, new ways to efficiently632

characterize graphs at small and large scales could allow learning a better metric. In this regard,633

transformers are promising methods [41, 42]. Their ability to characterize context at different scales634

has already been successfully exploited in natural language processing tasks. Currently many attempts635

have been made in recent years to adapt them to graphs. However, these are difficult networks to636

train and their integration in SGML would not result in a simple and scalable metric learning model.637

Performance. The model allows us to obtain an improvement in classification with k-NN as compared638

to the current methods. It is then more suitable for dealing with real datasets where new input are639

available after (or coming as graph streams) as the method do not need to be fully re-trained. However,640

performance with the k-NN remain inferior to those reached with a SVM. Thus in a critical real641

application (medical for example), where performance is of utmost importance, it is preferable to use642

the SVM. Additional work would be therefore necessary to gain more performance with the k-NN.643

This gain in performance could be acquired by introducing a different model of GCN so to generate644

the features, as mentioned above. But it could also done by making the model more complex. For645

example instead of considering uniform distributions from GCN features, we could introduce an646

attention mechanism that could modulate theirs weights on the distributions. This could give more647

flexibility to the model to build the metric, but at the cost of a more expensive training.648

Theoretical. The work on the distance that we introduced here, RPW2, which is scalable and has a649

good behavior in our model, is currently methodological and driven by insight. As of today, we have650

not proven that it satisfies the triangular inequality so that it is not guaranteed that it is a true metric651

or not. This aspects remains to be clarified.652

Opening to other tasks. Our work has been limited here to the k-NN for supervised classication.653

But other relevant classifiers with interesting properties where NCCML is not efficient enough could654

be consider, eg. the Nearest Class Mean [43]. Other tasks can also be considered such as clustering655

(k-means, ...) and regression (k-NN regression, ...). We believe that the present work is a first step on656

the goal of lowering the cost of many other tasks on graphs.657
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